mirror of https://gitee.com/openkylin/linux.git
1192 lines
32 KiB
C
1192 lines
32 KiB
C
/*
|
|
* Copyright (C) 2015 Shaohua Li <shli@fb.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/raid/md_p.h>
|
|
#include <linux/crc32c.h>
|
|
#include <linux/random.h>
|
|
#include "md.h"
|
|
#include "raid5.h"
|
|
|
|
/*
|
|
* metadata/data stored in disk with 4k size unit (a block) regardless
|
|
* underneath hardware sector size. only works with PAGE_SIZE == 4096
|
|
*/
|
|
#define BLOCK_SECTORS (8)
|
|
|
|
/*
|
|
* reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
|
|
* recovery scans a very long log
|
|
*/
|
|
#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
|
|
#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
|
|
|
|
struct r5l_log {
|
|
struct md_rdev *rdev;
|
|
|
|
u32 uuid_checksum;
|
|
|
|
sector_t device_size; /* log device size, round to
|
|
* BLOCK_SECTORS */
|
|
sector_t max_free_space; /* reclaim run if free space is at
|
|
* this size */
|
|
|
|
sector_t last_checkpoint; /* log tail. where recovery scan
|
|
* starts from */
|
|
u64 last_cp_seq; /* log tail sequence */
|
|
|
|
sector_t log_start; /* log head. where new data appends */
|
|
u64 seq; /* log head sequence */
|
|
|
|
sector_t next_checkpoint;
|
|
u64 next_cp_seq;
|
|
|
|
struct mutex io_mutex;
|
|
struct r5l_io_unit *current_io; /* current io_unit accepting new data */
|
|
|
|
spinlock_t io_list_lock;
|
|
struct list_head running_ios; /* io_units which are still running,
|
|
* and have not yet been completely
|
|
* written to the log */
|
|
struct list_head io_end_ios; /* io_units which have been completely
|
|
* written to the log but not yet written
|
|
* to the RAID */
|
|
struct list_head flushing_ios; /* io_units which are waiting for log
|
|
* cache flush */
|
|
struct list_head finished_ios; /* io_units which settle down in log disk */
|
|
struct bio flush_bio;
|
|
|
|
struct kmem_cache *io_kc;
|
|
|
|
struct md_thread *reclaim_thread;
|
|
unsigned long reclaim_target; /* number of space that need to be
|
|
* reclaimed. if it's 0, reclaim spaces
|
|
* used by io_units which are in
|
|
* IO_UNIT_STRIPE_END state (eg, reclaim
|
|
* dones't wait for specific io_unit
|
|
* switching to IO_UNIT_STRIPE_END
|
|
* state) */
|
|
wait_queue_head_t iounit_wait;
|
|
|
|
struct list_head no_space_stripes; /* pending stripes, log has no space */
|
|
spinlock_t no_space_stripes_lock;
|
|
|
|
bool need_cache_flush;
|
|
bool in_teardown;
|
|
};
|
|
|
|
/*
|
|
* an IO range starts from a meta data block and end at the next meta data
|
|
* block. The io unit's the meta data block tracks data/parity followed it. io
|
|
* unit is written to log disk with normal write, as we always flush log disk
|
|
* first and then start move data to raid disks, there is no requirement to
|
|
* write io unit with FLUSH/FUA
|
|
*/
|
|
struct r5l_io_unit {
|
|
struct r5l_log *log;
|
|
|
|
struct page *meta_page; /* store meta block */
|
|
int meta_offset; /* current offset in meta_page */
|
|
|
|
struct bio *current_bio;/* current_bio accepting new data */
|
|
|
|
atomic_t pending_stripe;/* how many stripes not flushed to raid */
|
|
u64 seq; /* seq number of the metablock */
|
|
sector_t log_start; /* where the io_unit starts */
|
|
sector_t log_end; /* where the io_unit ends */
|
|
struct list_head log_sibling; /* log->running_ios */
|
|
struct list_head stripe_list; /* stripes added to the io_unit */
|
|
|
|
int state;
|
|
bool need_split_bio;
|
|
};
|
|
|
|
/* r5l_io_unit state */
|
|
enum r5l_io_unit_state {
|
|
IO_UNIT_RUNNING = 0, /* accepting new IO */
|
|
IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
|
|
* don't accepting new bio */
|
|
IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
|
|
IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
|
|
};
|
|
|
|
static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
|
|
{
|
|
start += inc;
|
|
if (start >= log->device_size)
|
|
start = start - log->device_size;
|
|
return start;
|
|
}
|
|
|
|
static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
|
|
sector_t end)
|
|
{
|
|
if (end >= start)
|
|
return end - start;
|
|
else
|
|
return end + log->device_size - start;
|
|
}
|
|
|
|
static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
|
|
{
|
|
sector_t used_size;
|
|
|
|
used_size = r5l_ring_distance(log, log->last_checkpoint,
|
|
log->log_start);
|
|
|
|
return log->device_size > used_size + size;
|
|
}
|
|
|
|
static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
|
|
{
|
|
__free_page(io->meta_page);
|
|
kmem_cache_free(log->io_kc, io);
|
|
}
|
|
|
|
static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
|
|
enum r5l_io_unit_state state)
|
|
{
|
|
struct r5l_io_unit *io;
|
|
|
|
while (!list_empty(from)) {
|
|
io = list_first_entry(from, struct r5l_io_unit, log_sibling);
|
|
/* don't change list order */
|
|
if (io->state >= state)
|
|
list_move_tail(&io->log_sibling, to);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
|
|
enum r5l_io_unit_state state)
|
|
{
|
|
if (WARN_ON(io->state >= state))
|
|
return;
|
|
io->state = state;
|
|
}
|
|
|
|
static void r5l_io_run_stripes(struct r5l_io_unit *io)
|
|
{
|
|
struct stripe_head *sh, *next;
|
|
|
|
list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
|
|
list_del_init(&sh->log_list);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
raid5_release_stripe(sh);
|
|
}
|
|
}
|
|
|
|
static void r5l_log_run_stripes(struct r5l_log *log)
|
|
{
|
|
struct r5l_io_unit *io, *next;
|
|
|
|
assert_spin_locked(&log->io_list_lock);
|
|
|
|
list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
|
|
/* don't change list order */
|
|
if (io->state < IO_UNIT_IO_END)
|
|
break;
|
|
|
|
list_move_tail(&io->log_sibling, &log->finished_ios);
|
|
r5l_io_run_stripes(io);
|
|
}
|
|
}
|
|
|
|
static void r5l_log_endio(struct bio *bio)
|
|
{
|
|
struct r5l_io_unit *io = bio->bi_private;
|
|
struct r5l_log *log = io->log;
|
|
unsigned long flags;
|
|
|
|
if (bio->bi_error)
|
|
md_error(log->rdev->mddev, log->rdev);
|
|
|
|
bio_put(bio);
|
|
|
|
spin_lock_irqsave(&log->io_list_lock, flags);
|
|
__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
|
|
if (log->need_cache_flush)
|
|
r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
|
|
IO_UNIT_IO_END);
|
|
else
|
|
r5l_log_run_stripes(log);
|
|
spin_unlock_irqrestore(&log->io_list_lock, flags);
|
|
|
|
if (log->need_cache_flush)
|
|
md_wakeup_thread(log->rdev->mddev->thread);
|
|
}
|
|
|
|
static void r5l_submit_current_io(struct r5l_log *log)
|
|
{
|
|
struct r5l_io_unit *io = log->current_io;
|
|
struct r5l_meta_block *block;
|
|
unsigned long flags;
|
|
u32 crc;
|
|
|
|
if (!io)
|
|
return;
|
|
|
|
block = page_address(io->meta_page);
|
|
block->meta_size = cpu_to_le32(io->meta_offset);
|
|
crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
|
|
block->checksum = cpu_to_le32(crc);
|
|
|
|
log->current_io = NULL;
|
|
spin_lock_irqsave(&log->io_list_lock, flags);
|
|
__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
|
|
spin_unlock_irqrestore(&log->io_list_lock, flags);
|
|
|
|
submit_bio(WRITE, io->current_bio);
|
|
}
|
|
|
|
static struct bio *r5l_bio_alloc(struct r5l_log *log)
|
|
{
|
|
struct bio *bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
|
|
|
|
bio->bi_rw = WRITE;
|
|
bio->bi_bdev = log->rdev->bdev;
|
|
bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
|
|
{
|
|
log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
|
|
|
|
/*
|
|
* If we filled up the log device start from the beginning again,
|
|
* which will require a new bio.
|
|
*
|
|
* Note: for this to work properly the log size needs to me a multiple
|
|
* of BLOCK_SECTORS.
|
|
*/
|
|
if (log->log_start == 0)
|
|
io->need_split_bio = true;
|
|
|
|
io->log_end = log->log_start;
|
|
}
|
|
|
|
static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
|
|
{
|
|
struct r5l_io_unit *io;
|
|
struct r5l_meta_block *block;
|
|
|
|
/* We can't handle memory allocate failure so far */
|
|
io = kmem_cache_zalloc(log->io_kc, GFP_NOIO | __GFP_NOFAIL);
|
|
io->log = log;
|
|
INIT_LIST_HEAD(&io->log_sibling);
|
|
INIT_LIST_HEAD(&io->stripe_list);
|
|
io->state = IO_UNIT_RUNNING;
|
|
|
|
io->meta_page = alloc_page(GFP_NOIO | __GFP_NOFAIL | __GFP_ZERO);
|
|
block = page_address(io->meta_page);
|
|
block->magic = cpu_to_le32(R5LOG_MAGIC);
|
|
block->version = R5LOG_VERSION;
|
|
block->seq = cpu_to_le64(log->seq);
|
|
block->position = cpu_to_le64(log->log_start);
|
|
|
|
io->log_start = log->log_start;
|
|
io->meta_offset = sizeof(struct r5l_meta_block);
|
|
io->seq = log->seq++;
|
|
|
|
io->current_bio = r5l_bio_alloc(log);
|
|
io->current_bio->bi_end_io = r5l_log_endio;
|
|
io->current_bio->bi_private = io;
|
|
bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
|
|
|
|
r5_reserve_log_entry(log, io);
|
|
|
|
spin_lock_irq(&log->io_list_lock);
|
|
list_add_tail(&io->log_sibling, &log->running_ios);
|
|
spin_unlock_irq(&log->io_list_lock);
|
|
|
|
return io;
|
|
}
|
|
|
|
static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
|
|
{
|
|
if (log->current_io &&
|
|
log->current_io->meta_offset + payload_size > PAGE_SIZE)
|
|
r5l_submit_current_io(log);
|
|
|
|
if (!log->current_io)
|
|
log->current_io = r5l_new_meta(log);
|
|
return 0;
|
|
}
|
|
|
|
static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
|
|
sector_t location,
|
|
u32 checksum1, u32 checksum2,
|
|
bool checksum2_valid)
|
|
{
|
|
struct r5l_io_unit *io = log->current_io;
|
|
struct r5l_payload_data_parity *payload;
|
|
|
|
payload = page_address(io->meta_page) + io->meta_offset;
|
|
payload->header.type = cpu_to_le16(type);
|
|
payload->header.flags = cpu_to_le16(0);
|
|
payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
|
|
(PAGE_SHIFT - 9));
|
|
payload->location = cpu_to_le64(location);
|
|
payload->checksum[0] = cpu_to_le32(checksum1);
|
|
if (checksum2_valid)
|
|
payload->checksum[1] = cpu_to_le32(checksum2);
|
|
|
|
io->meta_offset += sizeof(struct r5l_payload_data_parity) +
|
|
sizeof(__le32) * (1 + !!checksum2_valid);
|
|
}
|
|
|
|
static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
|
|
{
|
|
struct r5l_io_unit *io = log->current_io;
|
|
|
|
if (io->need_split_bio) {
|
|
struct bio *prev = io->current_bio;
|
|
|
|
io->current_bio = r5l_bio_alloc(log);
|
|
bio_chain(io->current_bio, prev);
|
|
|
|
submit_bio(WRITE, prev);
|
|
}
|
|
|
|
if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
|
|
BUG();
|
|
|
|
r5_reserve_log_entry(log, io);
|
|
}
|
|
|
|
static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
|
|
int data_pages, int parity_pages)
|
|
{
|
|
int i;
|
|
int meta_size;
|
|
struct r5l_io_unit *io;
|
|
|
|
meta_size =
|
|
((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
|
|
* data_pages) +
|
|
sizeof(struct r5l_payload_data_parity) +
|
|
sizeof(__le32) * parity_pages;
|
|
|
|
r5l_get_meta(log, meta_size);
|
|
io = log->current_io;
|
|
|
|
for (i = 0; i < sh->disks; i++) {
|
|
if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
|
|
continue;
|
|
if (i == sh->pd_idx || i == sh->qd_idx)
|
|
continue;
|
|
r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
|
|
raid5_compute_blocknr(sh, i, 0),
|
|
sh->dev[i].log_checksum, 0, false);
|
|
r5l_append_payload_page(log, sh->dev[i].page);
|
|
}
|
|
|
|
if (sh->qd_idx >= 0) {
|
|
r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
|
|
sh->sector, sh->dev[sh->pd_idx].log_checksum,
|
|
sh->dev[sh->qd_idx].log_checksum, true);
|
|
r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
|
|
r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
|
|
} else {
|
|
r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
|
|
sh->sector, sh->dev[sh->pd_idx].log_checksum,
|
|
0, false);
|
|
r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
|
|
}
|
|
|
|
list_add_tail(&sh->log_list, &io->stripe_list);
|
|
atomic_inc(&io->pending_stripe);
|
|
sh->log_io = io;
|
|
}
|
|
|
|
static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
|
|
/*
|
|
* running in raid5d, where reclaim could wait for raid5d too (when it flushes
|
|
* data from log to raid disks), so we shouldn't wait for reclaim here
|
|
*/
|
|
int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
|
|
{
|
|
int write_disks = 0;
|
|
int data_pages, parity_pages;
|
|
int meta_size;
|
|
int reserve;
|
|
int i;
|
|
|
|
if (!log)
|
|
return -EAGAIN;
|
|
/* Don't support stripe batch */
|
|
if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
|
|
test_bit(STRIPE_SYNCING, &sh->state)) {
|
|
/* the stripe is written to log, we start writing it to raid */
|
|
clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
for (i = 0; i < sh->disks; i++) {
|
|
void *addr;
|
|
|
|
if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
|
|
continue;
|
|
write_disks++;
|
|
/* checksum is already calculated in last run */
|
|
if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
|
|
continue;
|
|
addr = kmap_atomic(sh->dev[i].page);
|
|
sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
|
|
addr, PAGE_SIZE);
|
|
kunmap_atomic(addr);
|
|
}
|
|
parity_pages = 1 + !!(sh->qd_idx >= 0);
|
|
data_pages = write_disks - parity_pages;
|
|
|
|
meta_size =
|
|
((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
|
|
* data_pages) +
|
|
sizeof(struct r5l_payload_data_parity) +
|
|
sizeof(__le32) * parity_pages;
|
|
/* Doesn't work with very big raid array */
|
|
if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
set_bit(STRIPE_LOG_TRAPPED, &sh->state);
|
|
/*
|
|
* The stripe must enter state machine again to finish the write, so
|
|
* don't delay.
|
|
*/
|
|
clear_bit(STRIPE_DELAYED, &sh->state);
|
|
atomic_inc(&sh->count);
|
|
|
|
mutex_lock(&log->io_mutex);
|
|
/* meta + data */
|
|
reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
|
|
if (r5l_has_free_space(log, reserve))
|
|
r5l_log_stripe(log, sh, data_pages, parity_pages);
|
|
else {
|
|
spin_lock(&log->no_space_stripes_lock);
|
|
list_add_tail(&sh->log_list, &log->no_space_stripes);
|
|
spin_unlock(&log->no_space_stripes_lock);
|
|
|
|
r5l_wake_reclaim(log, reserve);
|
|
}
|
|
mutex_unlock(&log->io_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void r5l_write_stripe_run(struct r5l_log *log)
|
|
{
|
|
if (!log)
|
|
return;
|
|
mutex_lock(&log->io_mutex);
|
|
r5l_submit_current_io(log);
|
|
mutex_unlock(&log->io_mutex);
|
|
}
|
|
|
|
int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
|
|
{
|
|
if (!log)
|
|
return -ENODEV;
|
|
/*
|
|
* we flush log disk cache first, then write stripe data to raid disks.
|
|
* So if bio is finished, the log disk cache is flushed already. The
|
|
* recovery guarantees we can recovery the bio from log disk, so we
|
|
* don't need to flush again
|
|
*/
|
|
if (bio->bi_iter.bi_size == 0) {
|
|
bio_endio(bio);
|
|
return 0;
|
|
}
|
|
bio->bi_rw &= ~REQ_FLUSH;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* This will run after log space is reclaimed */
|
|
static void r5l_run_no_space_stripes(struct r5l_log *log)
|
|
{
|
|
struct stripe_head *sh;
|
|
|
|
spin_lock(&log->no_space_stripes_lock);
|
|
while (!list_empty(&log->no_space_stripes)) {
|
|
sh = list_first_entry(&log->no_space_stripes,
|
|
struct stripe_head, log_list);
|
|
list_del_init(&sh->log_list);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
raid5_release_stripe(sh);
|
|
}
|
|
spin_unlock(&log->no_space_stripes_lock);
|
|
}
|
|
|
|
static sector_t r5l_reclaimable_space(struct r5l_log *log)
|
|
{
|
|
return r5l_ring_distance(log, log->last_checkpoint,
|
|
log->next_checkpoint);
|
|
}
|
|
|
|
static bool r5l_complete_finished_ios(struct r5l_log *log)
|
|
{
|
|
struct r5l_io_unit *io, *next;
|
|
bool found = false;
|
|
|
|
assert_spin_locked(&log->io_list_lock);
|
|
|
|
list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
|
|
/* don't change list order */
|
|
if (io->state < IO_UNIT_STRIPE_END)
|
|
break;
|
|
|
|
log->next_checkpoint = io->log_start;
|
|
log->next_cp_seq = io->seq;
|
|
|
|
list_del(&io->log_sibling);
|
|
r5l_free_io_unit(log, io);
|
|
|
|
found = true;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
|
|
{
|
|
struct r5l_log *log = io->log;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&log->io_list_lock, flags);
|
|
__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
|
|
|
|
if (!r5l_complete_finished_ios(log)) {
|
|
spin_unlock_irqrestore(&log->io_list_lock, flags);
|
|
return;
|
|
}
|
|
|
|
if (r5l_reclaimable_space(log) > log->max_free_space)
|
|
r5l_wake_reclaim(log, 0);
|
|
|
|
spin_unlock_irqrestore(&log->io_list_lock, flags);
|
|
wake_up(&log->iounit_wait);
|
|
}
|
|
|
|
void r5l_stripe_write_finished(struct stripe_head *sh)
|
|
{
|
|
struct r5l_io_unit *io;
|
|
|
|
io = sh->log_io;
|
|
sh->log_io = NULL;
|
|
|
|
if (io && atomic_dec_and_test(&io->pending_stripe))
|
|
__r5l_stripe_write_finished(io);
|
|
}
|
|
|
|
static void r5l_log_flush_endio(struct bio *bio)
|
|
{
|
|
struct r5l_log *log = container_of(bio, struct r5l_log,
|
|
flush_bio);
|
|
unsigned long flags;
|
|
struct r5l_io_unit *io;
|
|
|
|
if (bio->bi_error)
|
|
md_error(log->rdev->mddev, log->rdev);
|
|
|
|
spin_lock_irqsave(&log->io_list_lock, flags);
|
|
list_for_each_entry(io, &log->flushing_ios, log_sibling)
|
|
r5l_io_run_stripes(io);
|
|
list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
|
|
spin_unlock_irqrestore(&log->io_list_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Starting dispatch IO to raid.
|
|
* io_unit(meta) consists of a log. There is one situation we want to avoid. A
|
|
* broken meta in the middle of a log causes recovery can't find meta at the
|
|
* head of log. If operations require meta at the head persistent in log, we
|
|
* must make sure meta before it persistent in log too. A case is:
|
|
*
|
|
* stripe data/parity is in log, we start write stripe to raid disks. stripe
|
|
* data/parity must be persistent in log before we do the write to raid disks.
|
|
*
|
|
* The solution is we restrictly maintain io_unit list order. In this case, we
|
|
* only write stripes of an io_unit to raid disks till the io_unit is the first
|
|
* one whose data/parity is in log.
|
|
*/
|
|
void r5l_flush_stripe_to_raid(struct r5l_log *log)
|
|
{
|
|
bool do_flush;
|
|
|
|
if (!log || !log->need_cache_flush)
|
|
return;
|
|
|
|
spin_lock_irq(&log->io_list_lock);
|
|
/* flush bio is running */
|
|
if (!list_empty(&log->flushing_ios)) {
|
|
spin_unlock_irq(&log->io_list_lock);
|
|
return;
|
|
}
|
|
list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
|
|
do_flush = !list_empty(&log->flushing_ios);
|
|
spin_unlock_irq(&log->io_list_lock);
|
|
|
|
if (!do_flush)
|
|
return;
|
|
bio_reset(&log->flush_bio);
|
|
log->flush_bio.bi_bdev = log->rdev->bdev;
|
|
log->flush_bio.bi_end_io = r5l_log_flush_endio;
|
|
submit_bio(WRITE_FLUSH, &log->flush_bio);
|
|
}
|
|
|
|
static void r5l_write_super(struct r5l_log *log, sector_t cp);
|
|
static void r5l_write_super_and_discard_space(struct r5l_log *log,
|
|
sector_t end)
|
|
{
|
|
struct block_device *bdev = log->rdev->bdev;
|
|
struct mddev *mddev;
|
|
|
|
r5l_write_super(log, end);
|
|
|
|
if (!blk_queue_discard(bdev_get_queue(bdev)))
|
|
return;
|
|
|
|
mddev = log->rdev->mddev;
|
|
/*
|
|
* This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
|
|
* wait for this thread to finish. This thread waits for
|
|
* MD_CHANGE_PENDING clear, which is supposed to be done in
|
|
* md_check_recovery(). md_check_recovery() tries to get
|
|
* reconfig_mutex. Since r5l_quiesce already holds the mutex,
|
|
* md_check_recovery() fails, so the PENDING never get cleared. The
|
|
* in_teardown check workaround this issue.
|
|
*/
|
|
if (!log->in_teardown) {
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
set_bit(MD_CHANGE_PENDING, &mddev->flags);
|
|
md_wakeup_thread(mddev->thread);
|
|
wait_event(mddev->sb_wait,
|
|
!test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
|
|
log->in_teardown);
|
|
/*
|
|
* r5l_quiesce could run after in_teardown check and hold
|
|
* mutex first. Superblock might get updated twice.
|
|
*/
|
|
if (log->in_teardown)
|
|
md_update_sb(mddev, 1);
|
|
} else {
|
|
WARN_ON(!mddev_is_locked(mddev));
|
|
md_update_sb(mddev, 1);
|
|
}
|
|
|
|
/* discard IO error really doesn't matter, ignore it */
|
|
if (log->last_checkpoint < end) {
|
|
blkdev_issue_discard(bdev,
|
|
log->last_checkpoint + log->rdev->data_offset,
|
|
end - log->last_checkpoint, GFP_NOIO, 0);
|
|
} else {
|
|
blkdev_issue_discard(bdev,
|
|
log->last_checkpoint + log->rdev->data_offset,
|
|
log->device_size - log->last_checkpoint,
|
|
GFP_NOIO, 0);
|
|
blkdev_issue_discard(bdev, log->rdev->data_offset, end,
|
|
GFP_NOIO, 0);
|
|
}
|
|
}
|
|
|
|
|
|
static void r5l_do_reclaim(struct r5l_log *log)
|
|
{
|
|
sector_t reclaim_target = xchg(&log->reclaim_target, 0);
|
|
sector_t reclaimable;
|
|
sector_t next_checkpoint;
|
|
u64 next_cp_seq;
|
|
|
|
spin_lock_irq(&log->io_list_lock);
|
|
/*
|
|
* move proper io_unit to reclaim list. We should not change the order.
|
|
* reclaimable/unreclaimable io_unit can be mixed in the list, we
|
|
* shouldn't reuse space of an unreclaimable io_unit
|
|
*/
|
|
while (1) {
|
|
reclaimable = r5l_reclaimable_space(log);
|
|
if (reclaimable >= reclaim_target ||
|
|
(list_empty(&log->running_ios) &&
|
|
list_empty(&log->io_end_ios) &&
|
|
list_empty(&log->flushing_ios) &&
|
|
list_empty(&log->finished_ios)))
|
|
break;
|
|
|
|
md_wakeup_thread(log->rdev->mddev->thread);
|
|
wait_event_lock_irq(log->iounit_wait,
|
|
r5l_reclaimable_space(log) > reclaimable,
|
|
log->io_list_lock);
|
|
}
|
|
|
|
next_checkpoint = log->next_checkpoint;
|
|
next_cp_seq = log->next_cp_seq;
|
|
spin_unlock_irq(&log->io_list_lock);
|
|
|
|
BUG_ON(reclaimable < 0);
|
|
if (reclaimable == 0)
|
|
return;
|
|
|
|
/*
|
|
* write_super will flush cache of each raid disk. We must write super
|
|
* here, because the log area might be reused soon and we don't want to
|
|
* confuse recovery
|
|
*/
|
|
r5l_write_super_and_discard_space(log, next_checkpoint);
|
|
|
|
mutex_lock(&log->io_mutex);
|
|
log->last_checkpoint = next_checkpoint;
|
|
log->last_cp_seq = next_cp_seq;
|
|
mutex_unlock(&log->io_mutex);
|
|
|
|
r5l_run_no_space_stripes(log);
|
|
}
|
|
|
|
static void r5l_reclaim_thread(struct md_thread *thread)
|
|
{
|
|
struct mddev *mddev = thread->mddev;
|
|
struct r5conf *conf = mddev->private;
|
|
struct r5l_log *log = conf->log;
|
|
|
|
if (!log)
|
|
return;
|
|
r5l_do_reclaim(log);
|
|
}
|
|
|
|
static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
|
|
{
|
|
unsigned long target;
|
|
unsigned long new = (unsigned long)space; /* overflow in theory */
|
|
|
|
do {
|
|
target = log->reclaim_target;
|
|
if (new < target)
|
|
return;
|
|
} while (cmpxchg(&log->reclaim_target, target, new) != target);
|
|
md_wakeup_thread(log->reclaim_thread);
|
|
}
|
|
|
|
void r5l_quiesce(struct r5l_log *log, int state)
|
|
{
|
|
struct mddev *mddev;
|
|
if (!log || state == 2)
|
|
return;
|
|
if (state == 0) {
|
|
log->in_teardown = 0;
|
|
log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
|
|
log->rdev->mddev, "reclaim");
|
|
} else if (state == 1) {
|
|
/*
|
|
* at this point all stripes are finished, so io_unit is at
|
|
* least in STRIPE_END state
|
|
*/
|
|
log->in_teardown = 1;
|
|
/* make sure r5l_write_super_and_discard_space exits */
|
|
mddev = log->rdev->mddev;
|
|
wake_up(&mddev->sb_wait);
|
|
r5l_wake_reclaim(log, -1L);
|
|
md_unregister_thread(&log->reclaim_thread);
|
|
r5l_do_reclaim(log);
|
|
}
|
|
}
|
|
|
|
bool r5l_log_disk_error(struct r5conf *conf)
|
|
{
|
|
/* don't allow write if journal disk is missing */
|
|
if (!conf->log)
|
|
return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
|
|
return test_bit(Faulty, &conf->log->rdev->flags);
|
|
}
|
|
|
|
struct r5l_recovery_ctx {
|
|
struct page *meta_page; /* current meta */
|
|
sector_t meta_total_blocks; /* total size of current meta and data */
|
|
sector_t pos; /* recovery position */
|
|
u64 seq; /* recovery position seq */
|
|
};
|
|
|
|
static int r5l_read_meta_block(struct r5l_log *log,
|
|
struct r5l_recovery_ctx *ctx)
|
|
{
|
|
struct page *page = ctx->meta_page;
|
|
struct r5l_meta_block *mb;
|
|
u32 crc, stored_crc;
|
|
|
|
if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
|
|
return -EIO;
|
|
|
|
mb = page_address(page);
|
|
stored_crc = le32_to_cpu(mb->checksum);
|
|
mb->checksum = 0;
|
|
|
|
if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
|
|
le64_to_cpu(mb->seq) != ctx->seq ||
|
|
mb->version != R5LOG_VERSION ||
|
|
le64_to_cpu(mb->position) != ctx->pos)
|
|
return -EINVAL;
|
|
|
|
crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
|
|
if (stored_crc != crc)
|
|
return -EINVAL;
|
|
|
|
if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
ctx->meta_total_blocks = BLOCK_SECTORS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
|
|
struct r5l_recovery_ctx *ctx,
|
|
sector_t stripe_sect,
|
|
int *offset, sector_t *log_offset)
|
|
{
|
|
struct r5conf *conf = log->rdev->mddev->private;
|
|
struct stripe_head *sh;
|
|
struct r5l_payload_data_parity *payload;
|
|
int disk_index;
|
|
|
|
sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
|
|
while (1) {
|
|
payload = page_address(ctx->meta_page) + *offset;
|
|
|
|
if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
|
|
raid5_compute_sector(conf,
|
|
le64_to_cpu(payload->location), 0,
|
|
&disk_index, sh);
|
|
|
|
sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
|
|
sh->dev[disk_index].page, READ, false);
|
|
sh->dev[disk_index].log_checksum =
|
|
le32_to_cpu(payload->checksum[0]);
|
|
set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
|
|
ctx->meta_total_blocks += BLOCK_SECTORS;
|
|
} else {
|
|
disk_index = sh->pd_idx;
|
|
sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
|
|
sh->dev[disk_index].page, READ, false);
|
|
sh->dev[disk_index].log_checksum =
|
|
le32_to_cpu(payload->checksum[0]);
|
|
set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
|
|
|
|
if (sh->qd_idx >= 0) {
|
|
disk_index = sh->qd_idx;
|
|
sync_page_io(log->rdev,
|
|
r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
|
|
PAGE_SIZE, sh->dev[disk_index].page,
|
|
READ, false);
|
|
sh->dev[disk_index].log_checksum =
|
|
le32_to_cpu(payload->checksum[1]);
|
|
set_bit(R5_Wantwrite,
|
|
&sh->dev[disk_index].flags);
|
|
}
|
|
ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
|
|
}
|
|
|
|
*log_offset = r5l_ring_add(log, *log_offset,
|
|
le32_to_cpu(payload->size));
|
|
*offset += sizeof(struct r5l_payload_data_parity) +
|
|
sizeof(__le32) *
|
|
(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
|
|
if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
|
|
break;
|
|
}
|
|
|
|
for (disk_index = 0; disk_index < sh->disks; disk_index++) {
|
|
void *addr;
|
|
u32 checksum;
|
|
|
|
if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
|
|
continue;
|
|
addr = kmap_atomic(sh->dev[disk_index].page);
|
|
checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
|
|
kunmap_atomic(addr);
|
|
if (checksum != sh->dev[disk_index].log_checksum)
|
|
goto error;
|
|
}
|
|
|
|
for (disk_index = 0; disk_index < sh->disks; disk_index++) {
|
|
struct md_rdev *rdev, *rrdev;
|
|
|
|
if (!test_and_clear_bit(R5_Wantwrite,
|
|
&sh->dev[disk_index].flags))
|
|
continue;
|
|
|
|
/* in case device is broken */
|
|
rdev = rcu_dereference(conf->disks[disk_index].rdev);
|
|
if (rdev)
|
|
sync_page_io(rdev, stripe_sect, PAGE_SIZE,
|
|
sh->dev[disk_index].page, WRITE, false);
|
|
rrdev = rcu_dereference(conf->disks[disk_index].replacement);
|
|
if (rrdev)
|
|
sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
|
|
sh->dev[disk_index].page, WRITE, false);
|
|
}
|
|
raid5_release_stripe(sh);
|
|
return 0;
|
|
|
|
error:
|
|
for (disk_index = 0; disk_index < sh->disks; disk_index++)
|
|
sh->dev[disk_index].flags = 0;
|
|
raid5_release_stripe(sh);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int r5l_recovery_flush_one_meta(struct r5l_log *log,
|
|
struct r5l_recovery_ctx *ctx)
|
|
{
|
|
struct r5conf *conf = log->rdev->mddev->private;
|
|
struct r5l_payload_data_parity *payload;
|
|
struct r5l_meta_block *mb;
|
|
int offset;
|
|
sector_t log_offset;
|
|
sector_t stripe_sector;
|
|
|
|
mb = page_address(ctx->meta_page);
|
|
offset = sizeof(struct r5l_meta_block);
|
|
log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
|
|
|
|
while (offset < le32_to_cpu(mb->meta_size)) {
|
|
int dd;
|
|
|
|
payload = (void *)mb + offset;
|
|
stripe_sector = raid5_compute_sector(conf,
|
|
le64_to_cpu(payload->location), 0, &dd, NULL);
|
|
if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
|
|
&offset, &log_offset))
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* copy data/parity from log to raid disks */
|
|
static void r5l_recovery_flush_log(struct r5l_log *log,
|
|
struct r5l_recovery_ctx *ctx)
|
|
{
|
|
while (1) {
|
|
if (r5l_read_meta_block(log, ctx))
|
|
return;
|
|
if (r5l_recovery_flush_one_meta(log, ctx))
|
|
return;
|
|
ctx->seq++;
|
|
ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
|
|
}
|
|
}
|
|
|
|
static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
|
|
u64 seq)
|
|
{
|
|
struct page *page;
|
|
struct r5l_meta_block *mb;
|
|
u32 crc;
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
mb = page_address(page);
|
|
mb->magic = cpu_to_le32(R5LOG_MAGIC);
|
|
mb->version = R5LOG_VERSION;
|
|
mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
|
|
mb->seq = cpu_to_le64(seq);
|
|
mb->position = cpu_to_le64(pos);
|
|
crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
|
|
mb->checksum = cpu_to_le32(crc);
|
|
|
|
if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
|
|
__free_page(page);
|
|
return -EIO;
|
|
}
|
|
__free_page(page);
|
|
return 0;
|
|
}
|
|
|
|
static int r5l_recovery_log(struct r5l_log *log)
|
|
{
|
|
struct r5l_recovery_ctx ctx;
|
|
|
|
ctx.pos = log->last_checkpoint;
|
|
ctx.seq = log->last_cp_seq;
|
|
ctx.meta_page = alloc_page(GFP_KERNEL);
|
|
if (!ctx.meta_page)
|
|
return -ENOMEM;
|
|
|
|
r5l_recovery_flush_log(log, &ctx);
|
|
__free_page(ctx.meta_page);
|
|
|
|
/*
|
|
* we did a recovery. Now ctx.pos points to an invalid meta block. New
|
|
* log will start here. but we can't let superblock point to last valid
|
|
* meta block. The log might looks like:
|
|
* | meta 1| meta 2| meta 3|
|
|
* meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
|
|
* superblock points to meta 1, we write a new valid meta 2n. if crash
|
|
* happens again, new recovery will start from meta 1. Since meta 2n is
|
|
* valid now, recovery will think meta 3 is valid, which is wrong.
|
|
* The solution is we create a new meta in meta2 with its seq == meta
|
|
* 1's seq + 10 and let superblock points to meta2. The same recovery will
|
|
* not think meta 3 is a valid meta, because its seq doesn't match
|
|
*/
|
|
if (ctx.seq > log->last_cp_seq + 1) {
|
|
int ret;
|
|
|
|
ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
|
|
if (ret)
|
|
return ret;
|
|
log->seq = ctx.seq + 11;
|
|
log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
|
|
r5l_write_super(log, ctx.pos);
|
|
} else {
|
|
log->log_start = ctx.pos;
|
|
log->seq = ctx.seq;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void r5l_write_super(struct r5l_log *log, sector_t cp)
|
|
{
|
|
struct mddev *mddev = log->rdev->mddev;
|
|
|
|
log->rdev->journal_tail = cp;
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
}
|
|
|
|
static int r5l_load_log(struct r5l_log *log)
|
|
{
|
|
struct md_rdev *rdev = log->rdev;
|
|
struct page *page;
|
|
struct r5l_meta_block *mb;
|
|
sector_t cp = log->rdev->journal_tail;
|
|
u32 stored_crc, expected_crc;
|
|
bool create_super = false;
|
|
int ret;
|
|
|
|
/* Make sure it's valid */
|
|
if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
|
|
cp = 0;
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
|
|
ret = -EIO;
|
|
goto ioerr;
|
|
}
|
|
mb = page_address(page);
|
|
|
|
if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
|
|
mb->version != R5LOG_VERSION) {
|
|
create_super = true;
|
|
goto create;
|
|
}
|
|
stored_crc = le32_to_cpu(mb->checksum);
|
|
mb->checksum = 0;
|
|
expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
|
|
if (stored_crc != expected_crc) {
|
|
create_super = true;
|
|
goto create;
|
|
}
|
|
if (le64_to_cpu(mb->position) != cp) {
|
|
create_super = true;
|
|
goto create;
|
|
}
|
|
create:
|
|
if (create_super) {
|
|
log->last_cp_seq = prandom_u32();
|
|
cp = 0;
|
|
/*
|
|
* Make sure super points to correct address. Log might have
|
|
* data very soon. If super hasn't correct log tail address,
|
|
* recovery can't find the log
|
|
*/
|
|
r5l_write_super(log, cp);
|
|
} else
|
|
log->last_cp_seq = le64_to_cpu(mb->seq);
|
|
|
|
log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
|
|
log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
|
|
if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
|
|
log->max_free_space = RECLAIM_MAX_FREE_SPACE;
|
|
log->last_checkpoint = cp;
|
|
|
|
__free_page(page);
|
|
|
|
return r5l_recovery_log(log);
|
|
ioerr:
|
|
__free_page(page);
|
|
return ret;
|
|
}
|
|
|
|
int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
|
|
{
|
|
struct r5l_log *log;
|
|
|
|
if (PAGE_SIZE != 4096)
|
|
return -EINVAL;
|
|
log = kzalloc(sizeof(*log), GFP_KERNEL);
|
|
if (!log)
|
|
return -ENOMEM;
|
|
log->rdev = rdev;
|
|
|
|
log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
|
|
|
|
log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
|
|
sizeof(rdev->mddev->uuid));
|
|
|
|
mutex_init(&log->io_mutex);
|
|
|
|
spin_lock_init(&log->io_list_lock);
|
|
INIT_LIST_HEAD(&log->running_ios);
|
|
INIT_LIST_HEAD(&log->io_end_ios);
|
|
INIT_LIST_HEAD(&log->flushing_ios);
|
|
INIT_LIST_HEAD(&log->finished_ios);
|
|
bio_init(&log->flush_bio);
|
|
|
|
log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
|
|
if (!log->io_kc)
|
|
goto io_kc;
|
|
|
|
log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
|
|
log->rdev->mddev, "reclaim");
|
|
if (!log->reclaim_thread)
|
|
goto reclaim_thread;
|
|
init_waitqueue_head(&log->iounit_wait);
|
|
|
|
INIT_LIST_HEAD(&log->no_space_stripes);
|
|
spin_lock_init(&log->no_space_stripes_lock);
|
|
|
|
if (r5l_load_log(log))
|
|
goto error;
|
|
|
|
conf->log = log;
|
|
return 0;
|
|
error:
|
|
md_unregister_thread(&log->reclaim_thread);
|
|
reclaim_thread:
|
|
kmem_cache_destroy(log->io_kc);
|
|
io_kc:
|
|
kfree(log);
|
|
return -EINVAL;
|
|
}
|
|
|
|
void r5l_exit_log(struct r5l_log *log)
|
|
{
|
|
md_unregister_thread(&log->reclaim_thread);
|
|
kmem_cache_destroy(log->io_kc);
|
|
kfree(log);
|
|
}
|