linux/drivers/net/wireless/rtlwifi/rtl8188ee/hw.c

2531 lines
71 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2013 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "dm.h"
#include "fw.h"
#include "led.h"
#include "hw.h"
#include "pwrseqcmd.h"
#include "pwrseq.h"
#define LLT_CONFIG 5
static void _rtl88ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpci->reg_bcn_ctrl_val |= set_bits;
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
}
static void _rtl88ee_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl88ee_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(0);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl88ee_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(1));
}
static void _rtl88ee_return_beacon_queue_skb(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
while (skb_queue_len(&ring->queue)) {
struct rtl_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb = __skb_dequeue(&ring->queue);
pci_unmap_single(rtlpci->pdev,
rtlpriv->cfg->ops->get_desc(
(u8 *)entry, true, HW_DESC_TXBUFF_ADDR),
skb->len, PCI_DMA_TODEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
}
static void _rtl88ee_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(1), 0);
}
static void _rtl88ee_set_fw_clock_on(struct ieee80211_hw *hw,
u8 rpwm_val, bool need_turn_off_ckk)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool support_remote_wake_up;
u32 count = 0, isr_regaddr, content;
bool schedule_timer = need_turn_off_ckk;
rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
(u8 *)(&support_remote_wake_up));
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
while (1) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (rtlhal->fw_clk_change_in_progress) {
while (rtlhal->fw_clk_change_in_progress) {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
udelay(100);
if (++count > 1000)
return;
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
}
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
}
}
if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) {
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
if (FW_PS_IS_ACK(rpwm_val)) {
isr_regaddr = REG_HISR;
content = rtl_read_dword(rtlpriv, isr_regaddr);
while (!(content & IMR_CPWM) && (count < 500)) {
udelay(50);
count++;
content = rtl_read_dword(rtlpriv, isr_regaddr);
}
if (content & IMR_CPWM) {
rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E;
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
"Receive CPWM INT!!! Set pHalData->FwPSState = %X\n",
rtlhal->fw_ps_state);
}
}
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
if (schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
} else {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
}
}
static void _rtl88ee_set_fw_clock_off(struct ieee80211_hw *hw,
u8 rpwm_val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring;
enum rf_pwrstate rtstate;
bool schedule_timer = false;
u8 queue;
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
if (!rtlhal->allow_sw_to_change_hwclc)
return;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
return;
for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
ring = &rtlpci->tx_ring[queue];
if (skb_queue_len(&ring->queue)) {
schedule_timer = true;
break;
}
}
if (schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
return;
}
if (FW_PS_STATE(rtlhal->fw_ps_state) !=
FW_PS_STATE_RF_OFF_LOW_PWR_88E) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (!rtlhal->fw_clk_change_in_progress) {
rtlhal->fw_clk_change_in_progress = true;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
rtl_write_word(rtlpriv, REG_HISR, 0x0100);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
}
}
static void _rtl88ee_set_fw_ps_rf_on(struct ieee80211_hw *hw)
{
u8 rpwm_val = 0;
rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK);
_rtl88ee_set_fw_clock_on(hw, rpwm_val, true);
}
static void _rtl88ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw)
{
u8 rpwm_val = 0;
rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR_88E;
_rtl88ee_set_fw_clock_off(hw, rpwm_val);
}
void rtl88ee_fw_clk_off_timer_callback(unsigned long data)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
_rtl88ee_set_fw_ps_rf_off_low_power(hw);
}
static void _rtl88ee_fwlps_leave(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = false;
u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
if (ppsc->low_power_enable) {
rpwm_val = (FW_PS_STATE_ALL_ON_88E|FW_PS_ACK);/* RF on */
_rtl88ee_set_fw_clock_on(hw, rpwm_val, false);
rtlhal->allow_sw_to_change_hwclc = false;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&fw_pwrmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
} else {
rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&fw_pwrmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
}
}
static void _rtl88ee_fwlps_enter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = true;
u8 rpwm_val;
if (ppsc->low_power_enable) {
rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&ppsc->fwctrl_psmode));
rtlhal->allow_sw_to_change_hwclc = true;
_rtl88ee_set_fw_clock_off(hw, rpwm_val);
} else {
rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&ppsc->fwctrl_psmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
}
}
void rtl88ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *)(val)) = rtlpci->receive_config;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfstate;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
(u8 *)(&rfstate));
if (rfstate == ERFOFF) {
*((bool *)(val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *)(val)) = false;
else
*((bool *)(val)) = true;
}
break;
}
case HW_VAR_FW_PSMODE_STATUS:
*((bool *)(val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *)(val)) = tsf;
break; }
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process %x\n", variable);
break;
}
}
void rtl88ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:
for (idx = 0; idx < ETH_ALEN; idx++)
rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]);
break;
case HW_VAR_BASIC_RATE:{
u16 rate_cfg = ((u16 *)val)[0];
u8 rate_index = 0;
rate_cfg = rate_cfg & 0x15f;
rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff);
while (rate_cfg > 0x1) {
rate_cfg = (rate_cfg >> 1);
rate_index++;
}
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index);
break; }
case HW_VAR_BSSID:
for (idx = 0; idx < ETH_ALEN; idx++)
rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]);
break;
case HW_VAR_SIFS:
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *)val));
break;
case HW_VAR_SLOT_TIME:{
u8 e_aci;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
(u8 *)(&e_aci));
}
break; }
case HW_VAR_ACK_PREAMBLE:{
u8 reg_tmp;
u8 short_preamble = (bool) (*(u8 *)val);
reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL+2);
if (short_preamble) {
reg_tmp |= 0x02;
rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
} else {
reg_tmp |= 0xFD;
rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
}
break; }
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val));
break;
case HW_VAR_AMPDU_MIN_SPACE:{
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *((u8 *)val);
if (min_spacing_to_set <= 7) {
sec_min_space = 0;
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
mac->min_space_cfg = ((mac->min_space_cfg &
0xf8) | min_spacing_to_set);
*val = min_spacing_to_set;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break; }
case HW_VAR_SHORTGI_DENSITY:{
u8 density_to_set;
density_to_set = *((u8 *)val);
mac->min_space_cfg |= (density_to_set << 3);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break; }
case HW_VAR_AMPDU_FACTOR:{
u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 };
u8 factor;
u8 *reg = NULL;
u8 id = 0;
reg = regtoset_normal;
factor = *((u8 *)val);
if (factor <= 3) {
factor = (1 << (factor + 2));
if (factor > 0xf)
factor = 0xf;
for (id = 0; id < 4; id++) {
if ((reg[id] & 0xf0) > (factor << 4))
reg[id] = (reg[id] & 0x0f) |
(factor << 4);
if ((reg[id] & 0x0f) > factor)
reg[id] = (reg[id] & 0xf0) | (factor);
rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + id),
reg[id]);
}
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n", factor);
}
break; }
case HW_VAR_AC_PARAM:{
u8 e_aci = *((u8 *)val);
rtl88e_dm_init_edca_turbo(hw);
if (rtlpci->acm_method != eAcmWay2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
(u8 *)(&e_aci));
break; }
case HW_VAR_ACM_CTRL:{
u8 e_aci = *((u8 *)val);
union aci_aifsn *p_aci_aifsn =
(union aci_aifsn *)(&(mac->ac[0].aifs));
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= ACMHW_BEQEN;
break;
case AC2_VI:
acm_ctrl |= ACMHW_VIQEN;
break;
case AC3_VO:
acm_ctrl |= ACMHW_VOQEN;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~ACMHW_BEQEN);
break;
case AC2_VI:
acm_ctrl &= (~ACMHW_VIQEN);
break;
case AC3_VO:
acm_ctrl &= (~ACMHW_BEQEN);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process\n");
break;
}
}
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
acm_ctrl);
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
break; }
case HW_VAR_RCR:
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
rtlpci->receive_config = ((u32 *)(val))[0];
break;
case HW_VAR_RETRY_LIMIT:{
u8 retry_limit = ((u8 *)(val))[0];
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break; }
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *((u8 *)val);
break;
case HW_VAR_IO_CMD:
rtl88e_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_SET_RPWM:{
u8 rpwm_val;
rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
udelay(1);
if (rpwm_val & BIT(7)) {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
(*(u8 *)val));
} else {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
((*(u8 *)val) | BIT(7)));
}
break; }
case HW_VAR_H2C_FW_PWRMODE:
rtl88e_set_fw_pwrmode_cmd(hw, (*(u8 *)val));
break;
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *)val);
break;
case HW_VAR_RESUME_CLK_ON:
_rtl88ee_set_fw_ps_rf_on(hw);
break;
case HW_VAR_FW_LPS_ACTION:{
bool enter_fwlps = *((bool *)val);
if (enter_fwlps)
_rtl88ee_fwlps_enter(hw);
else
_rtl88ee_fwlps_leave(hw);
break; }
case HW_VAR_H2C_FW_JOINBSSRPT:{
u8 mstatus = (*(u8 *)val);
u8 tmp, tmp_reg422, uval;
u8 count = 0, dlbcn_count = 0;
bool recover = false;
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL);
tmp = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1, (tmp | BIT(0)));
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
tmp_reg422 = rtl_read_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 & (~BIT(6)));
if (tmp_reg422 & BIT(6))
recover = true;
do {
uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2);
rtl_write_byte(rtlpriv, REG_TDECTRL+2,
(uval | BIT(0)));
_rtl88ee_return_beacon_queue_skb(hw);
rtl88e_set_fw_rsvdpagepkt(hw, 0);
uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2);
count = 0;
while (!(uval & BIT(0)) && count < 20) {
count++;
udelay(10);
uval = rtl_read_byte(rtlpriv,
REG_TDECTRL+2);
}
dlbcn_count++;
} while (!(uval & BIT(0)) && dlbcn_count < 5);
if (uval & BIT(0))
rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (recover) {
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422);
}
rtl_write_byte(rtlpriv, REG_CR + 1, (tmp & ~(BIT(0))));
}
rtl88e_set_fw_joinbss_report_cmd(hw, (*(u8 *)val));
break; }
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl88e_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
break;
case HW_VAR_AID:{
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
mac->assoc_id));
break; }
case HW_VAR_CORRECT_TSF:{
u8 btype_ibss = ((u8 *)(val))[0];
if (btype_ibss == true)
_rtl88ee_stop_tx_beacon(hw);
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR,
(u32) (mac->tsf & 0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32) ((mac->tsf >> 32) & 0xffffffff));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss == true)
_rtl88ee_resume_tx_beacon(hw);
break; }
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process %x\n", variable);
break;
}
}
static bool _rtl88ee_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
_LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Failed to polling write LLT done at address %d!\n",
address);
status = false;
break;
}
} while (++count);
return status;
}
static bool _rtl88ee_llt_table_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned short i;
u8 txpktbuf_bndy;
u8 maxpage;
bool status;
maxpage = 0xAF;
txpktbuf_bndy = 0xAB;
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x01);
rtl_write_dword(rtlpriv, REG_RQPN, 0x80730d29);
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x25FF0000 | txpktbuf_bndy));
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_PBP, 0x11);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _rtl88ee_llt_write(hw, i, i + 1);
if (true != status)
return status;
}
status = _rtl88ee_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
if (true != status)
return status;
for (i = txpktbuf_bndy; i < maxpage; i++) {
status = _rtl88ee_llt_write(hw, i, (i + 1));
if (true != status)
return status;
}
status = _rtl88ee_llt_write(hw, maxpage, txpktbuf_bndy);
if (true != status)
return status;
return true;
}
static void _rtl88ee_gen_refresh_led_state(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
if (rtlpriv->rtlhal.up_first_time)
return;
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtl88ee_sw_led_on(hw, pLed0);
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
rtl88ee_sw_led_on(hw, pLed0);
else
rtl88ee_sw_led_off(hw, pLed0);
}
static bool _rtl88ee_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 bytetmp;
u16 wordtmp;
/*Disable XTAL OUTPUT for power saving. YJ, add, 111206. */
bytetmp = rtl_read_byte(rtlpriv, REG_XCK_OUT_CTRL) & (~BIT(0));
rtl_write_byte(rtlpriv, REG_XCK_OUT_CTRL, bytetmp);
/*Auto Power Down to CHIP-off State*/
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7));
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
/* HW Power on sequence */
if (!rtl88_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK,
PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK,
Rtl8188E_NIC_ENABLE_FLOW)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"init MAC Fail as rtl88_hal_pwrseqcmdparsing\n");
return false;
}
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4);
rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp);
bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp|BIT(2));
bytetmp = rtl_read_byte(rtlpriv, REG_WATCH_DOG+1);
rtl_write_byte(rtlpriv, REG_WATCH_DOG+1, bytetmp|BIT(7));
bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1);
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1, bytetmp|BIT(1));
bytetmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, bytetmp|BIT(1)|BIT(0));
rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL+1, 2);
rtl_write_word(rtlpriv, REG_TX_RPT_TIME, 0xcdf0);
/*Add for wake up online*/
bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp|BIT(3));
bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG+1);
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+1, (bytetmp & (~BIT(4))));
rtl_write_byte(rtlpriv, 0x367, 0x80);
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
rtl_write_byte(rtlpriv, REG_CR+1, 0x06);
rtl_write_byte(rtlpriv, REG_CR+2, 0x00);
if (!rtlhal->mac_func_enable) {
if (_rtl88ee_llt_table_init(hw) == false) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"LLT table init fail\n");
return false;
}
}
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
wordtmp &= 0xf;
wordtmp |= 0xE771;
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff);
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_MGQ_DESA,
(u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VOQ_DESA,
(u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VIQ_DESA,
(u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BEQ_DESA,
(u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BKQ_DESA,
(u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_HQ_DESA,
(u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_RX_DESA,
(u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
DMA_BIT_MASK(32));
/* if we want to support 64 bit DMA, we should set it here,
* but at the moment we do not support 64 bit DMA
*/
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0);/*Enable RX DMA */
if (rtlhal->earlymode_enable) {/*Early mode enable*/
bytetmp = rtl_read_byte(rtlpriv, REG_EARLY_MODE_CONTROL);
bytetmp |= 0x1f;
rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL, bytetmp);
rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL+3, 0x81);
}
_rtl88ee_gen_refresh_led_state(hw);
return true;
}
static void _rtl88ee_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 reg_prsr;
reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
}
static void _rtl88ee_enable_aspm_back_door(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 tmp1byte = 0;
u32 tmp4Byte = 0, count;
rtl_write_word(rtlpriv, 0x354, 0x8104);
rtl_write_word(rtlpriv, 0x358, 0x24);
rtl_write_word(rtlpriv, 0x350, 0x70c);
rtl_write_byte(rtlpriv, 0x352, 0x2);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
if (0 == tmp1byte) {
tmp4Byte = rtl_read_dword(rtlpriv, 0x34c);
rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(31));
rtl_write_word(rtlpriv, 0x350, 0xf70c);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
rtl_write_word(rtlpriv, 0x350, 0x718);
rtl_write_byte(rtlpriv, 0x352, 0x2);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
if (ppsc->support_backdoor || (0 == tmp1byte)) {
tmp4Byte = rtl_read_dword(rtlpriv, 0x34c);
rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(11)|BIT(12));
rtl_write_word(rtlpriv, 0x350, 0xf718);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
}
void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"The SECR-value %x\n", sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
int rtl88ee_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
bool rtstatus = true;
int err = 0;
u8 tmp_u1b, u1byte;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Rtl8188EE hw init\n");
rtlpriv->rtlhal.being_init_adapter = true;
rtlpriv->intf_ops->disable_aspm(hw);
tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1);
u1byte = rtl_read_byte(rtlpriv, REG_CR);
if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) {
rtlhal->mac_func_enable = true;
} else {
rtlhal->mac_func_enable = false;
rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
}
rtstatus = _rtl88ee_init_mac(hw);
if (rtstatus != true) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
err = 1;
return err;
}
err = rtl88e_download_fw(hw, false);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW now..\n");
err = 1;
rtlhal->fw_ready = false;
return err;
} else {
rtlhal->fw_ready = true;
}
/*fw related variable initialize */
rtlhal->last_hmeboxnum = 0;
rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
rtlhal->fw_clk_change_in_progress = false;
rtlhal->allow_sw_to_change_hwclc = false;
ppsc->fw_current_inpsmode = false;
rtl88e_phy_mac_config(hw);
/* because last function modifies RCR, we update
* rcr var here, or TP will be unstable for receive_config
* is wrong, RX RCR_ACRC32 will cause TP unstable & Rx
* RCR_APP_ICV will cause mac80211 disassoc for cisco 1252
*/
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl88e_phy_bb_config(hw);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
rtl88e_phy_rf_config(hw);
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 0xfff00fff;
_rtl88ee_hw_configure(hw);
rtl_cam_reset_all_entry(hw);
rtl88ee_enable_hw_security_config(hw);
rtlhal->mac_func_enable = true;
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
_rtl88ee_enable_aspm_back_door(hw);
rtlpriv->intf_ops->enable_aspm(hw);
if (ppsc->rfpwr_state == ERFON) {
if ((rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) ||
((rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV) &&
(rtlhal->oem_id == RT_CID_819x_HP))) {
rtl88e_phy_set_rfpath_switch(hw, true);
rtlpriv->dm.fat_table.rx_idle_ant = MAIN_ANT;
} else {
rtl88e_phy_set_rfpath_switch(hw, false);
rtlpriv->dm.fat_table.rx_idle_ant = AUX_ANT;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"rx idle ant %s\n",
(rtlpriv->dm.fat_table.rx_idle_ant == MAIN_ANT) ?
("MAIN_ANT") : ("AUX_ANT"));
if (rtlphy->iqk_initialized) {
rtl88e_phy_iq_calibrate(hw, true);
} else {
rtl88e_phy_iq_calibrate(hw, false);
rtlphy->iqk_initialized = true;
}
rtl88e_dm_check_txpower_tracking(hw);
rtl88e_phy_lc_calibrate(hw);
}
tmp_u1b = efuse_read_1byte(hw, 0x1FA);
if (!(tmp_u1b & BIT(0))) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n");
}
if (!(tmp_u1b & BIT(4))) {
tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
tmp_u1b &= 0x0F;
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
udelay(10);
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "under 1.5V\n");
}
rtl_write_byte(rtlpriv, REG_NAV_CTRL+2, ((30000+127)/128));
rtl88e_dm_init(hw);
rtlpriv->rtlhal.being_init_adapter = false;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "end of Rtl8188EE hw init %x\n",
err);
return 0;
}
static enum version_8188e _rtl88ee_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
enum version_8188e version = VERSION_UNKNOWN;
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (value32 & TRP_VAUX_EN) {
version = (enum version_8188e) VERSION_TEST_CHIP_88E;
} else {
version = NORMAL_CHIP;
version = version | ((value32 & TYPE_ID) ? RF_TYPE_2T2R : 0);
version = version | ((value32 & VENDOR_ID) ?
CHIP_VENDOR_UMC : 0);
}
rtlphy->rf_type = RF_1T1R;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
"RF_2T2R" : "RF_1T1R");
return version;
}
static int _rtl88ee_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
bt_msr &= 0xfc;
if (type == NL80211_IFTYPE_UNSPECIFIED ||
type == NL80211_IFTYPE_STATION) {
_rtl88ee_stop_tx_beacon(hw);
_rtl88ee_enable_bcn_sub_func(hw);
} else if (type == NL80211_IFTYPE_ADHOC ||
type == NL80211_IFTYPE_AP ||
type == NL80211_IFTYPE_MESH_POINT) {
_rtl88ee_resume_tx_beacon(hw);
_rtl88ee_disable_bcn_sub_func(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
type);
}
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
bt_msr |= MSR_NOLINK;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
bt_msr |= MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
bt_msr |= MSR_INFRA;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
bt_msr |= MSR_AP;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
case NL80211_IFTYPE_MESH_POINT:
bt_msr |= MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Mesh Point!\n");
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Network type %d not support!\n", type);
return 1;
}
rtl_write_byte(rtlpriv, (MSR), bt_msr);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if ((bt_msr & 0xfc) == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
}
void rtl88ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 reg_rcr = rtlpci->receive_config;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
if (check_bssid == true) {
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
} else if (check_bssid == false) {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_RCR, (u8 *)(&reg_rcr));
}
}
int rtl88ee_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl88ee_set_media_status(hw, type))
return -EOPNOTSUPP;
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP &&
type != NL80211_IFTYPE_MESH_POINT)
rtl88ee_set_check_bssid(hw, true);
} else {
rtl88ee_set_check_bssid(hw, false);
}
return 0;
}
/* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
void rtl88ee_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl88e_dm_init_edca_turbo(hw);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
break;
case AC0_BE:
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
break;
default:
RT_ASSERT(false, "invalid aci: %d !\n", aci);
break;
}
}
void rtl88ee_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
rtlpci->irq_enabled = true;
/* there are some C2H CMDs have been sent before system interrupt
* is enabled, e.g., C2H, CPWM.
* So we need to clear all C2H events that FW has notified, otherwise
* FW won't schedule any commands anymore.
*/
rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0);
/*enable system interrupt*/
rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF);
}
void rtl88ee_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
rtlpci->irq_enabled = false;
synchronize_irq(rtlpci->pdev->irq);
}
static void _rtl88ee_poweroff_adapter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 u1b_tmp;
u32 count = 0;
rtlhal->mac_func_enable = false;
rtlpriv->intf_ops->enable_aspm(hw);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n");
u1b_tmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, u1b_tmp & (~BIT(1)));
u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
while (!(u1b_tmp & BIT(1)) && (count++ < 100)) {
udelay(10);
u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
count++;
}
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0xFF);
rtl88_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK,
Rtl8188E_NIC_LPS_ENTER_FLOW);
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready)
rtl88e_firmware_selfreset(hw);
u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
u1b_tmp = rtl_read_byte(rtlpriv, REG_32K_CTRL);
rtl_write_byte(rtlpriv, REG_32K_CTRL, (u1b_tmp & (~BIT(0))));
rtl88_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, Rtl8188E_NIC_DISABLE_FLOW);
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp & (~BIT(3))));
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp | BIT(3)));
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
u1b_tmp = rtl_read_byte(rtlpriv, GPIO_IN);
rtl_write_byte(rtlpriv, GPIO_OUT, u1b_tmp);
rtl_write_byte(rtlpriv, GPIO_IO_SEL, 0x7F);
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL, (u1b_tmp << 4) | u1b_tmp);
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL+1);
rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL+1, u1b_tmp | 0x0F);
rtl_write_dword(rtlpriv, REG_GPIO_IO_SEL_2+2, 0x00080808);
}
void rtl88ee_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8188ee card disable\n");
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl88ee_set_media_status(hw, opmode);
if (rtlpriv->rtlhal.driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
_rtl88ee_poweroff_adapter(hw);
/* after power off we should do iqk again */
rtlpriv->phy.iqk_initialized = false;
}
void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw,
u32 *p_inta, u32 *p_intb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, ISR, *p_inta);
*p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
rtl_write_dword(rtlpriv, REG_HISRE, *p_intb);
}
void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u16 bcn_interval, atim_window;
bcn_interval = mac->beacon_interval;
atim_window = 2; /*FIX MERGE */
rtl88ee_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
rtl_write_byte(rtlpriv, 0x606, 0x30);
rtlpci->reg_bcn_ctrl_val |= BIT(3);
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
/*rtl88ee_enable_interrupt(hw);*/
}
void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
"beacon_interval:%d\n", bcn_interval);
/*rtl88ee_disable_interrupt(hw);*/
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
/*rtl88ee_enable_interrupt(hw);*/
}
void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
rtl88ee_disable_interrupt(hw);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl88ee_enable_interrupt(hw);
}
static inline u8 get_chnl_group(u8 chnl)
{
u8 group;
group = chnl / 3;
if (chnl == 14)
group = 5;
return group;
}
static void set_diff0_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
u32 i, u32 eadr)
{
pwr2g->bw40_diff[path][i] = 0;
if (hwinfo[eadr] == 0xFF) {
pwr2g->bw20_diff[path][i] = 0x02;
} else {
pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
/*bit sign number to 8 bit sign number*/
if (pwr2g->bw20_diff[path][i] & BIT(3))
pwr2g->bw20_diff[path][i] |= 0xF0;
}
if (hwinfo[eadr] == 0xFF) {
pwr2g->ofdm_diff[path][i] = 0x04;
} else {
pwr2g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f);
/*bit sign number to 8 bit sign number*/
if (pwr2g->ofdm_diff[path][i] & BIT(3))
pwr2g->ofdm_diff[path][i] |= 0xF0;
}
pwr2g->cck_diff[path][i] = 0;
}
static void set_diff0_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path,
u32 i, u32 eadr)
{
pwr5g->bw40_diff[path][i] = 0;
if (hwinfo[eadr] == 0xFF) {
pwr5g->bw20_diff[path][i] = 0;
} else {
pwr5g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
/*bit sign number to 8 bit sign number*/
if (pwr5g->bw20_diff[path][i] & BIT(3))
pwr5g->bw20_diff[path][i] |= 0xF0;
}
if (hwinfo[eadr] == 0xFF) {
pwr5g->ofdm_diff[path][i] = 0x04;
} else {
pwr5g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f);
/*bit sign number to 8 bit sign number*/
if (pwr5g->ofdm_diff[path][i] & BIT(3))
pwr5g->ofdm_diff[path][i] |= 0xF0;
}
}
static void set_diff1_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
u32 i, u32 eadr)
{
if (hwinfo[eadr] == 0xFF) {
pwr2g->bw40_diff[path][i] = 0xFE;
} else {
pwr2g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
if (pwr2g->bw40_diff[path][i] & BIT(3))
pwr2g->bw40_diff[path][i] |= 0xF0;
}
if (hwinfo[eadr] == 0xFF) {
pwr2g->bw20_diff[path][i] = 0xFE;
} else {
pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0x0f);
if (pwr2g->bw20_diff[path][i] & BIT(3))
pwr2g->bw20_diff[path][i] |= 0xF0;
}
}
static void set_diff1_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path,
u32 i, u32 eadr)
{
if (hwinfo[eadr] == 0xFF) {
pwr5g->bw40_diff[path][i] = 0xFE;
} else {
pwr5g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
if (pwr5g->bw40_diff[path][i] & BIT(3))
pwr5g->bw40_diff[path][i] |= 0xF0;
}
if (hwinfo[eadr] == 0xFF) {
pwr5g->bw20_diff[path][i] = 0xFE;
} else {
pwr5g->bw20_diff[path][i] = (hwinfo[eadr] & 0x0f);
if (pwr5g->bw20_diff[path][i] & BIT(3))
pwr5g->bw20_diff[path][i] |= 0xF0;
}
}
static void set_diff2_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
u32 i, u32 eadr)
{
if (hwinfo[eadr] == 0xFF) {
pwr2g->ofdm_diff[path][i] = 0xFE;
} else {
pwr2g->ofdm_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
if (pwr2g->ofdm_diff[path][i] & BIT(3))
pwr2g->ofdm_diff[path][i] |= 0xF0;
}
if (hwinfo[eadr] == 0xFF) {
pwr2g->cck_diff[path][i] = 0xFE;
} else {
pwr2g->cck_diff[path][i] = (hwinfo[eadr]&0x0f);
if (pwr2g->cck_diff[path][i] & BIT(3))
pwr2g->cck_diff[path][i] |= 0xF0;
}
}
static void _rtl8188e_read_power_value_fromprom(struct ieee80211_hw *hw,
struct txpower_info_2g *pwr2g,
struct txpower_info_5g *pwr5g,
bool autoload_fail,
u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 path, eadr = EEPROM_TX_PWR_INX, i;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"hal_ReadPowerValueFromPROM88E(): PROMContent[0x%x]= 0x%x\n",
(eadr+1), hwinfo[eadr+1]);
if (0xFF == hwinfo[eadr+1])
autoload_fail = true;
if (autoload_fail) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"auto load fail : Use Default value!\n");
for (path = 0; path < MAX_RF_PATH; path++) {
/* 2.4G default value */
for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
pwr2g->index_cck_base[path][i] = 0x2D;
pwr2g->index_bw40_base[path][i] = 0x2D;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
if (i == 0) {
pwr2g->bw20_diff[path][0] = 0x02;
pwr2g->ofdm_diff[path][0] = 0x04;
} else {
pwr2g->bw20_diff[path][i] = 0xFE;
pwr2g->bw40_diff[path][i] = 0xFE;
pwr2g->cck_diff[path][i] = 0xFE;
pwr2g->ofdm_diff[path][i] = 0xFE;
}
}
}
return;
}
for (path = 0; path < MAX_RF_PATH; path++) {
/*2.4G default value*/
for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
pwr2g->index_cck_base[path][i] = hwinfo[eadr++];
if (pwr2g->index_cck_base[path][i] == 0xFF)
pwr2g->index_cck_base[path][i] = 0x2D;
}
for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
pwr2g->index_bw40_base[path][i] = hwinfo[eadr++];
if (pwr2g->index_bw40_base[path][i] == 0xFF)
pwr2g->index_bw40_base[path][i] = 0x2D;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
if (i == 0) {
set_diff0_2g(pwr2g, hwinfo, path, i, eadr);
eadr++;
} else {
set_diff1_2g(pwr2g, hwinfo, path, i, eadr);
eadr++;
set_diff2_2g(pwr2g, hwinfo, path, i, eadr);
eadr++;
}
}
/*5G default value*/
for (i = 0; i < MAX_CHNL_GROUP_5G; i++) {
pwr5g->index_bw40_base[path][i] = hwinfo[eadr++];
if (pwr5g->index_bw40_base[path][i] == 0xFF)
pwr5g->index_bw40_base[path][i] = 0xFE;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
if (i == 0) {
set_diff0_5g(pwr5g, hwinfo, path, i, eadr);
eadr++;
} else {
set_diff1_5g(pwr5g, hwinfo, path, i, eadr);
eadr++;
}
}
if (hwinfo[eadr] == 0xFF) {
pwr5g->ofdm_diff[path][1] = 0xFE;
pwr5g->ofdm_diff[path][2] = 0xFE;
} else {
pwr5g->ofdm_diff[path][1] = (hwinfo[eadr] & 0xf0) >> 4;
pwr5g->ofdm_diff[path][2] = (hwinfo[eadr] & 0x0f);
}
eadr++;
if (hwinfo[eadr] == 0xFF)
pwr5g->ofdm_diff[path][3] = 0xFE;
else
pwr5g->ofdm_diff[path][3] = (hwinfo[eadr]&0x0f);
eadr++;
for (i = 1; i < MAX_TX_COUNT; i++) {
if (pwr5g->ofdm_diff[path][i] == 0xFF)
pwr5g->ofdm_diff[path][i] = 0xFE;
else if (pwr5g->ofdm_diff[path][i] & BIT(3))
pwr5g->ofdm_diff[path][i] |= 0xF0;
}
}
}
static void _rtl88ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
bool autoload_fail,
u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct txpower_info_2g pwrinfo24g;
struct txpower_info_5g pwrinfo5g;
u8 rf_path, index;
u8 i;
int jj = EEPROM_RF_BOARD_OPTION_88E;
int kk = EEPROM_THERMAL_METER_88E;
_rtl8188e_read_power_value_fromprom(hw, &pwrinfo24g, &pwrinfo5g,
autoload_fail, hwinfo);
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = get_chnl_group(i+1);
rtlefuse->txpwrlevel_cck[rf_path][i] =
pwrinfo24g.index_cck_base[rf_path][index];
if (i == 13)
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
pwrinfo24g.index_bw40_base[rf_path][4];
else
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
pwrinfo24g.index_bw40_base[rf_path][index];
rtlefuse->txpwr_ht20diff[rf_path][i] =
pwrinfo24g.bw20_diff[rf_path][0];
rtlefuse->txpwr_legacyhtdiff[rf_path][i] =
pwrinfo24g.ofdm_diff[rf_path][0];
}
for (i = 0; i < 14; i++) {
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF(%d)-Ch(%d) [CCK / HT40_1S ] = "
"[0x%x / 0x%x ]\n", rf_path, i,
rtlefuse->txpwrlevel_cck[rf_path][i],
rtlefuse->txpwrlevel_ht40_1s[rf_path][i]);
}
}
if (!autoload_fail)
rtlefuse->eeprom_thermalmeter = hwinfo[kk];
else
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) {
rtlefuse->apk_thermalmeterignore = true;
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
}
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
if (!autoload_fail) {
rtlefuse->eeprom_regulatory = hwinfo[jj] & 0x07;/*bit0~2*/
if (hwinfo[jj] == 0xFF)
rtlefuse->eeprom_regulatory = 0;
} else {
rtlefuse->eeprom_regulatory = 0;
}
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
}
static void _rtl88ee_read_adapter_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
u16 i, usvalue;
u8 hwinfo[HWSET_MAX_SIZE];
u16 eeprom_id;
int jj = EEPROM_RF_BOARD_OPTION_88E;
int kk = EEPROM_RF_FEATURE_OPTION_88E;
if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
rtl_efuse_shadow_map_update(hw);
memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
HWSET_MAX_SIZE);
} else if (rtlefuse->epromtype == EEPROM_93C46) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"RTL819X Not boot from eeprom, check it !!");
}
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
hwinfo, HWSET_MAX_SIZE);
eeprom_id = *((u16 *)&hwinfo[0]);
if (eeprom_id != RTL8188E_EEPROM_ID) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
rtlefuse->autoload_failflag = true;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
}
if (rtlefuse->autoload_failflag == true)
return;
/*VID DID SVID SDID*/
rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROMId = 0x%4x\n", eeprom_id);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
/*customer ID*/
rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
if (rtlefuse->eeprom_oemid == 0xFF)
rtlefuse->eeprom_oemid = 0;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
/*EEPROM version*/
rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
/*mac address*/
for (i = 0; i < 6; i += 2) {
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
*((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"dev_addr: %pM\n", rtlefuse->dev_addr);
/*channel plan */
rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
/* set channel paln to world wide 13 */
rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
/*tx power*/
_rtl88ee_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
hwinfo);
rtlefuse->txpwr_fromeprom = true;
rtl8188ee_read_bt_coexist_info_from_hwpg(hw,
rtlefuse->autoload_failflag,
hwinfo);
/*board type*/
rtlefuse->board_type = (((*(u8 *)&hwinfo[jj]) & 0xE0) >> 5);
/*Wake on wlan*/
rtlefuse->wowlan_enable = ((hwinfo[kk] & 0x40) >> 6);
/*parse xtal*/
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_88E];
if (hwinfo[EEPROM_XTAL_88E])
rtlefuse->crystalcap = 0x20;
/*antenna diversity*/
rtlefuse->antenna_div_cfg = (hwinfo[jj] & 0x18) >> 3;
if (hwinfo[jj] == 0xFF)
rtlefuse->antenna_div_cfg = 0;
if (rppriv->bt_coexist.eeprom_bt_coexist != 0 &&
rppriv->bt_coexist.eeprom_bt_ant_num == ANT_X1)
rtlefuse->antenna_div_cfg = 0;
rtlefuse->antenna_div_type = hwinfo[EEPROM_RF_ANTENNA_OPT_88E];
if (rtlefuse->antenna_div_type == 0xFF)
rtlefuse->antenna_div_type = 0x01;
if (rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV ||
rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
rtlefuse->antenna_div_cfg = 1;
if (rtlhal->oem_id == RT_CID_DEFAULT) {
switch (rtlefuse->eeprom_oemid) {
case EEPROM_CID_DEFAULT:
if (rtlefuse->eeprom_did == 0x8179) {
if (rtlefuse->eeprom_svid == 0x1025) {
rtlhal->oem_id = RT_CID_819x_Acer;
} else if ((rtlefuse->eeprom_svid == 0x10EC &&
rtlefuse->eeprom_smid == 0x0179) ||
(rtlefuse->eeprom_svid == 0x17AA &&
rtlefuse->eeprom_smid == 0x0179)) {
rtlhal->oem_id = RT_CID_819x_Lenovo;
} else if (rtlefuse->eeprom_svid == 0x103c &&
rtlefuse->eeprom_smid == 0x197d) {
rtlhal->oem_id = RT_CID_819x_HP;
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
break;
case EEPROM_CID_TOSHIBA:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case EEPROM_CID_QMI:
rtlhal->oem_id = RT_CID_819x_QMI;
break;
case EEPROM_CID_WHQL:
default:
rtlhal->oem_id = RT_CID_DEFAULT;
break;
}
}
}
static void _rtl88ee_hal_customized_behavior(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
pcipriv->ledctl.led_opendrain = true;
switch (rtlhal->oem_id) {
case RT_CID_819x_HP:
pcipriv->ledctl.led_opendrain = true;
break;
case RT_CID_819x_Lenovo:
case RT_CID_DEFAULT:
case RT_CID_TOSHIBA:
case RT_CID_CCX:
case RT_CID_819x_Acer:
case RT_CID_WHQL:
default:
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"RT Customized ID: 0x%02X\n", rtlhal->oem_id);
}
void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
rtlhal->version = _rtl88ee_read_chip_version(hw);
if (get_rf_type(rtlphy) == RF_1T1R) {
rtlpriv->dm.rfpath_rxenable[0] = true;
} else {
rtlpriv->dm.rfpath_rxenable[0] = true;
rtlpriv->dm.rfpath_rxenable[1] = true;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
if (tmp_u1b & BIT(4)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl88ee_read_adapter_info(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
}
_rtl88ee_hal_customized_behavior(hw);
}
static void rtl88ee_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 ratr_value;
u8 ratr_index = 0;
u8 nmode = mac->ht_enable;
u8 mimo_ps = IEEE80211_SMPS_OFF;
u16 shortgi_rate;
u32 tmp_ratr_value;
u8 ctx40 = mac->bw_40;
u16 cap = sta->ht_cap.cap;
u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0;
u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0;
enum wireless_mode wirelessmode = mac->mode;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->supp_rates[1] << 4;
else
ratr_value = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_value = 0xfff;
ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
nmode = 1;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
ratr_value &= 0x0007F005;
} else {
u32 ratr_mask;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R)
ratr_mask = 0x000ff005;
else
ratr_mask = 0x0f0ff005;
ratr_value &= ratr_mask;
}
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
if ((rppriv->bt_coexist.bt_coexistence) &&
(rppriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
(rppriv->bt_coexist.bt_cur_state) &&
(rppriv->bt_coexist.bt_ant_isolation) &&
((rppriv->bt_coexist.bt_service == BT_SCO) ||
(rppriv->bt_coexist.bt_service == BT_BUSY)))
ratr_value &= 0x0fffcfc0;
else
ratr_value &= 0x0FFFFFFF;
if (nmode && ((ctx40 && short40) ||
(!ctx40 && short20))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"%x\n", rtl_read_dword(rtlpriv, REG_ARFR0));
}
static void rtl88ee_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index;
u16 cap = sta->ht_cap.cap;
u8 ctx40 = (cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0;
u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0;
u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0;
enum wireless_mode wirelessmode = 0;
bool shortgi = false;
u8 rate_mask[5];
u8 macid = 0;
u8 mimo_ps = IEEE80211_SMPS_OFF;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
ctx40 = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_bitmap = sta->supp_rates[1] << 4;
else
ratr_bitmap = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_bitmap = 0xfff;
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
ratr_index = RATR_INX_WIRELESS_A;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
ratr_index = RATR_INX_WIRELESS_NGB;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
if (rssi == 1)
ratr_bitmap &= 0x00070000;
else if (rssi == 2)
ratr_bitmap &= 0x0007f000;
else
ratr_bitmap &= 0x0007f005;
} else {
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (ctx40) {
if (rssi == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (ctx40) {
if (rssi == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi == 2)
ratr_bitmap &= 0x0f8ff000;
else
ratr_bitmap &= 0x0f8ff015;
} else {
if (rssi == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi == 2)
ratr_bitmap &= 0x0f8ff000;
else
ratr_bitmap &= 0x0f8ff005;
}
}
}
if ((ctx40 && short40) || (!ctx40 && short20)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
sta_entry->ratr_index = ratr_index;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"ratr_bitmap :%x\n", ratr_bitmap);
*(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
(ratr_index << 28);
rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n",
ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1],
rate_mask[2], rate_mask[3], rate_mask[4]);
rtl88e_fill_h2c_cmd(hw, H2C_88E_RA_MASK, 5, rate_mask);
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
}
void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl88ee_update_hal_rate_mask(hw, sta, rssi);
else
rtl88ee_update_hal_rate_table(hw, sta);
}
void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
(u8 *)&mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x0e0e;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
enum rf_pwrstate state_toset;
u32 u4tmp;
bool actuallyset = false;
if (rtlpriv->rtlhal.being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock(&rtlpriv->locks.rf_ps_lock);
if (ppsc->rfchange_inprogress) {
spin_unlock(&rtlpriv->locks.rf_ps_lock);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
u4tmp = rtl_read_dword(rtlpriv, REG_GPIO_OUTPUT);
state_toset = (u4tmp & BIT(31)) ? ERFON : ERFOFF;
if ((ppsc->hwradiooff == true) && (state_toset == ERFON)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio ON, RF ON\n");
state_toset = ERFON;
ppsc->hwradiooff = false;
actuallyset = true;
} else if ((ppsc->hwradiooff == false) && (state_toset == ERFOFF)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
state_toset = ERFOFF;
ppsc->hwradiooff = true;
actuallyset = true;
}
if (actuallyset) {
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
} else {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
*valid = 1;
return !ppsc->hwradiooff;
}
static void add_one_key(struct ieee80211_hw *hw, u8 *macaddr,
struct rtl_mac *mac, u32 key, u32 id,
u8 enc_algo, bool is_pairwise)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n");
if (is_pairwise) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[key]);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw, rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[id]);
}
rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[id]);
}
}
void rtl88ee_set_key(struct ieee80211_hw *hw, u32 key,
u8 *mac_ad, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u8 *macaddr = mac_ad;
u32 id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key];
id = key;
} else {
if (is_group) {
macaddr = cam_const_broad;
id = key;
} else {
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
id = rtl_cam_get_free_entry(hw, mac_ad);
if (id >= TOTAL_CAM_ENTRY) {
RT_TRACE(rtlpriv, COMP_SEC,
DBG_EMERG,
"Can not find free hw security cam entry\n");
return;
}
} else {
id = CAM_PAIRWISE_KEY_POSITION;
}
key = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key] == 0) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, id is %d\n", id);
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
rtl_cam_del_entry(hw, mac_ad);
rtl_cam_delete_one_entry(hw, mac_ad, id);
} else {
add_one_key(hw, macaddr, mac, key, id, enc_algo,
is_pairwise);
}
}
}
static void rtl8188ee_bt_var_init(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
struct bt_coexist_info coexist = rppriv->bt_coexist;
coexist.bt_coexistence = rppriv->bt_coexist.eeprom_bt_coexist;
coexist.bt_ant_num = coexist.eeprom_bt_ant_num;
coexist.bt_coexist_type = coexist.eeprom_bt_type;
if (coexist.reg_bt_iso == 2)
coexist.bt_ant_isolation = coexist.eeprom_bt_ant_isol;
else
coexist.bt_ant_isolation = coexist.reg_bt_iso;
coexist.bt_radio_shared_type = coexist.eeprom_bt_radio_shared;
if (coexist.bt_coexistence) {
if (coexist.reg_bt_sco == 1)
coexist.bt_service = BT_OTHER_ACTION;
else if (coexist.reg_bt_sco == 2)
coexist.bt_service = BT_SCO;
else if (coexist.reg_bt_sco == 4)
coexist.bt_service = BT_BUSY;
else if (coexist.reg_bt_sco == 5)
coexist.bt_service = BT_OTHERBUSY;
else
coexist.bt_service = BT_IDLE;
coexist.bt_edca_ul = 0;
coexist.bt_edca_dl = 0;
coexist.bt_rssi_state = 0xff;
}
}
void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
bool auto_load_fail, u8 *hwinfo)
{
rtl8188ee_bt_var_init(hw);
}
void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
/* 0:Low, 1:High, 2:From Efuse. */
rppriv->bt_coexist.reg_bt_iso = 2;
/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
rppriv->bt_coexist.reg_bt_sco = 3;
/* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
rppriv->bt_coexist.reg_bt_sco = 0;
}
void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
struct bt_coexist_info coexist = rppriv->bt_coexist;
u8 u1_tmp;
if (coexist.bt_coexistence &&
((coexist.bt_coexist_type == BT_CSR_BC4) ||
coexist.bt_coexist_type == BT_CSR_BC8)) {
if (coexist.bt_ant_isolation)
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
BIT_OFFSET_LEN_MASK_32(0, 1);
u1_tmp = u1_tmp | ((coexist.bt_ant_isolation == 1) ?
0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
((coexist.bt_service == BT_SCO) ?
0 : BIT_OFFSET_LEN_MASK_32(2, 1));
rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
/* Config to 1T1R. */
if (rtlphy->rf_type == RF_1T1R) {
u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
}
}
}
void rtl88ee_suspend(struct ieee80211_hw *hw)
{
}
void rtl88ee_resume(struct ieee80211_hw *hw)
{
}
/* Turn on AAP (RCR:bit 0) for promicuous mode. */
void rtl88ee_allow_all_destaddr(struct ieee80211_hw *hw,
bool allow_all_da, bool write_into_reg)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
if (allow_all_da) /* Set BIT0 */
rtlpci->receive_config |= RCR_AAP;
else /* Clear BIT0 */
rtlpci->receive_config &= ~RCR_AAP;
if (write_into_reg)
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
"receive_config = 0x%08X, write_into_reg =%d\n",
rtlpci->receive_config, write_into_reg);
}