mirror of https://gitee.com/openkylin/linux.git
1529 lines
37 KiB
C
1529 lines
37 KiB
C
/*
|
|
* MTK NAND Flash controller driver.
|
|
* Copyright (C) 2016 MediaTek Inc.
|
|
* Authors: Xiaolei Li <xiaolei.li@mediatek.com>
|
|
* Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/module.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/of.h>
|
|
#include "mtk_ecc.h"
|
|
|
|
/* NAND controller register definition */
|
|
#define NFI_CNFG (0x00)
|
|
#define CNFG_AHB BIT(0)
|
|
#define CNFG_READ_EN BIT(1)
|
|
#define CNFG_DMA_BURST_EN BIT(2)
|
|
#define CNFG_BYTE_RW BIT(6)
|
|
#define CNFG_HW_ECC_EN BIT(8)
|
|
#define CNFG_AUTO_FMT_EN BIT(9)
|
|
#define CNFG_OP_CUST (6 << 12)
|
|
#define NFI_PAGEFMT (0x04)
|
|
#define PAGEFMT_FDM_ECC_SHIFT (12)
|
|
#define PAGEFMT_FDM_SHIFT (8)
|
|
#define PAGEFMT_SPARE_16 (0)
|
|
#define PAGEFMT_SPARE_26 (1)
|
|
#define PAGEFMT_SPARE_27 (2)
|
|
#define PAGEFMT_SPARE_28 (3)
|
|
#define PAGEFMT_SPARE_32 (4)
|
|
#define PAGEFMT_SPARE_36 (5)
|
|
#define PAGEFMT_SPARE_40 (6)
|
|
#define PAGEFMT_SPARE_44 (7)
|
|
#define PAGEFMT_SPARE_48 (8)
|
|
#define PAGEFMT_SPARE_49 (9)
|
|
#define PAGEFMT_SPARE_50 (0xa)
|
|
#define PAGEFMT_SPARE_51 (0xb)
|
|
#define PAGEFMT_SPARE_52 (0xc)
|
|
#define PAGEFMT_SPARE_62 (0xd)
|
|
#define PAGEFMT_SPARE_63 (0xe)
|
|
#define PAGEFMT_SPARE_64 (0xf)
|
|
#define PAGEFMT_SPARE_SHIFT (4)
|
|
#define PAGEFMT_SEC_SEL_512 BIT(2)
|
|
#define PAGEFMT_512_2K (0)
|
|
#define PAGEFMT_2K_4K (1)
|
|
#define PAGEFMT_4K_8K (2)
|
|
#define PAGEFMT_8K_16K (3)
|
|
/* NFI control */
|
|
#define NFI_CON (0x08)
|
|
#define CON_FIFO_FLUSH BIT(0)
|
|
#define CON_NFI_RST BIT(1)
|
|
#define CON_BRD BIT(8) /* burst read */
|
|
#define CON_BWR BIT(9) /* burst write */
|
|
#define CON_SEC_SHIFT (12)
|
|
/* Timming control register */
|
|
#define NFI_ACCCON (0x0C)
|
|
#define NFI_INTR_EN (0x10)
|
|
#define INTR_AHB_DONE_EN BIT(6)
|
|
#define NFI_INTR_STA (0x14)
|
|
#define NFI_CMD (0x20)
|
|
#define NFI_ADDRNOB (0x30)
|
|
#define NFI_COLADDR (0x34)
|
|
#define NFI_ROWADDR (0x38)
|
|
#define NFI_STRDATA (0x40)
|
|
#define STAR_EN (1)
|
|
#define STAR_DE (0)
|
|
#define NFI_CNRNB (0x44)
|
|
#define NFI_DATAW (0x50)
|
|
#define NFI_DATAR (0x54)
|
|
#define NFI_PIO_DIRDY (0x58)
|
|
#define PIO_DI_RDY (0x01)
|
|
#define NFI_STA (0x60)
|
|
#define STA_CMD BIT(0)
|
|
#define STA_ADDR BIT(1)
|
|
#define STA_BUSY BIT(8)
|
|
#define STA_EMP_PAGE BIT(12)
|
|
#define NFI_FSM_CUSTDATA (0xe << 16)
|
|
#define NFI_FSM_MASK (0xf << 16)
|
|
#define NFI_ADDRCNTR (0x70)
|
|
#define CNTR_MASK GENMASK(16, 12)
|
|
#define ADDRCNTR_SEC_SHIFT (12)
|
|
#define ADDRCNTR_SEC(val) \
|
|
(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
|
|
#define NFI_STRADDR (0x80)
|
|
#define NFI_BYTELEN (0x84)
|
|
#define NFI_CSEL (0x90)
|
|
#define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
|
|
#define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
|
|
#define NFI_FDM_MAX_SIZE (8)
|
|
#define NFI_FDM_MIN_SIZE (1)
|
|
#define NFI_MASTER_STA (0x224)
|
|
#define MASTER_STA_MASK (0x0FFF)
|
|
#define NFI_EMPTY_THRESH (0x23C)
|
|
|
|
#define MTK_NAME "mtk-nand"
|
|
#define KB(x) ((x) * 1024UL)
|
|
#define MB(x) (KB(x) * 1024UL)
|
|
|
|
#define MTK_TIMEOUT (500000)
|
|
#define MTK_RESET_TIMEOUT (1000000)
|
|
#define MTK_MAX_SECTOR (16)
|
|
#define MTK_NAND_MAX_NSELS (2)
|
|
|
|
struct mtk_nfc_bad_mark_ctl {
|
|
void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
|
|
u32 sec;
|
|
u32 pos;
|
|
};
|
|
|
|
/*
|
|
* FDM: region used to store free OOB data
|
|
*/
|
|
struct mtk_nfc_fdm {
|
|
u32 reg_size;
|
|
u32 ecc_size;
|
|
};
|
|
|
|
struct mtk_nfc_nand_chip {
|
|
struct list_head node;
|
|
struct nand_chip nand;
|
|
|
|
struct mtk_nfc_bad_mark_ctl bad_mark;
|
|
struct mtk_nfc_fdm fdm;
|
|
u32 spare_per_sector;
|
|
|
|
int nsels;
|
|
u8 sels[0];
|
|
/* nothing after this field */
|
|
};
|
|
|
|
struct mtk_nfc_clk {
|
|
struct clk *nfi_clk;
|
|
struct clk *pad_clk;
|
|
};
|
|
|
|
struct mtk_nfc {
|
|
struct nand_hw_control controller;
|
|
struct mtk_ecc_config ecc_cfg;
|
|
struct mtk_nfc_clk clk;
|
|
struct mtk_ecc *ecc;
|
|
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
|
|
struct completion done;
|
|
struct list_head chips;
|
|
|
|
u8 *buffer;
|
|
};
|
|
|
|
static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
|
|
{
|
|
return container_of(nand, struct mtk_nfc_nand_chip, nand);
|
|
}
|
|
|
|
static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
|
|
{
|
|
return (u8 *)p + i * chip->ecc.size;
|
|
}
|
|
|
|
static inline u8 *oob_ptr(struct nand_chip *chip, int i)
|
|
{
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
u8 *poi;
|
|
|
|
/* map the sector's FDM data to free oob:
|
|
* the beginning of the oob area stores the FDM data of bad mark sectors
|
|
*/
|
|
|
|
if (i < mtk_nand->bad_mark.sec)
|
|
poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
|
|
else if (i == mtk_nand->bad_mark.sec)
|
|
poi = chip->oob_poi;
|
|
else
|
|
poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
|
|
|
|
return poi;
|
|
}
|
|
|
|
static inline int mtk_data_len(struct nand_chip *chip)
|
|
{
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
|
|
return chip->ecc.size + mtk_nand->spare_per_sector;
|
|
}
|
|
|
|
static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
|
|
return nfc->buffer + i * mtk_data_len(chip);
|
|
}
|
|
|
|
static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
|
|
return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
|
|
}
|
|
|
|
static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
|
|
{
|
|
writel(val, nfc->regs + reg);
|
|
}
|
|
|
|
static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
|
|
{
|
|
writew(val, nfc->regs + reg);
|
|
}
|
|
|
|
static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
|
|
{
|
|
writeb(val, nfc->regs + reg);
|
|
}
|
|
|
|
static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
|
|
{
|
|
return readl_relaxed(nfc->regs + reg);
|
|
}
|
|
|
|
static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
|
|
{
|
|
return readw_relaxed(nfc->regs + reg);
|
|
}
|
|
|
|
static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
|
|
{
|
|
return readb_relaxed(nfc->regs + reg);
|
|
}
|
|
|
|
static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
|
|
{
|
|
struct device *dev = nfc->dev;
|
|
u32 val;
|
|
int ret;
|
|
|
|
/* reset all registers and force the NFI master to terminate */
|
|
nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
|
|
|
|
/* wait for the master to finish the last transaction */
|
|
ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
|
|
!(val & MASTER_STA_MASK), 50,
|
|
MTK_RESET_TIMEOUT);
|
|
if (ret)
|
|
dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
|
|
NFI_MASTER_STA, val);
|
|
|
|
/* ensure any status register affected by the NFI master is reset */
|
|
nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
|
|
nfi_writew(nfc, STAR_DE, NFI_STRDATA);
|
|
}
|
|
|
|
static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
|
|
{
|
|
struct device *dev = nfc->dev;
|
|
u32 val;
|
|
int ret;
|
|
|
|
nfi_writel(nfc, command, NFI_CMD);
|
|
|
|
ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
|
|
!(val & STA_CMD), 10, MTK_TIMEOUT);
|
|
if (ret) {
|
|
dev_warn(dev, "nfi core timed out entering command mode\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
|
|
{
|
|
struct device *dev = nfc->dev;
|
|
u32 val;
|
|
int ret;
|
|
|
|
nfi_writel(nfc, addr, NFI_COLADDR);
|
|
nfi_writel(nfc, 0, NFI_ROWADDR);
|
|
nfi_writew(nfc, 1, NFI_ADDRNOB);
|
|
|
|
ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
|
|
!(val & STA_ADDR), 10, MTK_TIMEOUT);
|
|
if (ret) {
|
|
dev_warn(dev, "nfi core timed out entering address mode\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
u32 fmt, spare;
|
|
|
|
if (!mtd->writesize)
|
|
return 0;
|
|
|
|
spare = mtk_nand->spare_per_sector;
|
|
|
|
switch (mtd->writesize) {
|
|
case 512:
|
|
fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
|
|
break;
|
|
case KB(2):
|
|
if (chip->ecc.size == 512)
|
|
fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
|
|
else
|
|
fmt = PAGEFMT_512_2K;
|
|
break;
|
|
case KB(4):
|
|
if (chip->ecc.size == 512)
|
|
fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
|
|
else
|
|
fmt = PAGEFMT_2K_4K;
|
|
break;
|
|
case KB(8):
|
|
if (chip->ecc.size == 512)
|
|
fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
|
|
else
|
|
fmt = PAGEFMT_4K_8K;
|
|
break;
|
|
case KB(16):
|
|
fmt = PAGEFMT_8K_16K;
|
|
break;
|
|
default:
|
|
dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* the hardware will double the value for this eccsize, so we need to
|
|
* halve it
|
|
*/
|
|
if (chip->ecc.size == 1024)
|
|
spare >>= 1;
|
|
|
|
switch (spare) {
|
|
case 16:
|
|
fmt |= (PAGEFMT_SPARE_16 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 26:
|
|
fmt |= (PAGEFMT_SPARE_26 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 27:
|
|
fmt |= (PAGEFMT_SPARE_27 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 28:
|
|
fmt |= (PAGEFMT_SPARE_28 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 32:
|
|
fmt |= (PAGEFMT_SPARE_32 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 36:
|
|
fmt |= (PAGEFMT_SPARE_36 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 40:
|
|
fmt |= (PAGEFMT_SPARE_40 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 44:
|
|
fmt |= (PAGEFMT_SPARE_44 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 48:
|
|
fmt |= (PAGEFMT_SPARE_48 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 49:
|
|
fmt |= (PAGEFMT_SPARE_49 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 50:
|
|
fmt |= (PAGEFMT_SPARE_50 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 51:
|
|
fmt |= (PAGEFMT_SPARE_51 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 52:
|
|
fmt |= (PAGEFMT_SPARE_52 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 62:
|
|
fmt |= (PAGEFMT_SPARE_62 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 63:
|
|
fmt |= (PAGEFMT_SPARE_63 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
case 64:
|
|
fmt |= (PAGEFMT_SPARE_64 << PAGEFMT_SPARE_SHIFT);
|
|
break;
|
|
default:
|
|
dev_err(nfc->dev, "invalid spare per sector %d\n", spare);
|
|
return -EINVAL;
|
|
}
|
|
|
|
fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
|
|
fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
|
|
nfi_writew(nfc, fmt, NFI_PAGEFMT);
|
|
|
|
nfc->ecc_cfg.strength = chip->ecc.strength;
|
|
nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mtk_nfc *nfc = nand_get_controller_data(nand);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
|
|
|
|
if (chip < 0)
|
|
return;
|
|
|
|
mtk_nfc_hw_runtime_config(mtd);
|
|
|
|
nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
|
|
}
|
|
|
|
static int mtk_nfc_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
|
|
|
|
if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
|
|
|
|
if (ctrl & NAND_ALE) {
|
|
mtk_nfc_send_address(nfc, dat);
|
|
} else if (ctrl & NAND_CLE) {
|
|
mtk_nfc_hw_reset(nfc);
|
|
|
|
nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
|
|
mtk_nfc_send_command(nfc, dat);
|
|
}
|
|
}
|
|
|
|
static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
|
|
{
|
|
int rc;
|
|
u8 val;
|
|
|
|
rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
|
|
val & PIO_DI_RDY, 10, MTK_TIMEOUT);
|
|
if (rc < 0)
|
|
dev_err(nfc->dev, "data not ready\n");
|
|
}
|
|
|
|
static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
u32 reg;
|
|
|
|
/* after each byte read, the NFI_STA reg is reset by the hardware */
|
|
reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
|
|
if (reg != NFI_FSM_CUSTDATA) {
|
|
reg = nfi_readw(nfc, NFI_CNFG);
|
|
reg |= CNFG_BYTE_RW | CNFG_READ_EN;
|
|
nfi_writew(nfc, reg, NFI_CNFG);
|
|
|
|
/*
|
|
* set to max sector to allow the HW to continue reading over
|
|
* unaligned accesses
|
|
*/
|
|
reg = (MTK_MAX_SECTOR << CON_SEC_SHIFT) | CON_BRD;
|
|
nfi_writel(nfc, reg, NFI_CON);
|
|
|
|
/* trigger to fetch data */
|
|
nfi_writew(nfc, STAR_EN, NFI_STRDATA);
|
|
}
|
|
|
|
mtk_nfc_wait_ioready(nfc);
|
|
|
|
return nfi_readb(nfc, NFI_DATAR);
|
|
}
|
|
|
|
static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = mtk_nfc_read_byte(mtd);
|
|
}
|
|
|
|
static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
|
|
u32 reg;
|
|
|
|
reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
|
|
|
|
if (reg != NFI_FSM_CUSTDATA) {
|
|
reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
|
|
nfi_writew(nfc, reg, NFI_CNFG);
|
|
|
|
reg = MTK_MAX_SECTOR << CON_SEC_SHIFT | CON_BWR;
|
|
nfi_writel(nfc, reg, NFI_CON);
|
|
|
|
nfi_writew(nfc, STAR_EN, NFI_STRDATA);
|
|
}
|
|
|
|
mtk_nfc_wait_ioready(nfc);
|
|
nfi_writeb(nfc, byte, NFI_DATAW);
|
|
}
|
|
|
|
static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
mtk_nfc_write_byte(mtd, buf[i]);
|
|
}
|
|
|
|
static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
int size = chip->ecc.size + mtk_nand->fdm.reg_size;
|
|
|
|
nfc->ecc_cfg.mode = ECC_DMA_MODE;
|
|
nfc->ecc_cfg.op = ECC_ENCODE;
|
|
|
|
return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
|
|
}
|
|
|
|
static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
|
|
{
|
|
/* nop */
|
|
}
|
|
|
|
static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
|
|
u32 bad_pos = nand->bad_mark.pos;
|
|
|
|
if (raw)
|
|
bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
|
|
else
|
|
bad_pos += nand->bad_mark.sec * chip->ecc.size;
|
|
|
|
swap(chip->oob_poi[0], buf[bad_pos]);
|
|
}
|
|
|
|
static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
|
|
u32 len, const u8 *buf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
|
|
u32 start, end;
|
|
int i, ret;
|
|
|
|
start = offset / chip->ecc.size;
|
|
end = DIV_ROUND_UP(offset + len, chip->ecc.size);
|
|
|
|
memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
|
|
chip->ecc.size);
|
|
|
|
if (start > i || i >= end)
|
|
continue;
|
|
|
|
if (i == mtk_nand->bad_mark.sec)
|
|
mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
|
|
|
|
memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
|
|
|
|
/* program the CRC back to the OOB */
|
|
ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
|
|
u32 i;
|
|
|
|
memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
if (buf)
|
|
memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
|
|
chip->ecc.size);
|
|
|
|
if (i == mtk_nand->bad_mark.sec)
|
|
mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
|
|
|
|
memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
|
|
}
|
|
}
|
|
|
|
static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
|
|
u32 sectors)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
|
|
u32 vall, valm;
|
|
u8 *oobptr;
|
|
int i, j;
|
|
|
|
for (i = 0; i < sectors; i++) {
|
|
oobptr = oob_ptr(chip, start + i);
|
|
vall = nfi_readl(nfc, NFI_FDML(i));
|
|
valm = nfi_readl(nfc, NFI_FDMM(i));
|
|
|
|
for (j = 0; j < fdm->reg_size; j++)
|
|
oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
|
|
}
|
|
}
|
|
|
|
static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
|
|
u32 vall, valm;
|
|
u8 *oobptr;
|
|
int i, j;
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
oobptr = oob_ptr(chip, i);
|
|
vall = 0;
|
|
valm = 0;
|
|
for (j = 0; j < 8; j++) {
|
|
if (j < 4)
|
|
vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
|
|
<< (j * 8);
|
|
else
|
|
valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
|
|
<< ((j - 4) * 8);
|
|
}
|
|
nfi_writel(nfc, vall, NFI_FDML(i));
|
|
nfi_writel(nfc, valm, NFI_FDMM(i));
|
|
}
|
|
}
|
|
|
|
static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const u8 *buf, int page, int len)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct device *dev = nfc->dev;
|
|
dma_addr_t addr;
|
|
u32 reg;
|
|
int ret;
|
|
|
|
addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
|
|
ret = dma_mapping_error(nfc->dev, addr);
|
|
if (ret) {
|
|
dev_err(nfc->dev, "dma mapping error\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
|
|
nfi_writew(nfc, reg, NFI_CNFG);
|
|
|
|
nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
|
|
nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
|
|
nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
|
|
|
|
init_completion(&nfc->done);
|
|
|
|
reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
|
|
nfi_writel(nfc, reg, NFI_CON);
|
|
nfi_writew(nfc, STAR_EN, NFI_STRDATA);
|
|
|
|
ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
|
|
if (!ret) {
|
|
dev_err(dev, "program ahb done timeout\n");
|
|
nfi_writew(nfc, 0, NFI_INTR_EN);
|
|
ret = -ETIMEDOUT;
|
|
goto timeout;
|
|
}
|
|
|
|
ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
|
|
ADDRCNTR_SEC(reg) >= chip->ecc.steps,
|
|
10, MTK_TIMEOUT);
|
|
if (ret)
|
|
dev_err(dev, "hwecc write timeout\n");
|
|
|
|
timeout:
|
|
|
|
dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
|
|
nfi_writel(nfc, 0, NFI_CON);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const u8 *buf, int page, int raw)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
size_t len;
|
|
const u8 *bufpoi;
|
|
u32 reg;
|
|
int ret;
|
|
|
|
if (!raw) {
|
|
/* OOB => FDM: from register, ECC: from HW */
|
|
reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
|
|
nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
|
|
|
|
nfc->ecc_cfg.op = ECC_ENCODE;
|
|
nfc->ecc_cfg.mode = ECC_NFI_MODE;
|
|
ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
|
|
if (ret) {
|
|
/* clear NFI config */
|
|
reg = nfi_readw(nfc, NFI_CNFG);
|
|
reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
|
|
nfi_writew(nfc, reg, NFI_CNFG);
|
|
|
|
return ret;
|
|
}
|
|
|
|
memcpy(nfc->buffer, buf, mtd->writesize);
|
|
mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
|
|
bufpoi = nfc->buffer;
|
|
|
|
/* write OOB into the FDM registers (OOB area in MTK NAND) */
|
|
mtk_nfc_write_fdm(chip);
|
|
} else {
|
|
bufpoi = buf;
|
|
}
|
|
|
|
len = mtd->writesize + (raw ? mtd->oobsize : 0);
|
|
ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
|
|
|
|
if (!raw)
|
|
mtk_ecc_disable(nfc->ecc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const u8 *buf,
|
|
int oob_on, int page)
|
|
{
|
|
return mtk_nfc_write_page(mtd, chip, buf, page, 0);
|
|
}
|
|
|
|
static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const u8 *buf, int oob_on, int pg)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
|
|
mtk_nfc_format_page(mtd, buf);
|
|
return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
|
|
}
|
|
|
|
static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u32 offset,
|
|
u32 data_len, const u8 *buf,
|
|
int oob_on, int page)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
int ret;
|
|
|
|
ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* use the data in the private buffer (now with FDM and CRC) */
|
|
return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
|
|
}
|
|
|
|
static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
int ret;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
|
|
ret = mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
|
|
if (ret < 0)
|
|
return -EIO;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
ret = chip->waitfunc(mtd, chip);
|
|
|
|
return ret & NAND_STATUS_FAIL ? -EIO : 0;
|
|
}
|
|
|
|
static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_ecc_stats stats;
|
|
int rc, i;
|
|
|
|
rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
|
|
if (rc) {
|
|
memset(buf, 0xff, sectors * chip->ecc.size);
|
|
for (i = 0; i < sectors; i++)
|
|
memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
|
|
return 0;
|
|
}
|
|
|
|
mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
|
|
mtd->ecc_stats.corrected += stats.corrected;
|
|
mtd->ecc_stats.failed += stats.failed;
|
|
|
|
return stats.bitflips;
|
|
}
|
|
|
|
static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
|
|
u32 data_offs, u32 readlen,
|
|
u8 *bufpoi, int page, int raw)
|
|
{
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
u32 spare = mtk_nand->spare_per_sector;
|
|
u32 column, sectors, start, end, reg;
|
|
dma_addr_t addr;
|
|
int bitflips;
|
|
size_t len;
|
|
u8 *buf;
|
|
int rc;
|
|
|
|
start = data_offs / chip->ecc.size;
|
|
end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
|
|
|
|
sectors = end - start;
|
|
column = start * (chip->ecc.size + spare);
|
|
|
|
len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
|
|
buf = bufpoi + start * chip->ecc.size;
|
|
|
|
if (column != 0)
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, column, -1);
|
|
|
|
addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
|
|
rc = dma_mapping_error(nfc->dev, addr);
|
|
if (rc) {
|
|
dev_err(nfc->dev, "dma mapping error\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg = nfi_readw(nfc, NFI_CNFG);
|
|
reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
|
|
if (!raw) {
|
|
reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
|
|
nfi_writew(nfc, reg, NFI_CNFG);
|
|
|
|
nfc->ecc_cfg.mode = ECC_NFI_MODE;
|
|
nfc->ecc_cfg.sectors = sectors;
|
|
nfc->ecc_cfg.op = ECC_DECODE;
|
|
rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
|
|
if (rc) {
|
|
dev_err(nfc->dev, "ecc enable\n");
|
|
/* clear NFI_CNFG */
|
|
reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
|
|
CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
|
|
nfi_writew(nfc, reg, NFI_CNFG);
|
|
dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
|
|
|
|
return rc;
|
|
}
|
|
} else {
|
|
nfi_writew(nfc, reg, NFI_CNFG);
|
|
}
|
|
|
|
nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
|
|
nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
|
|
nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
|
|
|
|
init_completion(&nfc->done);
|
|
reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
|
|
nfi_writel(nfc, reg, NFI_CON);
|
|
nfi_writew(nfc, STAR_EN, NFI_STRDATA);
|
|
|
|
rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
|
|
if (!rc)
|
|
dev_warn(nfc->dev, "read ahb/dma done timeout\n");
|
|
|
|
rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
|
|
ADDRCNTR_SEC(reg) >= sectors, 10,
|
|
MTK_TIMEOUT);
|
|
if (rc < 0) {
|
|
dev_err(nfc->dev, "subpage done timeout\n");
|
|
bitflips = -EIO;
|
|
} else {
|
|
bitflips = 0;
|
|
if (!raw) {
|
|
rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
|
|
bitflips = rc < 0 ? -ETIMEDOUT :
|
|
mtk_nfc_update_ecc_stats(mtd, buf, sectors);
|
|
mtk_nfc_read_fdm(chip, start, sectors);
|
|
}
|
|
}
|
|
|
|
dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
|
|
|
|
if (raw)
|
|
goto done;
|
|
|
|
mtk_ecc_disable(nfc->ecc);
|
|
|
|
if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
|
|
mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
|
|
done:
|
|
nfi_writel(nfc, 0, NFI_CON);
|
|
|
|
return bitflips;
|
|
}
|
|
|
|
static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u32 off,
|
|
u32 len, u8 *p, int pg)
|
|
{
|
|
return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
|
|
}
|
|
|
|
static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u8 *p,
|
|
int oob_on, int pg)
|
|
{
|
|
return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
|
|
}
|
|
|
|
static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
u8 *buf, int oob_on, int page)
|
|
{
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
|
|
int i, ret;
|
|
|
|
memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
|
|
ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
|
|
page, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
|
|
|
|
if (i == mtk_nand->bad_mark.sec)
|
|
mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
|
|
|
|
if (buf)
|
|
memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
|
|
chip->ecc.size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
|
|
return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
|
|
}
|
|
|
|
static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
|
|
{
|
|
/*
|
|
* ACCON: access timing control register
|
|
* -------------------------------------
|
|
* 31:28: minimum required time for CS post pulling down after accessing
|
|
* the device
|
|
* 27:22: minimum required time for CS pre pulling down before accessing
|
|
* the device
|
|
* 21:16: minimum required time from NCEB low to NREB low
|
|
* 15:12: minimum required time from NWEB high to NREB low.
|
|
* 11:08: write enable hold time
|
|
* 07:04: write wait states
|
|
* 03:00: read wait states
|
|
*/
|
|
nfi_writel(nfc, 0x10804211, NFI_ACCCON);
|
|
|
|
/*
|
|
* CNRNB: nand ready/busy register
|
|
* -------------------------------
|
|
* 7:4: timeout register for polling the NAND busy/ready signal
|
|
* 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
|
|
*/
|
|
nfi_writew(nfc, 0xf1, NFI_CNRNB);
|
|
nfi_writew(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
|
|
|
|
mtk_nfc_hw_reset(nfc);
|
|
|
|
nfi_readl(nfc, NFI_INTR_STA);
|
|
nfi_writel(nfc, 0, NFI_INTR_EN);
|
|
}
|
|
|
|
static irqreturn_t mtk_nfc_irq(int irq, void *id)
|
|
{
|
|
struct mtk_nfc *nfc = id;
|
|
u16 sta, ien;
|
|
|
|
sta = nfi_readw(nfc, NFI_INTR_STA);
|
|
ien = nfi_readw(nfc, NFI_INTR_EN);
|
|
|
|
if (!(sta & ien))
|
|
return IRQ_NONE;
|
|
|
|
nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
|
|
complete(&nfc->done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
|
|
{
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(clk->nfi_clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable nfi clk\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = clk_prepare_enable(clk->pad_clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable pad clk\n");
|
|
clk_disable_unprepare(clk->nfi_clk);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
|
|
{
|
|
clk_disable_unprepare(clk->nfi_clk);
|
|
clk_disable_unprepare(clk->pad_clk);
|
|
}
|
|
|
|
static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oob_region)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
|
|
u32 eccsteps;
|
|
|
|
eccsteps = mtd->writesize / chip->ecc.size;
|
|
|
|
if (section >= eccsteps)
|
|
return -ERANGE;
|
|
|
|
oob_region->length = fdm->reg_size - fdm->ecc_size;
|
|
oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oob_region)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
|
|
u32 eccsteps;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
eccsteps = mtd->writesize / chip->ecc.size;
|
|
oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
|
|
oob_region->length = mtd->oobsize - oob_region->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
|
|
.free = mtk_nfc_ooblayout_free,
|
|
.ecc = mtk_nfc_ooblayout_ecc,
|
|
};
|
|
|
|
static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
|
|
u32 ecc_bytes;
|
|
|
|
ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
|
|
|
|
fdm->reg_size = chip->spare_per_sector - ecc_bytes;
|
|
if (fdm->reg_size > NFI_FDM_MAX_SIZE)
|
|
fdm->reg_size = NFI_FDM_MAX_SIZE;
|
|
|
|
/* bad block mark storage */
|
|
fdm->ecc_size = 1;
|
|
}
|
|
|
|
static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
|
|
struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
|
|
if (mtd->writesize == 512) {
|
|
bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
|
|
} else {
|
|
bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
|
|
bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
|
|
bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
|
|
}
|
|
}
|
|
|
|
static void mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
u32 spare[] = {16, 26, 27, 28, 32, 36, 40, 44,
|
|
48, 49, 50, 51, 52, 62, 63, 64};
|
|
u32 eccsteps, i;
|
|
|
|
eccsteps = mtd->writesize / nand->ecc.size;
|
|
*sps = mtd->oobsize / eccsteps;
|
|
|
|
if (nand->ecc.size == 1024)
|
|
*sps >>= 1;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(spare); i++) {
|
|
if (*sps <= spare[i]) {
|
|
if (!i)
|
|
*sps = spare[i];
|
|
else if (*sps != spare[i])
|
|
*sps = spare[i - 1];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i >= ARRAY_SIZE(spare))
|
|
*sps = spare[ARRAY_SIZE(spare) - 1];
|
|
|
|
if (nand->ecc.size == 1024)
|
|
*sps <<= 1;
|
|
}
|
|
|
|
static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
u32 spare;
|
|
int free;
|
|
|
|
/* support only ecc hw mode */
|
|
if (nand->ecc.mode != NAND_ECC_HW) {
|
|
dev_err(dev, "ecc.mode not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* if optional dt settings not present */
|
|
if (!nand->ecc.size || !nand->ecc.strength) {
|
|
/* use datasheet requirements */
|
|
nand->ecc.strength = nand->ecc_strength_ds;
|
|
nand->ecc.size = nand->ecc_step_ds;
|
|
|
|
/*
|
|
* align eccstrength and eccsize
|
|
* this controller only supports 512 and 1024 sizes
|
|
*/
|
|
if (nand->ecc.size < 1024) {
|
|
if (mtd->writesize > 512) {
|
|
nand->ecc.size = 1024;
|
|
nand->ecc.strength <<= 1;
|
|
} else {
|
|
nand->ecc.size = 512;
|
|
}
|
|
} else {
|
|
nand->ecc.size = 1024;
|
|
}
|
|
|
|
mtk_nfc_set_spare_per_sector(&spare, mtd);
|
|
|
|
/* calculate oob bytes except ecc parity data */
|
|
free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3;
|
|
free = spare - free;
|
|
|
|
/*
|
|
* enhance ecc strength if oob left is bigger than max FDM size
|
|
* or reduce ecc strength if oob size is not enough for ecc
|
|
* parity data.
|
|
*/
|
|
if (free > NFI_FDM_MAX_SIZE) {
|
|
spare -= NFI_FDM_MAX_SIZE;
|
|
nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
|
|
} else if (free < 0) {
|
|
spare -= NFI_FDM_MIN_SIZE;
|
|
nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
|
|
}
|
|
}
|
|
|
|
mtk_ecc_adjust_strength(&nand->ecc.strength);
|
|
|
|
dev_info(dev, "eccsize %d eccstrength %d\n",
|
|
nand->ecc.size, nand->ecc.strength);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
|
|
struct device_node *np)
|
|
{
|
|
struct mtk_nfc_nand_chip *chip;
|
|
struct nand_chip *nand;
|
|
struct mtd_info *mtd;
|
|
int nsels, len;
|
|
u32 tmp;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!of_get_property(np, "reg", &nsels))
|
|
return -ENODEV;
|
|
|
|
nsels /= sizeof(u32);
|
|
if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
|
|
dev_err(dev, "invalid reg property size %d\n", nsels);
|
|
return -EINVAL;
|
|
}
|
|
|
|
chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
|
|
GFP_KERNEL);
|
|
if (!chip)
|
|
return -ENOMEM;
|
|
|
|
chip->nsels = nsels;
|
|
for (i = 0; i < nsels; i++) {
|
|
ret = of_property_read_u32_index(np, "reg", i, &tmp);
|
|
if (ret) {
|
|
dev_err(dev, "reg property failure : %d\n", ret);
|
|
return ret;
|
|
}
|
|
chip->sels[i] = tmp;
|
|
}
|
|
|
|
nand = &chip->nand;
|
|
nand->controller = &nfc->controller;
|
|
|
|
nand_set_flash_node(nand, np);
|
|
nand_set_controller_data(nand, nfc);
|
|
|
|
nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
|
|
nand->dev_ready = mtk_nfc_dev_ready;
|
|
nand->select_chip = mtk_nfc_select_chip;
|
|
nand->write_byte = mtk_nfc_write_byte;
|
|
nand->write_buf = mtk_nfc_write_buf;
|
|
nand->read_byte = mtk_nfc_read_byte;
|
|
nand->read_buf = mtk_nfc_read_buf;
|
|
nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
|
|
|
|
/* set default mode in case dt entry is missing */
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
|
|
nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
|
|
nand->ecc.write_page = mtk_nfc_write_page_hwecc;
|
|
nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
|
|
nand->ecc.write_oob = mtk_nfc_write_oob_std;
|
|
|
|
nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
|
|
nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
|
|
nand->ecc.read_page = mtk_nfc_read_page_hwecc;
|
|
nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
|
|
nand->ecc.read_oob = mtk_nfc_read_oob_std;
|
|
|
|
mtd = nand_to_mtd(nand);
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->dev.parent = dev;
|
|
mtd->name = MTK_NAME;
|
|
mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
|
|
|
|
mtk_nfc_hw_init(nfc);
|
|
|
|
ret = nand_scan_ident(mtd, nsels, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* store bbt magic in page, cause OOB is not protected */
|
|
if (nand->bbt_options & NAND_BBT_USE_FLASH)
|
|
nand->bbt_options |= NAND_BBT_NO_OOB;
|
|
|
|
ret = mtk_nfc_ecc_init(dev, mtd);
|
|
if (ret)
|
|
return -EINVAL;
|
|
|
|
if (nand->options & NAND_BUSWIDTH_16) {
|
|
dev_err(dev, "16bits buswidth not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
|
|
mtk_nfc_set_fdm(&chip->fdm, mtd);
|
|
mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
|
|
|
|
len = mtd->writesize + mtd->oobsize;
|
|
nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
|
|
if (!nfc->buffer)
|
|
return -ENOMEM;
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
|
|
if (ret) {
|
|
dev_err(dev, "mtd parse partition error\n");
|
|
nand_release(mtd);
|
|
return ret;
|
|
}
|
|
|
|
list_add_tail(&chip->node, &nfc->chips);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
|
|
{
|
|
struct device_node *np = dev->of_node;
|
|
struct device_node *nand_np;
|
|
int ret;
|
|
|
|
for_each_child_of_node(np, nand_np) {
|
|
ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
|
|
if (ret) {
|
|
of_node_put(nand_np);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_nfc_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
struct mtk_nfc *nfc;
|
|
struct resource *res;
|
|
int ret, irq;
|
|
|
|
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
|
|
if (!nfc)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&nfc->controller.lock);
|
|
init_waitqueue_head(&nfc->controller.wq);
|
|
INIT_LIST_HEAD(&nfc->chips);
|
|
|
|
/* probe defer if not ready */
|
|
nfc->ecc = of_mtk_ecc_get(np);
|
|
if (IS_ERR(nfc->ecc))
|
|
return PTR_ERR(nfc->ecc);
|
|
else if (!nfc->ecc)
|
|
return -ENODEV;
|
|
|
|
nfc->dev = dev;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
nfc->regs = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(nfc->regs)) {
|
|
ret = PTR_ERR(nfc->regs);
|
|
goto release_ecc;
|
|
}
|
|
|
|
nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
|
|
if (IS_ERR(nfc->clk.nfi_clk)) {
|
|
dev_err(dev, "no clk\n");
|
|
ret = PTR_ERR(nfc->clk.nfi_clk);
|
|
goto release_ecc;
|
|
}
|
|
|
|
nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
|
|
if (IS_ERR(nfc->clk.pad_clk)) {
|
|
dev_err(dev, "no pad clk\n");
|
|
ret = PTR_ERR(nfc->clk.pad_clk);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ret = mtk_nfc_enable_clk(dev, &nfc->clk);
|
|
if (ret)
|
|
goto release_ecc;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
dev_err(dev, "no nfi irq resource\n");
|
|
ret = -EINVAL;
|
|
goto clk_disable;
|
|
}
|
|
|
|
ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
|
|
if (ret) {
|
|
dev_err(dev, "failed to request nfi irq\n");
|
|
goto clk_disable;
|
|
}
|
|
|
|
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
dev_err(dev, "failed to set dma mask\n");
|
|
goto clk_disable;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, nfc);
|
|
|
|
ret = mtk_nfc_nand_chips_init(dev, nfc);
|
|
if (ret) {
|
|
dev_err(dev, "failed to init nand chips\n");
|
|
goto clk_disable;
|
|
}
|
|
|
|
return 0;
|
|
|
|
clk_disable:
|
|
mtk_nfc_disable_clk(&nfc->clk);
|
|
|
|
release_ecc:
|
|
mtk_ecc_release(nfc->ecc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_nfc_remove(struct platform_device *pdev)
|
|
{
|
|
struct mtk_nfc *nfc = platform_get_drvdata(pdev);
|
|
struct mtk_nfc_nand_chip *chip;
|
|
|
|
while (!list_empty(&nfc->chips)) {
|
|
chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
|
|
node);
|
|
nand_release(nand_to_mtd(&chip->nand));
|
|
list_del(&chip->node);
|
|
}
|
|
|
|
mtk_ecc_release(nfc->ecc);
|
|
mtk_nfc_disable_clk(&nfc->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int mtk_nfc_suspend(struct device *dev)
|
|
{
|
|
struct mtk_nfc *nfc = dev_get_drvdata(dev);
|
|
|
|
mtk_nfc_disable_clk(&nfc->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_nfc_resume(struct device *dev)
|
|
{
|
|
struct mtk_nfc *nfc = dev_get_drvdata(dev);
|
|
struct mtk_nfc_nand_chip *chip;
|
|
struct nand_chip *nand;
|
|
struct mtd_info *mtd;
|
|
int ret;
|
|
u32 i;
|
|
|
|
udelay(200);
|
|
|
|
ret = mtk_nfc_enable_clk(dev, &nfc->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mtk_nfc_hw_init(nfc);
|
|
|
|
/* reset NAND chip if VCC was powered off */
|
|
list_for_each_entry(chip, &nfc->chips, node) {
|
|
nand = &chip->nand;
|
|
mtd = nand_to_mtd(nand);
|
|
for (i = 0; i < chip->nsels; i++) {
|
|
nand->select_chip(mtd, i);
|
|
nand->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
|
|
#endif
|
|
|
|
static const struct of_device_id mtk_nfc_id_table[] = {
|
|
{ .compatible = "mediatek,mt2701-nfc" },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
|
|
|
|
static struct platform_driver mtk_nfc_driver = {
|
|
.probe = mtk_nfc_probe,
|
|
.remove = mtk_nfc_remove,
|
|
.driver = {
|
|
.name = MTK_NAME,
|
|
.of_match_table = mtk_nfc_id_table,
|
|
#ifdef CONFIG_PM_SLEEP
|
|
.pm = &mtk_nfc_pm_ops,
|
|
#endif
|
|
},
|
|
};
|
|
|
|
module_platform_driver(mtk_nfc_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
|
|
MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
|