linux/drivers/mtd/spi-nor/intel-spi.c

935 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel PCH/PCU SPI flash driver.
*
* Copyright (C) 2016, Intel Corporation
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/sizes.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/platform_data/intel-spi.h>
#include "intel-spi.h"
/* Offsets are from @ispi->base */
#define BFPREG 0x00
#define HSFSTS_CTL 0x04
#define HSFSTS_CTL_FSMIE BIT(31)
#define HSFSTS_CTL_FDBC_SHIFT 24
#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
#define HSFSTS_CTL_FCYCLE_SHIFT 17
#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
/* HW sequencer opcodes */
#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FGO BIT(16)
#define HSFSTS_CTL_FLOCKDN BIT(15)
#define HSFSTS_CTL_FDV BIT(14)
#define HSFSTS_CTL_SCIP BIT(5)
#define HSFSTS_CTL_AEL BIT(2)
#define HSFSTS_CTL_FCERR BIT(1)
#define HSFSTS_CTL_FDONE BIT(0)
#define FADDR 0x08
#define DLOCK 0x0c
#define FDATA(n) (0x10 + ((n) * 4))
#define FRACC 0x50
#define FREG(n) (0x54 + ((n) * 4))
#define FREG_BASE_MASK 0x3fff
#define FREG_LIMIT_SHIFT 16
#define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
/* Offset is from @ispi->pregs */
#define PR(n) ((n) * 4)
#define PR_WPE BIT(31)
#define PR_LIMIT_SHIFT 16
#define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
#define PR_RPE BIT(15)
#define PR_BASE_MASK 0x3fff
/* Offsets are from @ispi->sregs */
#define SSFSTS_CTL 0x00
#define SSFSTS_CTL_FSMIE BIT(23)
#define SSFSTS_CTL_DS BIT(22)
#define SSFSTS_CTL_DBC_SHIFT 16
#define SSFSTS_CTL_SPOP BIT(11)
#define SSFSTS_CTL_ACS BIT(10)
#define SSFSTS_CTL_SCGO BIT(9)
#define SSFSTS_CTL_COP_SHIFT 12
#define SSFSTS_CTL_FRS BIT(7)
#define SSFSTS_CTL_DOFRS BIT(6)
#define SSFSTS_CTL_AEL BIT(4)
#define SSFSTS_CTL_FCERR BIT(3)
#define SSFSTS_CTL_FDONE BIT(2)
#define SSFSTS_CTL_SCIP BIT(0)
#define PREOP_OPTYPE 0x04
#define OPMENU0 0x08
#define OPMENU1 0x0c
#define OPTYPE_READ_NO_ADDR 0
#define OPTYPE_WRITE_NO_ADDR 1
#define OPTYPE_READ_WITH_ADDR 2
#define OPTYPE_WRITE_WITH_ADDR 3
/* CPU specifics */
#define BYT_PR 0x74
#define BYT_SSFSTS_CTL 0x90
#define BYT_BCR 0xfc
#define BYT_BCR_WPD BIT(0)
#define BYT_FREG_NUM 5
#define BYT_PR_NUM 5
#define LPT_PR 0x74
#define LPT_SSFSTS_CTL 0x90
#define LPT_FREG_NUM 5
#define LPT_PR_NUM 5
#define BXT_PR 0x84
#define BXT_SSFSTS_CTL 0xa0
#define BXT_FREG_NUM 12
#define BXT_PR_NUM 6
#define LVSCC 0xc4
#define UVSCC 0xc8
#define ERASE_OPCODE_SHIFT 8
#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
#define ERASE_64K_OPCODE_SHIFT 16
#define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
#define INTEL_SPI_TIMEOUT 5000 /* ms */
#define INTEL_SPI_FIFO_SZ 64
/**
* struct intel_spi - Driver private data
* @dev: Device pointer
* @info: Pointer to board specific info
* @nor: SPI NOR layer structure
* @base: Beginning of MMIO space
* @pregs: Start of protection registers
* @sregs: Start of software sequencer registers
* @nregions: Maximum number of regions
* @pr_num: Maximum number of protected range registers
* @writeable: Is the chip writeable
* @locked: Is SPI setting locked
* @swseq_reg: Use SW sequencer in register reads/writes
* @swseq_erase: Use SW sequencer in erase operation
* @erase_64k: 64k erase supported
* @atomic_preopcode: Holds preopcode when atomic sequence is requested
* @opcodes: Opcodes which are supported. This are programmed by BIOS
* before it locks down the controller.
*/
struct intel_spi {
struct device *dev;
const struct intel_spi_boardinfo *info;
struct spi_nor nor;
void __iomem *base;
void __iomem *pregs;
void __iomem *sregs;
size_t nregions;
size_t pr_num;
bool writeable;
bool locked;
bool swseq_reg;
bool swseq_erase;
bool erase_64k;
u8 atomic_preopcode;
u8 opcodes[8];
};
static bool writeable;
module_param(writeable, bool, 0);
MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
static void intel_spi_dump_regs(struct intel_spi *ispi)
{
u32 value;
int i;
dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
value = readl(ispi->base + HSFSTS_CTL);
dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
if (value & HSFSTS_CTL_FLOCKDN)
dev_dbg(ispi->dev, "-> Locked\n");
dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
for (i = 0; i < 16; i++)
dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
i, readl(ispi->base + FDATA(i)));
dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
for (i = 0; i < ispi->nregions; i++)
dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
readl(ispi->base + FREG(i)));
for (i = 0; i < ispi->pr_num; i++)
dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
readl(ispi->pregs + PR(i)));
value = readl(ispi->sregs + SSFSTS_CTL);
dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
readl(ispi->sregs + PREOP_OPTYPE));
dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
if (ispi->info->type == INTEL_SPI_BYT)
dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
dev_dbg(ispi->dev, "Protected regions:\n");
for (i = 0; i < ispi->pr_num; i++) {
u32 base, limit;
value = readl(ispi->pregs + PR(i));
if (!(value & (PR_WPE | PR_RPE)))
continue;
limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
base = value & PR_BASE_MASK;
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
i, base << 12, (limit << 12) | 0xfff,
value & PR_WPE ? 'W' : '.',
value & PR_RPE ? 'R' : '.');
}
dev_dbg(ispi->dev, "Flash regions:\n");
for (i = 0; i < ispi->nregions; i++) {
u32 region, base, limit;
region = readl(ispi->base + FREG(i));
base = region & FREG_BASE_MASK;
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
if (base >= limit || (i > 0 && limit == 0))
dev_dbg(ispi->dev, " %02d disabled\n", i);
else
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
i, base << 12, (limit << 12) | 0xfff);
}
dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
ispi->swseq_reg ? 'S' : 'H');
dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
ispi->swseq_erase ? 'S' : 'H');
}
/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
{
size_t bytes;
int i = 0;
if (size > INTEL_SPI_FIFO_SZ)
return -EINVAL;
while (size > 0) {
bytes = min_t(size_t, size, 4);
memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
size -= bytes;
buf += bytes;
i++;
}
return 0;
}
/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
size_t size)
{
size_t bytes;
int i = 0;
if (size > INTEL_SPI_FIFO_SZ)
return -EINVAL;
while (size > 0) {
bytes = min_t(size_t, size, 4);
memcpy_toio(ispi->base + FDATA(i), buf, bytes);
size -= bytes;
buf += bytes;
i++;
}
return 0;
}
static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
{
u32 val;
return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
!(val & HSFSTS_CTL_SCIP), 40,
INTEL_SPI_TIMEOUT * 1000);
}
static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
{
u32 val;
return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
!(val & SSFSTS_CTL_SCIP), 40,
INTEL_SPI_TIMEOUT * 1000);
}
static int intel_spi_init(struct intel_spi *ispi)
{
u32 opmenu0, opmenu1, lvscc, uvscc, val;
int i;
switch (ispi->info->type) {
case INTEL_SPI_BYT:
ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
ispi->pregs = ispi->base + BYT_PR;
ispi->nregions = BYT_FREG_NUM;
ispi->pr_num = BYT_PR_NUM;
ispi->swseq_reg = true;
if (writeable) {
/* Disable write protection */
val = readl(ispi->base + BYT_BCR);
if (!(val & BYT_BCR_WPD)) {
val |= BYT_BCR_WPD;
writel(val, ispi->base + BYT_BCR);
val = readl(ispi->base + BYT_BCR);
}
ispi->writeable = !!(val & BYT_BCR_WPD);
}
break;
case INTEL_SPI_LPT:
ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
ispi->pregs = ispi->base + LPT_PR;
ispi->nregions = LPT_FREG_NUM;
ispi->pr_num = LPT_PR_NUM;
ispi->swseq_reg = true;
break;
case INTEL_SPI_BXT:
ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
ispi->pregs = ispi->base + BXT_PR;
ispi->nregions = BXT_FREG_NUM;
ispi->pr_num = BXT_PR_NUM;
ispi->erase_64k = true;
break;
default:
return -EINVAL;
}
/* Disable #SMI generation from HW sequencer */
val = readl(ispi->base + HSFSTS_CTL);
val &= ~HSFSTS_CTL_FSMIE;
writel(val, ispi->base + HSFSTS_CTL);
/*
* Determine whether erase operation should use HW or SW sequencer.
*
* The HW sequencer has a predefined list of opcodes, with only the
* erase opcode being programmable in LVSCC and UVSCC registers.
* If these registers don't contain a valid erase opcode, erase
* cannot be done using HW sequencer.
*/
lvscc = readl(ispi->base + LVSCC);
uvscc = readl(ispi->base + UVSCC);
if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
ispi->swseq_erase = true;
/* SPI controller on Intel BXT supports 64K erase opcode */
if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
!(uvscc & ERASE_64K_OPCODE_MASK))
ispi->erase_64k = false;
/*
* Some controllers can only do basic operations using hardware
* sequencer. All other operations are supposed to be carried out
* using software sequencer.
*/
if (ispi->swseq_reg) {
/* Disable #SMI generation from SW sequencer */
val = readl(ispi->sregs + SSFSTS_CTL);
val &= ~SSFSTS_CTL_FSMIE;
writel(val, ispi->sregs + SSFSTS_CTL);
}
/* Check controller's lock status */
val = readl(ispi->base + HSFSTS_CTL);
ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
if (ispi->locked) {
/*
* BIOS programs allowed opcodes and then locks down the
* register. So read back what opcodes it decided to support.
* That's the set we are going to support as well.
*/
opmenu0 = readl(ispi->sregs + OPMENU0);
opmenu1 = readl(ispi->sregs + OPMENU1);
if (opmenu0 && opmenu1) {
for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
ispi->opcodes[i] = opmenu0 >> i * 8;
ispi->opcodes[i + 4] = opmenu1 >> i * 8;
}
}
}
intel_spi_dump_regs(ispi);
return 0;
}
static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
{
int i;
int preop;
if (ispi->locked) {
for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
if (ispi->opcodes[i] == opcode)
return i;
return -EINVAL;
}
/* The lock is off, so just use index 0 */
writel(opcode, ispi->sregs + OPMENU0);
preop = readw(ispi->sregs + PREOP_OPTYPE);
writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
return 0;
}
static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
{
u32 val, status;
int ret;
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
switch (opcode) {
case SPINOR_OP_RDID:
val |= HSFSTS_CTL_FCYCLE_RDID;
break;
case SPINOR_OP_WRSR:
val |= HSFSTS_CTL_FCYCLE_WRSR;
break;
case SPINOR_OP_RDSR:
val |= HSFSTS_CTL_FCYCLE_RDSR;
break;
default:
return -EINVAL;
}
if (len > INTEL_SPI_FIFO_SZ)
return -EINVAL;
val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= HSFSTS_CTL_FGO;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
return -EIO;
else if (status & HSFSTS_CTL_AEL)
return -EACCES;
return 0;
}
static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
int optype)
{
u32 val = 0, status;
u8 atomic_preopcode;
int ret;
ret = intel_spi_opcode_index(ispi, opcode, optype);
if (ret < 0)
return ret;
if (len > INTEL_SPI_FIFO_SZ)
return -EINVAL;
/*
* Always clear it after each SW sequencer operation regardless
* of whether it is successful or not.
*/
atomic_preopcode = ispi->atomic_preopcode;
ispi->atomic_preopcode = 0;
/* Only mark 'Data Cycle' bit when there is data to be transferred */
if (len > 0)
val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
val |= ret << SSFSTS_CTL_COP_SHIFT;
val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
val |= SSFSTS_CTL_SCGO;
if (atomic_preopcode) {
u16 preop;
switch (optype) {
case OPTYPE_WRITE_NO_ADDR:
case OPTYPE_WRITE_WITH_ADDR:
/* Pick matching preopcode for the atomic sequence */
preop = readw(ispi->sregs + PREOP_OPTYPE);
if ((preop & 0xff) == atomic_preopcode)
; /* Do nothing */
else if ((preop >> 8) == atomic_preopcode)
val |= SSFSTS_CTL_SPOP;
else
return -EINVAL;
/* Enable atomic sequence */
val |= SSFSTS_CTL_ACS;
break;
default:
return -EINVAL;
}
}
writel(val, ispi->sregs + SSFSTS_CTL);
ret = intel_spi_wait_sw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->sregs + SSFSTS_CTL);
if (status & SSFSTS_CTL_FCERR)
return -EIO;
else if (status & SSFSTS_CTL_AEL)
return -EACCES;
return 0;
}
static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
struct intel_spi *ispi = nor->priv;
int ret;
/* Address of the first chip */
writel(0, ispi->base + FADDR);
if (ispi->swseq_reg)
ret = intel_spi_sw_cycle(ispi, opcode, len,
OPTYPE_READ_NO_ADDR);
else
ret = intel_spi_hw_cycle(ispi, opcode, len);
if (ret)
return ret;
return intel_spi_read_block(ispi, buf, len);
}
static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
struct intel_spi *ispi = nor->priv;
int ret;
/*
* This is handled with atomic operation and preop code in Intel
* controller so we only verify that it is available. If the
* controller is not locked, program the opcode to the PREOP
* register for later use.
*
* When hardware sequencer is used there is no need to program
* any opcodes (it handles them automatically as part of a command).
*/
if (opcode == SPINOR_OP_WREN) {
u16 preop;
if (!ispi->swseq_reg)
return 0;
preop = readw(ispi->sregs + PREOP_OPTYPE);
if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
if (ispi->locked)
return -EINVAL;
writel(opcode, ispi->sregs + PREOP_OPTYPE);
}
/*
* This enables atomic sequence on next SW sycle. Will
* be cleared after next operation.
*/
ispi->atomic_preopcode = opcode;
return 0;
}
writel(0, ispi->base + FADDR);
/* Write the value beforehand */
ret = intel_spi_write_block(ispi, buf, len);
if (ret)
return ret;
if (ispi->swseq_reg)
return intel_spi_sw_cycle(ispi, opcode, len,
OPTYPE_WRITE_NO_ADDR);
return intel_spi_hw_cycle(ispi, opcode, len);
}
static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
u_char *read_buf)
{
struct intel_spi *ispi = nor->priv;
size_t block_size, retlen = 0;
u32 val, status;
ssize_t ret;
/*
* Atomic sequence is not expected with HW sequencer reads. Make
* sure it is cleared regardless.
*/
if (WARN_ON_ONCE(ispi->atomic_preopcode))
ispi->atomic_preopcode = 0;
switch (nor->read_opcode) {
case SPINOR_OP_READ:
case SPINOR_OP_READ_FAST:
case SPINOR_OP_READ_4B:
case SPINOR_OP_READ_FAST_4B:
break;
default:
return -EINVAL;
}
while (len > 0) {
block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
/* Read cannot cross 4K boundary */
block_size = min_t(loff_t, from + block_size,
round_up(from + 1, SZ_4K)) - from;
writel(from, ispi->base + FADDR);
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
val |= HSFSTS_CTL_FCYCLE_READ;
val |= HSFSTS_CTL_FGO;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
ret = -EIO;
else if (status & HSFSTS_CTL_AEL)
ret = -EACCES;
if (ret < 0) {
dev_err(ispi->dev, "read error: %llx: %#x\n", from,
status);
return ret;
}
ret = intel_spi_read_block(ispi, read_buf, block_size);
if (ret)
return ret;
len -= block_size;
from += block_size;
retlen += block_size;
read_buf += block_size;
}
return retlen;
}
static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
const u_char *write_buf)
{
struct intel_spi *ispi = nor->priv;
size_t block_size, retlen = 0;
u32 val, status;
ssize_t ret;
/* Not needed with HW sequencer write, make sure it is cleared */
ispi->atomic_preopcode = 0;
while (len > 0) {
block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
/* Write cannot cross 4K boundary */
block_size = min_t(loff_t, to + block_size,
round_up(to + 1, SZ_4K)) - to;
writel(to, ispi->base + FADDR);
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
val |= HSFSTS_CTL_FCYCLE_WRITE;
ret = intel_spi_write_block(ispi, write_buf, block_size);
if (ret) {
dev_err(ispi->dev, "failed to write block\n");
return ret;
}
/* Start the write now */
val |= HSFSTS_CTL_FGO;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret) {
dev_err(ispi->dev, "timeout\n");
return ret;
}
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
ret = -EIO;
else if (status & HSFSTS_CTL_AEL)
ret = -EACCES;
if (ret < 0) {
dev_err(ispi->dev, "write error: %llx: %#x\n", to,
status);
return ret;
}
len -= block_size;
to += block_size;
retlen += block_size;
write_buf += block_size;
}
return retlen;
}
static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
{
size_t erase_size, len = nor->mtd.erasesize;
struct intel_spi *ispi = nor->priv;
u32 val, status, cmd;
int ret;
/* If the hardware can do 64k erase use that when possible */
if (len >= SZ_64K && ispi->erase_64k) {
cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
erase_size = SZ_64K;
} else {
cmd = HSFSTS_CTL_FCYCLE_ERASE;
erase_size = SZ_4K;
}
if (ispi->swseq_erase) {
while (len > 0) {
writel(offs, ispi->base + FADDR);
ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
0, OPTYPE_WRITE_WITH_ADDR);
if (ret)
return ret;
offs += erase_size;
len -= erase_size;
}
return 0;
}
/* Not needed with HW sequencer erase, make sure it is cleared */
ispi->atomic_preopcode = 0;
while (len > 0) {
writel(offs, ispi->base + FADDR);
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= cmd;
val |= HSFSTS_CTL_FGO;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
return -EIO;
else if (status & HSFSTS_CTL_AEL)
return -EACCES;
offs += erase_size;
len -= erase_size;
}
return 0;
}
static bool intel_spi_is_protected(const struct intel_spi *ispi,
unsigned int base, unsigned int limit)
{
int i;
for (i = 0; i < ispi->pr_num; i++) {
u32 pr_base, pr_limit, pr_value;
pr_value = readl(ispi->pregs + PR(i));
if (!(pr_value & (PR_WPE | PR_RPE)))
continue;
pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
pr_base = pr_value & PR_BASE_MASK;
if (pr_base >= base && pr_limit <= limit)
return true;
}
return false;
}
/*
* There will be a single partition holding all enabled flash regions. We
* call this "BIOS".
*/
static void intel_spi_fill_partition(struct intel_spi *ispi,
struct mtd_partition *part)
{
u64 end;
int i;
memset(part, 0, sizeof(*part));
/* Start from the mandatory descriptor region */
part->size = 4096;
part->name = "BIOS";
/*
* Now try to find where this partition ends based on the flash
* region registers.
*/
for (i = 1; i < ispi->nregions; i++) {
u32 region, base, limit;
region = readl(ispi->base + FREG(i));
base = region & FREG_BASE_MASK;
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
if (base >= limit || limit == 0)
continue;
/*
* If any of the regions have protection bits set, make the
* whole partition read-only to be on the safe side.
*/
if (intel_spi_is_protected(ispi, base, limit))
ispi->writeable = false;
end = (limit << 12) + 4096;
if (end > part->size)
part->size = end;
}
}
struct intel_spi *intel_spi_probe(struct device *dev,
struct resource *mem, const struct intel_spi_boardinfo *info)
{
const struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ |
SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_PP,
};
struct mtd_partition part;
struct intel_spi *ispi;
int ret;
if (!info || !mem)
return ERR_PTR(-EINVAL);
ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
if (!ispi)
return ERR_PTR(-ENOMEM);
ispi->base = devm_ioremap_resource(dev, mem);
if (IS_ERR(ispi->base))
return ERR_CAST(ispi->base);
ispi->dev = dev;
ispi->info = info;
ispi->writeable = info->writeable;
ret = intel_spi_init(ispi);
if (ret)
return ERR_PTR(ret);
ispi->nor.dev = ispi->dev;
ispi->nor.priv = ispi;
ispi->nor.read_reg = intel_spi_read_reg;
ispi->nor.write_reg = intel_spi_write_reg;
ispi->nor.read = intel_spi_read;
ispi->nor.write = intel_spi_write;
ispi->nor.erase = intel_spi_erase;
ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
if (ret) {
dev_info(dev, "failed to locate the chip\n");
return ERR_PTR(ret);
}
intel_spi_fill_partition(ispi, &part);
/* Prevent writes if not explicitly enabled */
if (!ispi->writeable || !writeable)
ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
if (ret)
return ERR_PTR(ret);
return ispi;
}
EXPORT_SYMBOL_GPL(intel_spi_probe);
int intel_spi_remove(struct intel_spi *ispi)
{
return mtd_device_unregister(&ispi->nor.mtd);
}
EXPORT_SYMBOL_GPL(intel_spi_remove);
MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
MODULE_LICENSE("GPL v2");