mirror of https://gitee.com/openkylin/linux.git
866 lines
24 KiB
C
866 lines
24 KiB
C
/*
|
|
* Ethernet driver for Motorola MPC8260.
|
|
* Copyright (c) 1999 Dan Malek (dmalek@jlc.net)
|
|
* Copyright (c) 2000 MontaVista Software Inc. (source@mvista.com)
|
|
* 2.3.99 Updates
|
|
*
|
|
* I copied this from the 8xx CPM Ethernet driver, so follow the
|
|
* credits back through that.
|
|
*
|
|
* This version of the driver is somewhat selectable for the different
|
|
* processor/board combinations. It works for the boards I know about
|
|
* now, and should be easily modified to include others. Some of the
|
|
* configuration information is contained in <asm/cpm1.h> and the
|
|
* remainder is here.
|
|
*
|
|
* Buffer descriptors are kept in the CPM dual port RAM, and the frame
|
|
* buffers are in the host memory.
|
|
*
|
|
* Right now, I am very watseful with the buffers. I allocate memory
|
|
* pages and then divide them into 2K frame buffers. This way I know I
|
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
|
* will be much more memory efficient and will easily handle lots of
|
|
* small packets.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/immap_cpm2.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mpc8260.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/cpm2.h>
|
|
#include <asm/irq.h>
|
|
|
|
/*
|
|
* Theory of Operation
|
|
*
|
|
* The MPC8260 CPM performs the Ethernet processing on an SCC. It can use
|
|
* an aribtrary number of buffers on byte boundaries, but must have at
|
|
* least two receive buffers to prevent constant overrun conditions.
|
|
*
|
|
* The buffer descriptors are allocated from the CPM dual port memory
|
|
* with the data buffers allocated from host memory, just like all other
|
|
* serial communication protocols. The host memory buffers are allocated
|
|
* from the free page pool, and then divided into smaller receive and
|
|
* transmit buffers. The size of the buffers should be a power of two,
|
|
* since that nicely divides the page. This creates a ring buffer
|
|
* structure similar to the LANCE and other controllers.
|
|
*
|
|
* Like the LANCE driver:
|
|
* The driver runs as two independent, single-threaded flows of control. One
|
|
* is the send-packet routine, which enforces single-threaded use by the
|
|
* cep->tx_busy flag. The other thread is the interrupt handler, which is
|
|
* single threaded by the hardware and other software.
|
|
*/
|
|
|
|
/* The transmitter timeout
|
|
*/
|
|
#define TX_TIMEOUT (2*HZ)
|
|
|
|
/* The number of Tx and Rx buffers. These are allocated from the page
|
|
* pool. The code may assume these are power of two, so it is best
|
|
* to keep them that size.
|
|
* We don't need to allocate pages for the transmitter. We just use
|
|
* the skbuffer directly.
|
|
*/
|
|
#define CPM_ENET_RX_PAGES 4
|
|
#define CPM_ENET_RX_FRSIZE 2048
|
|
#define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
|
|
#define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
|
|
#define TX_RING_SIZE 8 /* Must be power of two */
|
|
#define TX_RING_MOD_MASK 7 /* for this to work */
|
|
|
|
/* The CPM stores dest/src/type, data, and checksum for receive packets.
|
|
*/
|
|
#define PKT_MAXBUF_SIZE 1518
|
|
#define PKT_MINBUF_SIZE 64
|
|
#define PKT_MAXBLR_SIZE 1520
|
|
|
|
/* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
|
|
* tx_bd_base always point to the base of the buffer descriptors. The
|
|
* cur_rx and cur_tx point to the currently available buffer.
|
|
* The dirty_tx tracks the current buffer that is being sent by the
|
|
* controller. The cur_tx and dirty_tx are equal under both completely
|
|
* empty and completely full conditions. The empty/ready indicator in
|
|
* the buffer descriptor determines the actual condition.
|
|
*/
|
|
struct scc_enet_private {
|
|
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
|
|
struct sk_buff* tx_skbuff[TX_RING_SIZE];
|
|
ushort skb_cur;
|
|
ushort skb_dirty;
|
|
|
|
/* CPM dual port RAM relative addresses.
|
|
*/
|
|
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
|
|
cbd_t *tx_bd_base;
|
|
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
|
|
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
|
|
scc_t *sccp;
|
|
struct net_device_stats stats;
|
|
uint tx_full;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static int scc_enet_open(struct net_device *dev);
|
|
static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
|
|
static int scc_enet_rx(struct net_device *dev);
|
|
static irqreturn_t scc_enet_interrupt(int irq, void *dev_id);
|
|
static int scc_enet_close(struct net_device *dev);
|
|
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
|
|
static void set_multicast_list(struct net_device *dev);
|
|
|
|
/* These will be configurable for the SCC choice.
|
|
*/
|
|
#define CPM_ENET_BLOCK CPM_CR_SCC1_SBLOCK
|
|
#define CPM_ENET_PAGE CPM_CR_SCC1_PAGE
|
|
#define PROFF_ENET PROFF_SCC1
|
|
#define SCC_ENET 0
|
|
#define SIU_INT_ENET SIU_INT_SCC1
|
|
|
|
/* These are both board and SCC dependent....
|
|
*/
|
|
#define PD_ENET_RXD ((uint)0x00000001)
|
|
#define PD_ENET_TXD ((uint)0x00000002)
|
|
#define PD_ENET_TENA ((uint)0x00000004)
|
|
#define PC_ENET_RENA ((uint)0x00020000)
|
|
#define PC_ENET_CLSN ((uint)0x00000004)
|
|
#define PC_ENET_TXCLK ((uint)0x00000800)
|
|
#define PC_ENET_RXCLK ((uint)0x00000400)
|
|
#define CMX_CLK_ROUTE ((uint)0x25000000)
|
|
#define CMX_CLK_MASK ((uint)0xff000000)
|
|
|
|
/* Specific to a board.
|
|
*/
|
|
#define PC_EST8260_ENET_LOOPBACK ((uint)0x80000000)
|
|
#define PC_EST8260_ENET_SQE ((uint)0x40000000)
|
|
#define PC_EST8260_ENET_NOTFD ((uint)0x20000000)
|
|
|
|
static int
|
|
scc_enet_open(struct net_device *dev)
|
|
{
|
|
|
|
/* I should reset the ring buffers here, but I don't yet know
|
|
* a simple way to do that.
|
|
*/
|
|
netif_start_queue(dev);
|
|
return 0; /* Always succeed */
|
|
}
|
|
|
|
static int
|
|
scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
|
|
volatile cbd_t *bdp;
|
|
|
|
|
|
/* Fill in a Tx ring entry */
|
|
bdp = cep->cur_tx;
|
|
|
|
#ifndef final_version
|
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
|
/* Ooops. All transmit buffers are full. Bail out.
|
|
* This should not happen, since cep->tx_full should be set.
|
|
*/
|
|
printk("%s: tx queue full!.\n", dev->name);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* Clear all of the status flags.
|
|
*/
|
|
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
|
|
|
|
/* If the frame is short, tell CPM to pad it.
|
|
*/
|
|
if (skb->len <= ETH_ZLEN)
|
|
bdp->cbd_sc |= BD_ENET_TX_PAD;
|
|
else
|
|
bdp->cbd_sc &= ~BD_ENET_TX_PAD;
|
|
|
|
/* Set buffer length and buffer pointer.
|
|
*/
|
|
bdp->cbd_datlen = skb->len;
|
|
bdp->cbd_bufaddr = __pa(skb->data);
|
|
|
|
/* Save skb pointer.
|
|
*/
|
|
cep->tx_skbuff[cep->skb_cur] = skb;
|
|
|
|
cep->stats.tx_bytes += skb->len;
|
|
cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
|
|
|
|
spin_lock_irq(&cep->lock);
|
|
|
|
/* Send it on its way. Tell CPM its ready, interrupt when done,
|
|
* its the last BD of the frame, and to put the CRC on the end.
|
|
*/
|
|
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
/* If this was the last BD in the ring, start at the beginning again.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
|
|
bdp = cep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
|
netif_stop_queue(dev);
|
|
cep->tx_full = 1;
|
|
}
|
|
|
|
cep->cur_tx = (cbd_t *)bdp;
|
|
|
|
spin_unlock_irq(&cep->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
scc_enet_timeout(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
printk("%s: transmit timed out.\n", dev->name);
|
|
cep->stats.tx_errors++;
|
|
#ifndef final_version
|
|
{
|
|
int i;
|
|
cbd_t *bdp;
|
|
printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
|
|
cep->cur_tx, cep->tx_full ? " (full)" : "",
|
|
cep->cur_rx);
|
|
bdp = cep->tx_bd_base;
|
|
printk(" Tx @base %p :\n", bdp);
|
|
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
|
|
printk("%04x %04x %08x\n",
|
|
bdp->cbd_sc,
|
|
bdp->cbd_datlen,
|
|
bdp->cbd_bufaddr);
|
|
bdp = cep->rx_bd_base;
|
|
printk(" Rx @base %p :\n", bdp);
|
|
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
|
|
printk("%04x %04x %08x\n",
|
|
bdp->cbd_sc,
|
|
bdp->cbd_datlen,
|
|
bdp->cbd_bufaddr);
|
|
}
|
|
#endif
|
|
if (!cep->tx_full)
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
/* The interrupt handler.
|
|
* This is called from the CPM handler, not the MPC core interrupt.
|
|
*/
|
|
static irqreturn_t
|
|
scc_enet_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
volatile struct scc_enet_private *cep;
|
|
volatile cbd_t *bdp;
|
|
ushort int_events;
|
|
int must_restart;
|
|
|
|
cep = dev->priv;
|
|
|
|
/* Get the interrupt events that caused us to be here.
|
|
*/
|
|
int_events = cep->sccp->scc_scce;
|
|
cep->sccp->scc_scce = int_events;
|
|
must_restart = 0;
|
|
|
|
/* Handle receive event in its own function.
|
|
*/
|
|
if (int_events & SCCE_ENET_RXF)
|
|
scc_enet_rx(dev_id);
|
|
|
|
/* Check for a transmit error. The manual is a little unclear
|
|
* about this, so the debug code until I get it figured out. It
|
|
* appears that if TXE is set, then TXB is not set. However,
|
|
* if carrier sense is lost during frame transmission, the TXE
|
|
* bit is set, "and continues the buffer transmission normally."
|
|
* I don't know if "normally" implies TXB is set when the buffer
|
|
* descriptor is closed.....trial and error :-).
|
|
*/
|
|
|
|
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
|
|
*/
|
|
if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
|
|
spin_lock(&cep->lock);
|
|
bdp = cep->dirty_tx;
|
|
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
|
|
if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
|
|
break;
|
|
|
|
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
|
|
cep->stats.tx_heartbeat_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
|
|
cep->stats.tx_window_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
|
|
cep->stats.tx_aborted_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
|
|
cep->stats.tx_fifo_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
|
|
cep->stats.tx_carrier_errors++;
|
|
|
|
|
|
/* No heartbeat or Lost carrier are not really bad errors.
|
|
* The others require a restart transmit command.
|
|
*/
|
|
if (bdp->cbd_sc &
|
|
(BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
|
|
must_restart = 1;
|
|
cep->stats.tx_errors++;
|
|
}
|
|
|
|
cep->stats.tx_packets++;
|
|
|
|
/* Deferred means some collisions occurred during transmit,
|
|
* but we eventually sent the packet OK.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_TX_DEF)
|
|
cep->stats.collisions++;
|
|
|
|
/* Free the sk buffer associated with this last transmit.
|
|
*/
|
|
dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
|
|
cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
|
|
|
/* Update pointer to next buffer descriptor to be transmitted.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
|
|
bdp = cep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
/* I don't know if we can be held off from processing these
|
|
* interrupts for more than one frame time. I really hope
|
|
* not. In such a case, we would now want to check the
|
|
* currently available BD (cur_tx) and determine if any
|
|
* buffers between the dirty_tx and cur_tx have also been
|
|
* sent. We would want to process anything in between that
|
|
* does not have BD_ENET_TX_READY set.
|
|
*/
|
|
|
|
/* Since we have freed up a buffer, the ring is no longer
|
|
* full.
|
|
*/
|
|
if (cep->tx_full) {
|
|
cep->tx_full = 0;
|
|
if (netif_queue_stopped(dev)) {
|
|
netif_wake_queue(dev);
|
|
}
|
|
}
|
|
|
|
cep->dirty_tx = (cbd_t *)bdp;
|
|
}
|
|
|
|
if (must_restart) {
|
|
volatile cpm_cpm2_t *cp;
|
|
|
|
/* Some transmit errors cause the transmitter to shut
|
|
* down. We now issue a restart transmit. Since the
|
|
* errors close the BD and update the pointers, the restart
|
|
* _should_ pick up without having to reset any of our
|
|
* pointers either.
|
|
*/
|
|
|
|
cp = cpmp;
|
|
cp->cp_cpcr =
|
|
mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
|
|
CPM_CR_RESTART_TX) | CPM_CR_FLG;
|
|
while (cp->cp_cpcr & CPM_CR_FLG);
|
|
}
|
|
spin_unlock(&cep->lock);
|
|
}
|
|
|
|
/* Check for receive busy, i.e. packets coming but no place to
|
|
* put them. This "can't happen" because the receive interrupt
|
|
* is tossing previous frames.
|
|
*/
|
|
if (int_events & SCCE_ENET_BSY) {
|
|
cep->stats.rx_dropped++;
|
|
printk("SCC ENET: BSY can't happen.\n");
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* During a receive, the cur_rx points to the current incoming buffer.
|
|
* When we update through the ring, if the next incoming buffer has
|
|
* not been given to the system, we just set the empty indicator,
|
|
* effectively tossing the packet.
|
|
*/
|
|
static int
|
|
scc_enet_rx(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep;
|
|
volatile cbd_t *bdp;
|
|
struct sk_buff *skb;
|
|
ushort pkt_len;
|
|
|
|
cep = dev->priv;
|
|
|
|
/* First, grab all of the stats for the incoming packet.
|
|
* These get messed up if we get called due to a busy condition.
|
|
*/
|
|
bdp = cep->cur_rx;
|
|
|
|
for (;;) {
|
|
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
|
|
break;
|
|
|
|
#ifndef final_version
|
|
/* Since we have allocated space to hold a complete frame, both
|
|
* the first and last indicators should be set.
|
|
*/
|
|
if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
|
|
(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
|
|
printk("CPM ENET: rcv is not first+last\n");
|
|
#endif
|
|
|
|
/* Frame too long or too short.
|
|
*/
|
|
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
|
|
cep->stats.rx_length_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
|
|
cep->stats.rx_frame_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
|
|
cep->stats.rx_crc_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
|
|
cep->stats.rx_crc_errors++;
|
|
|
|
/* Report late collisions as a frame error.
|
|
* On this error, the BD is closed, but we don't know what we
|
|
* have in the buffer. So, just drop this frame on the floor.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_RX_CL) {
|
|
cep->stats.rx_frame_errors++;
|
|
}
|
|
else {
|
|
|
|
/* Process the incoming frame.
|
|
*/
|
|
cep->stats.rx_packets++;
|
|
pkt_len = bdp->cbd_datlen;
|
|
cep->stats.rx_bytes += pkt_len;
|
|
|
|
/* This does 16 byte alignment, much more than we need.
|
|
* The packet length includes FCS, but we don't want to
|
|
* include that when passing upstream as it messes up
|
|
* bridging applications.
|
|
*/
|
|
skb = dev_alloc_skb(pkt_len-4);
|
|
|
|
if (skb == NULL) {
|
|
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
|
|
cep->stats.rx_dropped++;
|
|
}
|
|
else {
|
|
skb_put(skb,pkt_len-4); /* Make room */
|
|
skb_copy_to_linear_data(skb,
|
|
(unsigned char *)__va(bdp->cbd_bufaddr),
|
|
pkt_len-4);
|
|
skb->protocol=eth_type_trans(skb,dev);
|
|
netif_rx(skb);
|
|
}
|
|
}
|
|
|
|
/* Clear the status flags for this buffer.
|
|
*/
|
|
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
|
|
|
|
/* Mark the buffer empty.
|
|
*/
|
|
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
|
|
|
|
/* Update BD pointer to next entry.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
|
|
bdp = cep->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
}
|
|
cep->cur_rx = (cbd_t *)bdp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
scc_enet_close(struct net_device *dev)
|
|
{
|
|
/* Don't know what to do yet.
|
|
*/
|
|
netif_stop_queue(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
return &cep->stats;
|
|
}
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
* Skeleton taken from sunlance driver.
|
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
|
* MAC address filtering. Some of the drivers check to make sure it is
|
|
* a group multicast address, and discard those that are not. I guess I
|
|
* will do the same for now, but just remove the test if you want
|
|
* individual filtering as well (do the upper net layers want or support
|
|
* this kind of feature?).
|
|
*/
|
|
|
|
static void set_multicast_list(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep;
|
|
struct dev_mc_list *dmi;
|
|
u_char *mcptr, *tdptr;
|
|
volatile scc_enet_t *ep;
|
|
int i, j;
|
|
cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
/* Get pointer to SCC area in parameter RAM.
|
|
*/
|
|
ep = (scc_enet_t *)dev->base_addr;
|
|
|
|
if (dev->flags&IFF_PROMISC) {
|
|
|
|
/* Log any net taps. */
|
|
printk("%s: Promiscuous mode enabled.\n", dev->name);
|
|
cep->sccp->scc_psmr |= SCC_PSMR_PRO;
|
|
} else {
|
|
|
|
cep->sccp->scc_psmr &= ~SCC_PSMR_PRO;
|
|
|
|
if (dev->flags & IFF_ALLMULTI) {
|
|
/* Catch all multicast addresses, so set the
|
|
* filter to all 1's.
|
|
*/
|
|
ep->sen_gaddr1 = 0xffff;
|
|
ep->sen_gaddr2 = 0xffff;
|
|
ep->sen_gaddr3 = 0xffff;
|
|
ep->sen_gaddr4 = 0xffff;
|
|
}
|
|
else {
|
|
/* Clear filter and add the addresses in the list.
|
|
*/
|
|
ep->sen_gaddr1 = 0;
|
|
ep->sen_gaddr2 = 0;
|
|
ep->sen_gaddr3 = 0;
|
|
ep->sen_gaddr4 = 0;
|
|
|
|
dmi = dev->mc_list;
|
|
|
|
for (i=0; i<dev->mc_count; i++) {
|
|
|
|
/* Only support group multicast for now.
|
|
*/
|
|
if (!(dmi->dmi_addr[0] & 1))
|
|
continue;
|
|
|
|
/* The address in dmi_addr is LSB first,
|
|
* and taddr is MSB first. We have to
|
|
* copy bytes MSB first from dmi_addr.
|
|
*/
|
|
mcptr = (u_char *)dmi->dmi_addr + 5;
|
|
tdptr = (u_char *)&ep->sen_taddrh;
|
|
for (j=0; j<6; j++)
|
|
*tdptr++ = *mcptr--;
|
|
|
|
/* Ask CPM to run CRC and set bit in
|
|
* filter mask.
|
|
*/
|
|
cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE,
|
|
CPM_ENET_BLOCK, 0,
|
|
CPM_CR_SET_GADDR) | CPM_CR_FLG;
|
|
/* this delay is necessary here -- Cort */
|
|
udelay(10);
|
|
while (cpmp->cp_cpcr & CPM_CR_FLG);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize the CPM Ethernet on SCC.
|
|
*/
|
|
static int __init scc_enet_init(void)
|
|
{
|
|
struct net_device *dev;
|
|
struct scc_enet_private *cep;
|
|
int i, j, err;
|
|
uint dp_offset;
|
|
unsigned char *eap;
|
|
unsigned long mem_addr;
|
|
bd_t *bd;
|
|
volatile cbd_t *bdp;
|
|
volatile cpm_cpm2_t *cp;
|
|
volatile scc_t *sccp;
|
|
volatile scc_enet_t *ep;
|
|
volatile cpm2_map_t *immap;
|
|
volatile iop_cpm2_t *io;
|
|
|
|
cp = cpmp; /* Get pointer to Communication Processor */
|
|
|
|
immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
|
|
io = &immap->im_ioport;
|
|
|
|
bd = (bd_t *)__res;
|
|
|
|
/* Create an Ethernet device instance.
|
|
*/
|
|
dev = alloc_etherdev(sizeof(*cep));
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
cep = dev->priv;
|
|
spin_lock_init(&cep->lock);
|
|
|
|
/* Get pointer to SCC area in parameter RAM.
|
|
*/
|
|
ep = (scc_enet_t *)(&immap->im_dprambase[PROFF_ENET]);
|
|
|
|
/* And another to the SCC register area.
|
|
*/
|
|
sccp = (volatile scc_t *)(&immap->im_scc[SCC_ENET]);
|
|
cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
|
|
|
|
/* Disable receive and transmit in case someone left it running.
|
|
*/
|
|
sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
|
|
/* Configure port C and D pins for SCC Ethernet. This
|
|
* won't work for all SCC possibilities....it will be
|
|
* board/port specific.
|
|
*/
|
|
io->iop_pparc |=
|
|
(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
|
|
io->iop_pdirc &=
|
|
~(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
|
|
io->iop_psorc &=
|
|
~(PC_ENET_RENA | PC_ENET_TXCLK | PC_ENET_RXCLK);
|
|
io->iop_psorc |= PC_ENET_CLSN;
|
|
|
|
io->iop_ppard |= (PD_ENET_RXD | PD_ENET_TXD | PD_ENET_TENA);
|
|
io->iop_pdird |= (PD_ENET_TXD | PD_ENET_TENA);
|
|
io->iop_pdird &= ~PD_ENET_RXD;
|
|
io->iop_psord |= PD_ENET_TXD;
|
|
io->iop_psord &= ~(PD_ENET_RXD | PD_ENET_TENA);
|
|
|
|
/* Configure Serial Interface clock routing.
|
|
* First, clear all SCC bits to zero, then set the ones we want.
|
|
*/
|
|
immap->im_cpmux.cmx_scr &= ~CMX_CLK_MASK;
|
|
immap->im_cpmux.cmx_scr |= CMX_CLK_ROUTE;
|
|
|
|
/* Allocate space for the buffer descriptors in the DP ram.
|
|
* These are relative offsets in the DP ram address space.
|
|
* Initialize base addresses for the buffer descriptors.
|
|
*/
|
|
dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
|
|
ep->sen_genscc.scc_rbase = dp_offset;
|
|
cep->rx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
|
|
|
|
dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
|
|
ep->sen_genscc.scc_tbase = dp_offset;
|
|
cep->tx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
|
|
|
|
cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
|
|
cep->cur_rx = cep->rx_bd_base;
|
|
|
|
ep->sen_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB;
|
|
ep->sen_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB;
|
|
|
|
/* Set maximum bytes per receive buffer.
|
|
* This appears to be an Ethernet frame size, not the buffer
|
|
* fragment size. It must be a multiple of four.
|
|
*/
|
|
ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
|
|
|
|
/* Set CRC preset and mask.
|
|
*/
|
|
ep->sen_cpres = 0xffffffff;
|
|
ep->sen_cmask = 0xdebb20e3;
|
|
|
|
ep->sen_crcec = 0; /* CRC Error counter */
|
|
ep->sen_alec = 0; /* alignment error counter */
|
|
ep->sen_disfc = 0; /* discard frame counter */
|
|
|
|
ep->sen_pads = 0x8888; /* Tx short frame pad character */
|
|
ep->sen_retlim = 15; /* Retry limit threshold */
|
|
|
|
ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
|
|
ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
|
|
|
|
ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
|
|
ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
|
|
|
|
/* Clear hash tables.
|
|
*/
|
|
ep->sen_gaddr1 = 0;
|
|
ep->sen_gaddr2 = 0;
|
|
ep->sen_gaddr3 = 0;
|
|
ep->sen_gaddr4 = 0;
|
|
ep->sen_iaddr1 = 0;
|
|
ep->sen_iaddr2 = 0;
|
|
ep->sen_iaddr3 = 0;
|
|
ep->sen_iaddr4 = 0;
|
|
|
|
/* Set Ethernet station address.
|
|
*
|
|
* This is supplied in the board information structure, so we
|
|
* copy that into the controller.
|
|
*/
|
|
eap = (unsigned char *)&(ep->sen_paddrh);
|
|
for (i=5; i>=0; i--)
|
|
*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
|
|
|
|
ep->sen_pper = 0; /* 'cause the book says so */
|
|
ep->sen_taddrl = 0; /* temp address (LSB) */
|
|
ep->sen_taddrm = 0;
|
|
ep->sen_taddrh = 0; /* temp address (MSB) */
|
|
|
|
/* Now allocate the host memory pages and initialize the
|
|
* buffer descriptors.
|
|
*/
|
|
bdp = cep->tx_bd_base;
|
|
for (i=0; i<TX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
bdp = cep->rx_bd_base;
|
|
for (i=0; i<CPM_ENET_RX_PAGES; i++) {
|
|
|
|
/* Allocate a page.
|
|
*/
|
|
mem_addr = __get_free_page(GFP_KERNEL);
|
|
/* BUG: no check for failure */
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
|
|
bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
|
|
bdp->cbd_bufaddr = __pa(mem_addr);
|
|
mem_addr += CPM_ENET_RX_FRSIZE;
|
|
bdp++;
|
|
}
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* Let's re-initialize the channel now. We have to do it later
|
|
* than the manual describes because we have just now finished
|
|
* the BD initialization.
|
|
*/
|
|
cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
|
|
CPM_CR_INIT_TRX) | CPM_CR_FLG;
|
|
while (cp->cp_cpcr & CPM_CR_FLG);
|
|
|
|
cep->skb_cur = cep->skb_dirty = 0;
|
|
|
|
sccp->scc_scce = 0xffff; /* Clear any pending events */
|
|
|
|
/* Enable interrupts for transmit error, complete frame
|
|
* received, and any transmit buffer we have also set the
|
|
* interrupt flag.
|
|
*/
|
|
sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
|
|
|
|
/* Install our interrupt handler.
|
|
*/
|
|
request_irq(SIU_INT_ENET, scc_enet_interrupt, 0, "enet", dev);
|
|
/* BUG: no check for failure */
|
|
|
|
/* Set GSMR_H to enable all normal operating modes.
|
|
* Set GSMR_L to enable Ethernet to MC68160.
|
|
*/
|
|
sccp->scc_gsmrh = 0;
|
|
sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
|
|
|
|
/* Set sync/delimiters.
|
|
*/
|
|
sccp->scc_dsr = 0xd555;
|
|
|
|
/* Set processing mode. Use Ethernet CRC, catch broadcast, and
|
|
* start frame search 22 bit times after RENA.
|
|
*/
|
|
sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
|
|
|
|
/* It is now OK to enable the Ethernet transmitter.
|
|
* Unfortunately, there are board implementation differences here.
|
|
*/
|
|
io->iop_pparc &= ~(PC_EST8260_ENET_LOOPBACK |
|
|
PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
|
|
io->iop_psorc &= ~(PC_EST8260_ENET_LOOPBACK |
|
|
PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
|
|
io->iop_pdirc |= (PC_EST8260_ENET_LOOPBACK |
|
|
PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
|
|
io->iop_pdatc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE);
|
|
io->iop_pdatc |= PC_EST8260_ENET_NOTFD;
|
|
|
|
dev->base_addr = (unsigned long)ep;
|
|
|
|
/* The CPM Ethernet specific entries in the device structure. */
|
|
dev->open = scc_enet_open;
|
|
dev->hard_start_xmit = scc_enet_start_xmit;
|
|
dev->tx_timeout = scc_enet_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->stop = scc_enet_close;
|
|
dev->get_stats = scc_enet_get_stats;
|
|
dev->set_multicast_list = set_multicast_list;
|
|
|
|
/* And last, enable the transmit and receive processing.
|
|
*/
|
|
sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
|
|
err = register_netdev(dev);
|
|
if (err) {
|
|
free_netdev(dev);
|
|
return err;
|
|
}
|
|
|
|
printk("%s: SCC ENET Version 0.1, ", dev->name);
|
|
for (i=0; i<5; i++)
|
|
printk("%02x:", dev->dev_addr[i]);
|
|
printk("%02x\n", dev->dev_addr[5]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(scc_enet_init);
|