linux/arch/arm/mach-vexpress/spc.c

593 lines
14 KiB
C

/*
* Versatile Express Serial Power Controller (SPC) support
*
* Copyright (C) 2013 ARM Ltd.
*
* Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
* Achin Gupta <achin.gupta@arm.com>
* Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/semaphore.h>
#include <asm/cacheflush.h>
#define SPCLOG "vexpress-spc: "
#define PERF_LVL_A15 0x00
#define PERF_REQ_A15 0x04
#define PERF_LVL_A7 0x08
#define PERF_REQ_A7 0x0c
#define COMMS 0x10
#define COMMS_REQ 0x14
#define PWC_STATUS 0x18
#define PWC_FLAG 0x1c
/* SPC wake-up IRQs status and mask */
#define WAKE_INT_MASK 0x24
#define WAKE_INT_RAW 0x28
#define WAKE_INT_STAT 0x2c
/* SPC power down registers */
#define A15_PWRDN_EN 0x30
#define A7_PWRDN_EN 0x34
/* SPC per-CPU mailboxes */
#define A15_BX_ADDR0 0x68
#define A7_BX_ADDR0 0x78
/* SPC CPU/cluster reset statue */
#define STANDBYWFI_STAT 0x3c
#define STANDBYWFI_STAT_A15_CPU_MASK(cpu) (1 << (cpu))
#define STANDBYWFI_STAT_A7_CPU_MASK(cpu) (1 << (3 + (cpu)))
/* SPC system config interface registers */
#define SYSCFG_WDATA 0x70
#define SYSCFG_RDATA 0x74
/* A15/A7 OPP virtual register base */
#define A15_PERFVAL_BASE 0xC10
#define A7_PERFVAL_BASE 0xC30
/* Config interface control bits */
#define SYSCFG_START (1 << 31)
#define SYSCFG_SCC (6 << 20)
#define SYSCFG_STAT (14 << 20)
/* wake-up interrupt masks */
#define GBL_WAKEUP_INT_MSK (0x3 << 10)
/* TC2 static dual-cluster configuration */
#define MAX_CLUSTERS 2
/*
* Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
* operation, the operation could start just before jiffie is about
* to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
*/
#define TIMEOUT_US 20000
#define MAX_OPPS 8
#define CA15_DVFS 0
#define CA7_DVFS 1
#define SPC_SYS_CFG 2
#define STAT_COMPLETE(type) ((1 << 0) << (type << 2))
#define STAT_ERR(type) ((1 << 1) << (type << 2))
#define RESPONSE_MASK(type) (STAT_COMPLETE(type) | STAT_ERR(type))
struct ve_spc_opp {
unsigned long freq;
unsigned long u_volt;
};
struct ve_spc_drvdata {
void __iomem *baseaddr;
/*
* A15s cluster identifier
* It corresponds to A15 processors MPIDR[15:8] bitfield
*/
u32 a15_clusid;
uint32_t cur_rsp_mask;
uint32_t cur_rsp_stat;
struct semaphore sem;
struct completion done;
struct ve_spc_opp *opps[MAX_CLUSTERS];
int num_opps[MAX_CLUSTERS];
};
static struct ve_spc_drvdata *info;
static inline bool cluster_is_a15(u32 cluster)
{
return cluster == info->a15_clusid;
}
/**
* ve_spc_global_wakeup_irq()
*
* Function to set/clear global wakeup IRQs. Not protected by locking since
* it might be used in code paths where normal cacheable locks are not
* working. Locking must be provided by the caller to ensure atomicity.
*
* @set: if true, global wake-up IRQs are set, if false they are cleared
*/
void ve_spc_global_wakeup_irq(bool set)
{
u32 reg;
reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
if (set)
reg |= GBL_WAKEUP_INT_MSK;
else
reg &= ~GBL_WAKEUP_INT_MSK;
writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
}
/**
* ve_spc_cpu_wakeup_irq()
*
* Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
* it might be used in code paths where normal cacheable locks are not
* working. Locking must be provided by the caller to ensure atomicity.
*
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
* @cpu: mpidr[7:0] bitfield describing cpu affinity level
* @set: if true, wake-up IRQs are set, if false they are cleared
*/
void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
{
u32 mask, reg;
if (cluster >= MAX_CLUSTERS)
return;
mask = 1 << cpu;
if (!cluster_is_a15(cluster))
mask <<= 4;
reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
if (set)
reg |= mask;
else
reg &= ~mask;
writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
}
/**
* ve_spc_set_resume_addr() - set the jump address used for warm boot
*
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
* @cpu: mpidr[7:0] bitfield describing cpu affinity level
* @addr: physical resume address
*/
void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
{
void __iomem *baseaddr;
if (cluster >= MAX_CLUSTERS)
return;
if (cluster_is_a15(cluster))
baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
else
baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
writel_relaxed(addr, baseaddr);
}
/**
* ve_spc_powerdown()
*
* Function to enable/disable cluster powerdown. Not protected by locking
* since it might be used in code paths where normal cacheable locks are not
* working. Locking must be provided by the caller to ensure atomicity.
*
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
* @enable: if true enables powerdown, if false disables it
*/
void ve_spc_powerdown(u32 cluster, bool enable)
{
u32 pwdrn_reg;
if (cluster >= MAX_CLUSTERS)
return;
pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
writel_relaxed(enable, info->baseaddr + pwdrn_reg);
}
static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
{
return cluster_is_a15(cluster) ?
STANDBYWFI_STAT_A15_CPU_MASK(cpu)
: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
}
/**
* ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
*
* @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
*
* @return: non-zero if and only if the specified CPU is in WFI
*
* Take care when interpreting the result of this function: a CPU might
* be in WFI temporarily due to idle, and is not necessarily safely
* parked.
*/
int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
{
int ret;
u32 mask = standbywfi_cpu_mask(cpu, cluster);
if (cluster >= MAX_CLUSTERS)
return 1;
ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
__func__, STANDBYWFI_STAT, ret, mask);
return ret & mask;
}
static int ve_spc_get_performance(int cluster, u32 *freq)
{
struct ve_spc_opp *opps = info->opps[cluster];
u32 perf_cfg_reg = 0;
u32 perf;
perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
if (perf >= info->num_opps[cluster])
return -EINVAL;
opps += perf;
*freq = opps->freq;
return 0;
}
/* find closest match to given frequency in OPP table */
static int ve_spc_round_performance(int cluster, u32 freq)
{
int idx, max_opp = info->num_opps[cluster];
struct ve_spc_opp *opps = info->opps[cluster];
u32 fmin = 0, fmax = ~0, ftmp;
freq /= 1000; /* OPP entries in kHz */
for (idx = 0; idx < max_opp; idx++, opps++) {
ftmp = opps->freq;
if (ftmp >= freq) {
if (ftmp <= fmax)
fmax = ftmp;
} else {
if (ftmp >= fmin)
fmin = ftmp;
}
}
if (fmax != ~0)
return fmax * 1000;
else
return fmin * 1000;
}
static int ve_spc_find_performance_index(int cluster, u32 freq)
{
int idx, max_opp = info->num_opps[cluster];
struct ve_spc_opp *opps = info->opps[cluster];
for (idx = 0; idx < max_opp; idx++, opps++)
if (opps->freq == freq)
break;
return (idx == max_opp) ? -EINVAL : idx;
}
static int ve_spc_waitforcompletion(int req_type)
{
int ret = wait_for_completion_interruptible_timeout(
&info->done, usecs_to_jiffies(TIMEOUT_US));
if (ret == 0)
ret = -ETIMEDOUT;
else if (ret > 0)
ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
return ret;
}
static int ve_spc_set_performance(int cluster, u32 freq)
{
u32 perf_cfg_reg, perf_stat_reg;
int ret, perf, req_type;
if (cluster_is_a15(cluster)) {
req_type = CA15_DVFS;
perf_cfg_reg = PERF_LVL_A15;
perf_stat_reg = PERF_REQ_A15;
} else {
req_type = CA7_DVFS;
perf_cfg_reg = PERF_LVL_A7;
perf_stat_reg = PERF_REQ_A7;
}
perf = ve_spc_find_performance_index(cluster, freq);
if (perf < 0)
return perf;
if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
return -ETIME;
init_completion(&info->done);
info->cur_rsp_mask = RESPONSE_MASK(req_type);
writel(perf, info->baseaddr + perf_cfg_reg);
ret = ve_spc_waitforcompletion(req_type);
info->cur_rsp_mask = 0;
up(&info->sem);
return ret;
}
static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
{
int ret;
if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
return -ETIME;
init_completion(&info->done);
info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
/* Set the control value */
writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
if (ret == 0)
*data = readl(info->baseaddr + SYSCFG_RDATA);
info->cur_rsp_mask = 0;
up(&info->sem);
return ret;
}
static irqreturn_t ve_spc_irq_handler(int irq, void *data)
{
struct ve_spc_drvdata *drv_data = data;
uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
if (info->cur_rsp_mask & status) {
info->cur_rsp_stat = status;
complete(&drv_data->done);
}
return IRQ_HANDLED;
}
/*
* +--------------------------+
* | 31 20 | 19 0 |
* +--------------------------+
* | m_volt | freq(kHz) |
* +--------------------------+
*/
#define MULT_FACTOR 20
#define VOLT_SHIFT 20
#define FREQ_MASK (0xFFFFF)
static int ve_spc_populate_opps(uint32_t cluster)
{
uint32_t data = 0, off, ret, idx;
struct ve_spc_opp *opps;
opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
if (!opps)
return -ENOMEM;
info->opps[cluster] = opps;
off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
if (!ret) {
opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
opps->u_volt = (data >> VOLT_SHIFT) * 1000;
} else {
break;
}
}
info->num_opps[cluster] = idx;
return ret;
}
static int ve_init_opp_table(struct device *cpu_dev)
{
int cluster;
int idx, ret = 0, max_opp;
struct ve_spc_opp *opps;
cluster = topology_physical_package_id(cpu_dev->id);
cluster = cluster < 0 ? 0 : cluster;
max_opp = info->num_opps[cluster];
opps = info->opps[cluster];
for (idx = 0; idx < max_opp; idx++, opps++) {
ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
if (ret) {
dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
opps->freq, opps->u_volt);
return ret;
}
}
return ret;
}
int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
{
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
pr_err(SPCLOG "unable to allocate mem\n");
return -ENOMEM;
}
info->baseaddr = baseaddr;
info->a15_clusid = a15_clusid;
if (irq <= 0) {
pr_err(SPCLOG "Invalid IRQ %d\n", irq);
kfree(info);
return -EINVAL;
}
init_completion(&info->done);
readl_relaxed(info->baseaddr + PWC_STATUS);
ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
| IRQF_ONESHOT, "vexpress-spc", info);
if (ret) {
pr_err(SPCLOG "IRQ %d request failed\n", irq);
kfree(info);
return -ENODEV;
}
sema_init(&info->sem, 1);
/*
* Multi-cluster systems may need this data when non-coherent, during
* cluster power-up/power-down. Make sure driver info reaches main
* memory.
*/
sync_cache_w(info);
sync_cache_w(&info);
return 0;
}
struct clk_spc {
struct clk_hw hw;
int cluster;
};
#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
static unsigned long spc_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_spc *spc = to_clk_spc(hw);
u32 freq;
if (ve_spc_get_performance(spc->cluster, &freq))
return -EIO;
return freq * 1000;
}
static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
unsigned long *parent_rate)
{
struct clk_spc *spc = to_clk_spc(hw);
return ve_spc_round_performance(spc->cluster, drate);
}
static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_spc *spc = to_clk_spc(hw);
return ve_spc_set_performance(spc->cluster, rate / 1000);
}
static struct clk_ops clk_spc_ops = {
.recalc_rate = spc_recalc_rate,
.round_rate = spc_round_rate,
.set_rate = spc_set_rate,
};
static struct clk *ve_spc_clk_register(struct device *cpu_dev)
{
struct clk_init_data init;
struct clk_spc *spc;
spc = kzalloc(sizeof(*spc), GFP_KERNEL);
if (!spc) {
pr_err("could not allocate spc clk\n");
return ERR_PTR(-ENOMEM);
}
spc->hw.init = &init;
spc->cluster = topology_physical_package_id(cpu_dev->id);
spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
init.name = dev_name(cpu_dev);
init.ops = &clk_spc_ops;
init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE;
init.num_parents = 0;
return devm_clk_register(cpu_dev, &spc->hw);
}
static int __init ve_spc_clk_init(void)
{
int cpu;
struct clk *clk;
if (!info)
return 0; /* Continue only if SPC is initialised */
if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
pr_err("failed to build OPP table\n");
return -ENODEV;
}
for_each_possible_cpu(cpu) {
struct device *cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_warn("failed to get cpu%d device\n", cpu);
continue;
}
clk = ve_spc_clk_register(cpu_dev);
if (IS_ERR(clk)) {
pr_warn("failed to register cpu%d clock\n", cpu);
continue;
}
if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
pr_warn("failed to register cpu%d clock lookup\n", cpu);
continue;
}
if (ve_init_opp_table(cpu_dev))
pr_warn("failed to initialise cpu%d opp table\n", cpu);
}
platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
return 0;
}
module_init(ve_spc_clk_init);