mirror of https://gitee.com/openkylin/linux.git
2209 lines
65 KiB
C
2209 lines
65 KiB
C
/*
|
|
* Copyright 2006 Dave Airlie <airlied@linux.ie>
|
|
* Copyright © 2006-2009 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
* Jesse Barnes <jesse.barnes@intel.com>
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/hdmi.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_crtc.h>
|
|
#include <drm/drm_edid.h>
|
|
#include "intel_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
|
|
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
|
|
{
|
|
return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
|
|
}
|
|
|
|
static void
|
|
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
|
|
{
|
|
struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t enabled_bits;
|
|
|
|
enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
|
|
|
|
WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
|
|
"HDMI port enabled, expecting disabled\n");
|
|
}
|
|
|
|
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *intel_dig_port =
|
|
container_of(encoder, struct intel_digital_port, base.base);
|
|
return &intel_dig_port->hdmi;
|
|
}
|
|
|
|
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
|
|
{
|
|
return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
|
|
}
|
|
|
|
static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
|
|
{
|
|
switch (type) {
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return VIDEO_DIP_SELECT_AVI;
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return VIDEO_DIP_SELECT_SPD;
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return VIDEO_DIP_SELECT_VENDOR;
|
|
default:
|
|
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
|
|
{
|
|
switch (type) {
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return VIDEO_DIP_ENABLE_AVI;
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return VIDEO_DIP_ENABLE_SPD;
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return VIDEO_DIP_ENABLE_VENDOR;
|
|
default:
|
|
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
|
|
{
|
|
switch (type) {
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return VIDEO_DIP_ENABLE_AVI_HSW;
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return VIDEO_DIP_ENABLE_SPD_HSW;
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return VIDEO_DIP_ENABLE_VS_HSW;
|
|
default:
|
|
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
|
|
enum transcoder cpu_transcoder,
|
|
enum hdmi_infoframe_type type,
|
|
int i)
|
|
{
|
|
switch (type) {
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
|
|
default:
|
|
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void g4x_write_infoframe(struct drm_encoder *encoder,
|
|
enum hdmi_infoframe_type type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const uint32_t *data = frame;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val = I915_READ(VIDEO_DIP_CTL);
|
|
int i;
|
|
|
|
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
I915_WRITE(VIDEO_DIP_CTL, val);
|
|
|
|
mmiowb();
|
|
for (i = 0; i < len; i += 4) {
|
|
I915_WRITE(VIDEO_DIP_DATA, *data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
I915_WRITE(VIDEO_DIP_DATA, 0);
|
|
mmiowb();
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
I915_WRITE(VIDEO_DIP_CTL, val);
|
|
POSTING_READ(VIDEO_DIP_CTL);
|
|
}
|
|
|
|
static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
u32 val = I915_READ(VIDEO_DIP_CTL);
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return false;
|
|
|
|
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
|
|
return false;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
|
|
}
|
|
|
|
static void ibx_write_infoframe(struct drm_encoder *encoder,
|
|
enum hdmi_infoframe_type type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const uint32_t *data = frame;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
|
|
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
I915_WRITE(reg, val);
|
|
|
|
mmiowb();
|
|
for (i = 0; i < len; i += 4) {
|
|
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
|
|
mmiowb();
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return false;
|
|
|
|
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
|
|
return false;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
}
|
|
|
|
static void cpt_write_infoframe(struct drm_encoder *encoder,
|
|
enum hdmi_infoframe_type type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const uint32_t *data = frame;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
|
|
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
/* The DIP control register spec says that we need to update the AVI
|
|
* infoframe without clearing its enable bit */
|
|
if (type != HDMI_INFOFRAME_TYPE_AVI)
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
I915_WRITE(reg, val);
|
|
|
|
mmiowb();
|
|
for (i = 0; i < len; i += 4) {
|
|
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
|
|
mmiowb();
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return false;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
}
|
|
|
|
static void vlv_write_infoframe(struct drm_encoder *encoder,
|
|
enum hdmi_infoframe_type type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const uint32_t *data = frame;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
|
|
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
I915_WRITE(reg, val);
|
|
|
|
mmiowb();
|
|
for (i = 0; i < len; i += 4) {
|
|
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
|
|
mmiowb();
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return false;
|
|
|
|
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
|
|
return false;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
}
|
|
|
|
static void hsw_write_infoframe(struct drm_encoder *encoder,
|
|
enum hdmi_infoframe_type type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const uint32_t *data = frame;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
|
|
u32 data_reg;
|
|
int i;
|
|
u32 val = I915_READ(ctl_reg);
|
|
|
|
data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
|
|
if (data_reg == 0)
|
|
return;
|
|
|
|
val &= ~hsw_infoframe_enable(type);
|
|
I915_WRITE(ctl_reg, val);
|
|
|
|
mmiowb();
|
|
for (i = 0; i < len; i += 4) {
|
|
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
|
|
type, i >> 2), *data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
|
|
type, i >> 2), 0);
|
|
mmiowb();
|
|
|
|
val |= hsw_infoframe_enable(type);
|
|
I915_WRITE(ctl_reg, val);
|
|
POSTING_READ(ctl_reg);
|
|
}
|
|
|
|
static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
|
|
u32 val = I915_READ(ctl_reg);
|
|
|
|
return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
|
|
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
|
|
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
|
|
}
|
|
|
|
/*
|
|
* The data we write to the DIP data buffer registers is 1 byte bigger than the
|
|
* HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
|
|
* at 0). It's also a byte used by DisplayPort so the same DIP registers can be
|
|
* used for both technologies.
|
|
*
|
|
* DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
|
|
* DW1: DB3 | DB2 | DB1 | DB0
|
|
* DW2: DB7 | DB6 | DB5 | DB4
|
|
* DW3: ...
|
|
*
|
|
* (HB is Header Byte, DB is Data Byte)
|
|
*
|
|
* The hdmi pack() functions don't know about that hardware specific hole so we
|
|
* trick them by giving an offset into the buffer and moving back the header
|
|
* bytes by one.
|
|
*/
|
|
static void intel_write_infoframe(struct drm_encoder *encoder,
|
|
union hdmi_infoframe *frame)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
uint8_t buffer[VIDEO_DIP_DATA_SIZE];
|
|
ssize_t len;
|
|
|
|
/* see comment above for the reason for this offset */
|
|
len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
|
|
if (len < 0)
|
|
return;
|
|
|
|
/* Insert the 'hole' (see big comment above) at position 3 */
|
|
buffer[0] = buffer[1];
|
|
buffer[1] = buffer[2];
|
|
buffer[2] = buffer[3];
|
|
buffer[3] = 0;
|
|
len++;
|
|
|
|
intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
|
|
}
|
|
|
|
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
union hdmi_infoframe frame;
|
|
int ret;
|
|
|
|
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
|
|
adjusted_mode);
|
|
if (ret < 0) {
|
|
DRM_ERROR("couldn't fill AVI infoframe\n");
|
|
return;
|
|
}
|
|
|
|
if (intel_hdmi->rgb_quant_range_selectable) {
|
|
if (intel_crtc->config->limited_color_range)
|
|
frame.avi.quantization_range =
|
|
HDMI_QUANTIZATION_RANGE_LIMITED;
|
|
else
|
|
frame.avi.quantization_range =
|
|
HDMI_QUANTIZATION_RANGE_FULL;
|
|
}
|
|
|
|
intel_write_infoframe(encoder, &frame);
|
|
}
|
|
|
|
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
|
|
{
|
|
union hdmi_infoframe frame;
|
|
int ret;
|
|
|
|
ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
|
|
if (ret < 0) {
|
|
DRM_ERROR("couldn't fill SPD infoframe\n");
|
|
return;
|
|
}
|
|
|
|
frame.spd.sdi = HDMI_SPD_SDI_PC;
|
|
|
|
intel_write_infoframe(encoder, &frame);
|
|
}
|
|
|
|
static void
|
|
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
union hdmi_infoframe frame;
|
|
int ret;
|
|
|
|
ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
|
|
adjusted_mode);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
intel_write_infoframe(encoder, &frame);
|
|
}
|
|
|
|
static void g4x_set_infoframes(struct drm_encoder *encoder,
|
|
bool enable,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
|
|
u32 reg = VIDEO_DIP_CTL;
|
|
u32 val = I915_READ(reg);
|
|
u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* If the registers were not initialized yet, they might be zeroes,
|
|
* which means we're selecting the AVI DIP and we're setting its
|
|
* frequency to once. This seems to really confuse the HW and make
|
|
* things stop working (the register spec says the AVI always needs to
|
|
* be sent every VSync). So here we avoid writing to the register more
|
|
* than we need and also explicitly select the AVI DIP and explicitly
|
|
* set its frequency to every VSync. Avoiding to write it twice seems to
|
|
* be enough to solve the problem, but being defensive shouldn't hurt us
|
|
* either. */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
return;
|
|
}
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
return;
|
|
}
|
|
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
if (val & VIDEO_DIP_ENABLE) {
|
|
DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
return;
|
|
}
|
|
val &= ~VIDEO_DIP_PORT_MASK;
|
|
val |= port;
|
|
}
|
|
|
|
val |= VIDEO_DIP_ENABLE;
|
|
val &= ~(VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
|
|
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
|
|
intel_hdmi_set_spd_infoframe(encoder);
|
|
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
|
|
}
|
|
|
|
static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_connector *connector;
|
|
|
|
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
|
|
|
|
/*
|
|
* HDMI cloning is only supported on g4x which doesn't
|
|
* support deep color or GCP infoframes anyway so no
|
|
* need to worry about multiple HDMI sinks here.
|
|
*/
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
|
|
if (connector->encoder == encoder)
|
|
return connector->display_info.bpc > 8;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Determine if default_phase=1 can be indicated in the GCP infoframe.
|
|
*
|
|
* From HDMI specification 1.4a:
|
|
* - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
|
|
* - The first pixel following each Video Data Period shall have a pixel packing phase of 0
|
|
* - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
|
|
* - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
|
|
* phase of 0
|
|
*/
|
|
static bool gcp_default_phase_possible(int pipe_bpp,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
unsigned int pixels_per_group;
|
|
|
|
switch (pipe_bpp) {
|
|
case 30:
|
|
/* 4 pixels in 5 clocks */
|
|
pixels_per_group = 4;
|
|
break;
|
|
case 36:
|
|
/* 2 pixels in 3 clocks */
|
|
pixels_per_group = 2;
|
|
break;
|
|
case 48:
|
|
/* 1 pixel in 2 clocks */
|
|
pixels_per_group = 1;
|
|
break;
|
|
default:
|
|
/* phase information not relevant for 8bpc */
|
|
return false;
|
|
}
|
|
|
|
return mode->crtc_hdisplay % pixels_per_group == 0 &&
|
|
mode->crtc_htotal % pixels_per_group == 0 &&
|
|
mode->crtc_hblank_start % pixels_per_group == 0 &&
|
|
mode->crtc_hblank_end % pixels_per_group == 0 &&
|
|
mode->crtc_hsync_start % pixels_per_group == 0 &&
|
|
mode->crtc_hsync_end % pixels_per_group == 0 &&
|
|
((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
|
|
mode->crtc_htotal/2 % pixels_per_group == 0);
|
|
}
|
|
|
|
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
|
|
u32 reg, val = 0;
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
|
|
else if (HAS_PCH_SPLIT(dev_priv->dev))
|
|
reg = TVIDEO_DIP_GCP(crtc->pipe);
|
|
else
|
|
return false;
|
|
|
|
/* Indicate color depth whenever the sink supports deep color */
|
|
if (hdmi_sink_is_deep_color(encoder))
|
|
val |= GCP_COLOR_INDICATION;
|
|
|
|
/* Enable default_phase whenever the display mode is suitably aligned */
|
|
if (gcp_default_phase_possible(crtc->config->pipe_bpp,
|
|
&crtc->config->base.adjusted_mode))
|
|
val |= GCP_DEFAULT_PHASE_ENABLE;
|
|
|
|
I915_WRITE(reg, val);
|
|
|
|
return val != 0;
|
|
}
|
|
|
|
static void ibx_set_infoframes(struct drm_encoder *encoder,
|
|
bool enable,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
|
|
u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* See the big comment in g4x_set_infoframes() */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
return;
|
|
}
|
|
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
WARN(val & VIDEO_DIP_ENABLE,
|
|
"DIP already enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
val &= ~VIDEO_DIP_PORT_MASK;
|
|
val |= port;
|
|
}
|
|
|
|
val |= VIDEO_DIP_ENABLE;
|
|
val &= ~(VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder))
|
|
val |= VIDEO_DIP_ENABLE_GCP;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
|
|
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
|
|
intel_hdmi_set_spd_infoframe(encoder);
|
|
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
|
|
}
|
|
|
|
static void cpt_set_infoframes(struct drm_encoder *encoder,
|
|
bool enable,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* See the big comment in g4x_set_infoframes() */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
return;
|
|
}
|
|
|
|
/* Set both together, unset both together: see the spec. */
|
|
val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
|
|
val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder))
|
|
val |= VIDEO_DIP_ENABLE_GCP;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
|
|
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
|
|
intel_hdmi_set_spd_infoframe(encoder);
|
|
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
|
|
}
|
|
|
|
static void vlv_set_infoframes(struct drm_encoder *encoder,
|
|
bool enable,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
|
|
u32 val = I915_READ(reg);
|
|
u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* See the big comment in g4x_set_infoframes() */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
return;
|
|
}
|
|
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
WARN(val & VIDEO_DIP_ENABLE,
|
|
"DIP already enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
val &= ~VIDEO_DIP_PORT_MASK;
|
|
val |= port;
|
|
}
|
|
|
|
val |= VIDEO_DIP_ENABLE;
|
|
val &= ~(VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder))
|
|
val |= VIDEO_DIP_ENABLE_GCP;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
|
|
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
|
|
intel_hdmi_set_spd_infoframe(encoder);
|
|
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
|
|
}
|
|
|
|
static void hsw_set_infoframes(struct drm_encoder *encoder,
|
|
bool enable,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
|
|
u32 val = I915_READ(reg);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
|
|
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
|
|
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
|
|
|
|
if (!enable) {
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
return;
|
|
}
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder))
|
|
val |= VIDEO_DIP_ENABLE_GCP_HSW;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
|
|
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
|
|
intel_hdmi_set_spd_infoframe(encoder);
|
|
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
|
|
}
|
|
|
|
static void intel_hdmi_prepare(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
|
|
u32 hdmi_val;
|
|
|
|
hdmi_val = SDVO_ENCODING_HDMI;
|
|
if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
|
|
hdmi_val |= HDMI_COLOR_RANGE_16_235;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
|
|
|
|
if (crtc->config->pipe_bpp > 24)
|
|
hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
|
|
else
|
|
hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
|
|
|
|
if (crtc->config->has_hdmi_sink)
|
|
hdmi_val |= HDMI_MODE_SELECT_HDMI;
|
|
|
|
if (HAS_PCH_CPT(dev))
|
|
hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
|
|
else if (IS_CHERRYVIEW(dev))
|
|
hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
|
|
else
|
|
hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
|
|
|
|
I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
}
|
|
|
|
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
|
|
enum pipe *pipe)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
enum intel_display_power_domain power_domain;
|
|
u32 tmp;
|
|
|
|
power_domain = intel_display_port_power_domain(encoder);
|
|
if (!intel_display_power_is_enabled(dev_priv, power_domain))
|
|
return false;
|
|
|
|
tmp = I915_READ(intel_hdmi->hdmi_reg);
|
|
|
|
if (!(tmp & SDVO_ENABLE))
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev))
|
|
*pipe = PORT_TO_PIPE_CPT(tmp);
|
|
else if (IS_CHERRYVIEW(dev))
|
|
*pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
|
|
else
|
|
*pipe = PORT_TO_PIPE(tmp);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_hdmi_get_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 tmp, flags = 0;
|
|
int dotclock;
|
|
|
|
tmp = I915_READ(intel_hdmi->hdmi_reg);
|
|
|
|
if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
|
|
if (tmp & HDMI_MODE_SELECT_HDMI)
|
|
pipe_config->has_hdmi_sink = true;
|
|
|
|
if (intel_hdmi->infoframe_enabled(&encoder->base))
|
|
pipe_config->has_infoframe = true;
|
|
|
|
if (tmp & SDVO_AUDIO_ENABLE)
|
|
pipe_config->has_audio = true;
|
|
|
|
if (!HAS_PCH_SPLIT(dev) &&
|
|
tmp & HDMI_COLOR_RANGE_16_235)
|
|
pipe_config->limited_color_range = true;
|
|
|
|
pipe_config->base.adjusted_mode.flags |= flags;
|
|
|
|
if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
|
|
dotclock = pipe_config->port_clock * 2 / 3;
|
|
else
|
|
dotclock = pipe_config->port_clock;
|
|
|
|
if (pipe_config->pixel_multiplier)
|
|
dotclock /= pipe_config->pixel_multiplier;
|
|
|
|
if (HAS_PCH_SPLIT(dev_priv->dev))
|
|
ironlake_check_encoder_dotclock(pipe_config, dotclock);
|
|
|
|
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
|
|
}
|
|
|
|
static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
WARN_ON(!crtc->config->has_hdmi_sink);
|
|
DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
|
|
pipe_name(crtc->pipe));
|
|
intel_audio_codec_enable(encoder);
|
|
}
|
|
|
|
static void g4x_enable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
u32 temp;
|
|
|
|
temp = I915_READ(intel_hdmi->hdmi_reg);
|
|
|
|
temp |= SDVO_ENABLE;
|
|
if (crtc->config->has_audio)
|
|
temp |= SDVO_AUDIO_ENABLE;
|
|
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
|
|
if (crtc->config->has_audio)
|
|
intel_enable_hdmi_audio(encoder);
|
|
}
|
|
|
|
static void ibx_enable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
u32 temp;
|
|
|
|
temp = I915_READ(intel_hdmi->hdmi_reg);
|
|
|
|
temp |= SDVO_ENABLE;
|
|
if (crtc->config->has_audio)
|
|
temp |= SDVO_AUDIO_ENABLE;
|
|
|
|
/*
|
|
* HW workaround, need to write this twice for issue
|
|
* that may result in first write getting masked.
|
|
*/
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
|
|
/*
|
|
* HW workaround, need to toggle enable bit off and on
|
|
* for 12bpc with pixel repeat.
|
|
*
|
|
* FIXME: BSpec says this should be done at the end of
|
|
* of the modeset sequence, so not sure if this isn't too soon.
|
|
*/
|
|
if (crtc->config->pipe_bpp > 24 &&
|
|
crtc->config->pixel_multiplier > 1) {
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
|
|
/*
|
|
* HW workaround, need to write this twice for issue
|
|
* that may result in first write getting masked.
|
|
*/
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
}
|
|
|
|
if (crtc->config->has_audio)
|
|
intel_enable_hdmi_audio(encoder);
|
|
}
|
|
|
|
static void cpt_enable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
enum pipe pipe = crtc->pipe;
|
|
u32 temp;
|
|
|
|
temp = I915_READ(intel_hdmi->hdmi_reg);
|
|
|
|
temp |= SDVO_ENABLE;
|
|
if (crtc->config->has_audio)
|
|
temp |= SDVO_AUDIO_ENABLE;
|
|
|
|
/*
|
|
* WaEnableHDMI8bpcBefore12bpc:snb,ivb
|
|
*
|
|
* The procedure for 12bpc is as follows:
|
|
* 1. disable HDMI clock gating
|
|
* 2. enable HDMI with 8bpc
|
|
* 3. enable HDMI with 12bpc
|
|
* 4. enable HDMI clock gating
|
|
*/
|
|
|
|
if (crtc->config->pipe_bpp > 24) {
|
|
I915_WRITE(TRANS_CHICKEN1(pipe),
|
|
I915_READ(TRANS_CHICKEN1(pipe)) |
|
|
TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
|
|
|
|
temp &= ~SDVO_COLOR_FORMAT_MASK;
|
|
temp |= SDVO_COLOR_FORMAT_8bpc;
|
|
}
|
|
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
|
|
if (crtc->config->pipe_bpp > 24) {
|
|
temp &= ~SDVO_COLOR_FORMAT_MASK;
|
|
temp |= HDMI_COLOR_FORMAT_12bpc;
|
|
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
|
|
I915_WRITE(TRANS_CHICKEN1(pipe),
|
|
I915_READ(TRANS_CHICKEN1(pipe)) &
|
|
~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
|
|
}
|
|
|
|
if (crtc->config->has_audio)
|
|
intel_enable_hdmi_audio(encoder);
|
|
}
|
|
|
|
static void vlv_enable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
}
|
|
|
|
static void intel_disable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
u32 temp;
|
|
|
|
temp = I915_READ(intel_hdmi->hdmi_reg);
|
|
|
|
temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
|
|
/*
|
|
* HW workaround for IBX, we need to move the port
|
|
* to transcoder A after disabling it to allow the
|
|
* matching DP port to be enabled on transcoder A.
|
|
*/
|
|
if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
|
|
temp &= ~SDVO_PIPE_B_SELECT;
|
|
temp |= SDVO_ENABLE;
|
|
/*
|
|
* HW workaround, need to write this twice for issue
|
|
* that may result in first write getting masked.
|
|
*/
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
|
|
temp &= ~SDVO_ENABLE;
|
|
I915_WRITE(intel_hdmi->hdmi_reg, temp);
|
|
POSTING_READ(intel_hdmi->hdmi_reg);
|
|
}
|
|
|
|
intel_hdmi->set_infoframes(&encoder->base, false, NULL);
|
|
}
|
|
|
|
static void g4x_disable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
if (crtc->config->has_audio)
|
|
intel_audio_codec_disable(encoder);
|
|
|
|
intel_disable_hdmi(encoder);
|
|
}
|
|
|
|
static void pch_disable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
if (crtc->config->has_audio)
|
|
intel_audio_codec_disable(encoder);
|
|
}
|
|
|
|
static void pch_post_disable_hdmi(struct intel_encoder *encoder)
|
|
{
|
|
intel_disable_hdmi(encoder);
|
|
}
|
|
|
|
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
|
|
{
|
|
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
|
|
|
|
if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
|
|
return 165000;
|
|
else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
|
|
return 300000;
|
|
else
|
|
return 225000;
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
|
|
int clock, bool respect_dvi_limit)
|
|
{
|
|
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
|
|
|
|
if (clock < 25000)
|
|
return MODE_CLOCK_LOW;
|
|
if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
/* BXT DPLL can't generate 223-240 MHz */
|
|
if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
|
|
return MODE_CLOCK_RANGE;
|
|
|
|
/* CHV DPLL can't generate 216-240 MHz */
|
|
if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
|
|
return MODE_CLOCK_RANGE;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
intel_hdmi_mode_valid(struct drm_connector *connector,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
|
|
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
|
|
enum drm_mode_status status;
|
|
int clock;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
|
|
return MODE_NO_DBLESCAN;
|
|
|
|
clock = mode->clock;
|
|
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
clock *= 2;
|
|
|
|
/* check if we can do 8bpc */
|
|
status = hdmi_port_clock_valid(hdmi, clock, true);
|
|
|
|
/* if we can't do 8bpc we may still be able to do 12bpc */
|
|
if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
|
|
status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
|
|
|
|
return status;
|
|
}
|
|
|
|
static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc_state->base.crtc->dev;
|
|
struct drm_atomic_state *state;
|
|
struct intel_encoder *encoder;
|
|
struct drm_connector *connector;
|
|
struct drm_connector_state *connector_state;
|
|
int count = 0, count_hdmi = 0;
|
|
int i;
|
|
|
|
if (HAS_GMCH_DISPLAY(dev))
|
|
return false;
|
|
|
|
state = crtc_state->base.state;
|
|
|
|
for_each_connector_in_state(state, connector, connector_state, i) {
|
|
if (connector_state->crtc != crtc_state->base.crtc)
|
|
continue;
|
|
|
|
encoder = to_intel_encoder(connector_state->best_encoder);
|
|
|
|
count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
|
|
count++;
|
|
}
|
|
|
|
/*
|
|
* HDMI 12bpc affects the clocks, so it's only possible
|
|
* when not cloning with other encoder types.
|
|
*/
|
|
return count_hdmi > 0 && count_hdmi == count;
|
|
}
|
|
|
|
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
|
|
int clock_12bpc = clock_8bpc * 3 / 2;
|
|
int desired_bpp;
|
|
|
|
pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
|
|
|
|
if (pipe_config->has_hdmi_sink)
|
|
pipe_config->has_infoframe = true;
|
|
|
|
if (intel_hdmi->color_range_auto) {
|
|
/* See CEA-861-E - 5.1 Default Encoding Parameters */
|
|
pipe_config->limited_color_range =
|
|
pipe_config->has_hdmi_sink &&
|
|
drm_match_cea_mode(adjusted_mode) > 1;
|
|
} else {
|
|
pipe_config->limited_color_range =
|
|
intel_hdmi->limited_color_range;
|
|
}
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
|
|
pipe_config->pixel_multiplier = 2;
|
|
clock_8bpc *= 2;
|
|
clock_12bpc *= 2;
|
|
}
|
|
|
|
if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
|
|
pipe_config->has_audio = true;
|
|
|
|
/*
|
|
* HDMI is either 12 or 8, so if the display lets 10bpc sneak
|
|
* through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
|
|
* outputs. We also need to check that the higher clock still fits
|
|
* within limits.
|
|
*/
|
|
if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
|
|
hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
|
|
hdmi_12bpc_possible(pipe_config)) {
|
|
DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
|
|
desired_bpp = 12*3;
|
|
|
|
/* Need to adjust the port link by 1.5x for 12bpc. */
|
|
pipe_config->port_clock = clock_12bpc;
|
|
} else {
|
|
DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
|
|
desired_bpp = 8*3;
|
|
|
|
pipe_config->port_clock = clock_8bpc;
|
|
}
|
|
|
|
if (!pipe_config->bw_constrained) {
|
|
DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
|
|
pipe_config->pipe_bpp = desired_bpp;
|
|
}
|
|
|
|
if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
|
|
false) != MODE_OK) {
|
|
DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
|
|
return false;
|
|
}
|
|
|
|
/* Set user selected PAR to incoming mode's member */
|
|
adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
intel_hdmi_unset_edid(struct drm_connector *connector)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
|
|
|
|
intel_hdmi->has_hdmi_sink = false;
|
|
intel_hdmi->has_audio = false;
|
|
intel_hdmi->rgb_quant_range_selectable = false;
|
|
|
|
kfree(to_intel_connector(connector)->detect_edid);
|
|
to_intel_connector(connector)->detect_edid = NULL;
|
|
}
|
|
|
|
static bool
|
|
intel_hdmi_set_edid(struct drm_connector *connector, bool force)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
|
|
struct intel_encoder *intel_encoder =
|
|
&hdmi_to_dig_port(intel_hdmi)->base;
|
|
enum intel_display_power_domain power_domain;
|
|
struct edid *edid = NULL;
|
|
bool connected = false;
|
|
|
|
power_domain = intel_display_port_power_domain(intel_encoder);
|
|
intel_display_power_get(dev_priv, power_domain);
|
|
|
|
if (force)
|
|
edid = drm_get_edid(connector,
|
|
intel_gmbus_get_adapter(dev_priv,
|
|
intel_hdmi->ddc_bus));
|
|
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
|
|
to_intel_connector(connector)->detect_edid = edid;
|
|
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
|
|
intel_hdmi->rgb_quant_range_selectable =
|
|
drm_rgb_quant_range_selectable(edid);
|
|
|
|
intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
|
|
if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
|
|
intel_hdmi->has_audio =
|
|
intel_hdmi->force_audio == HDMI_AUDIO_ON;
|
|
|
|
if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
|
|
intel_hdmi->has_hdmi_sink =
|
|
drm_detect_hdmi_monitor(edid);
|
|
|
|
connected = true;
|
|
}
|
|
|
|
return connected;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
intel_hdmi_detect(struct drm_connector *connector, bool force)
|
|
{
|
|
enum drm_connector_status status;
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
bool live_status = false;
|
|
unsigned int retry = 3;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
|
|
while (!live_status && --retry) {
|
|
live_status = intel_digital_port_connected(dev_priv,
|
|
hdmi_to_dig_port(intel_hdmi));
|
|
mdelay(10);
|
|
}
|
|
|
|
if (!live_status)
|
|
DRM_DEBUG_KMS("Live status not up!");
|
|
|
|
intel_hdmi_unset_edid(connector);
|
|
|
|
if (intel_hdmi_set_edid(connector, live_status)) {
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
|
|
|
|
hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
|
|
status = connector_status_connected;
|
|
} else
|
|
status = connector_status_disconnected;
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
intel_hdmi_force(struct drm_connector *connector)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
|
|
intel_hdmi_unset_edid(connector);
|
|
|
|
if (connector->status != connector_status_connected)
|
|
return;
|
|
|
|
intel_hdmi_set_edid(connector, true);
|
|
hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
|
|
}
|
|
|
|
static int intel_hdmi_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct edid *edid;
|
|
|
|
edid = to_intel_connector(connector)->detect_edid;
|
|
if (edid == NULL)
|
|
return 0;
|
|
|
|
return intel_connector_update_modes(connector, edid);
|
|
}
|
|
|
|
static bool
|
|
intel_hdmi_detect_audio(struct drm_connector *connector)
|
|
{
|
|
bool has_audio = false;
|
|
struct edid *edid;
|
|
|
|
edid = to_intel_connector(connector)->detect_edid;
|
|
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
|
|
has_audio = drm_detect_monitor_audio(edid);
|
|
|
|
return has_audio;
|
|
}
|
|
|
|
static int
|
|
intel_hdmi_set_property(struct drm_connector *connector,
|
|
struct drm_property *property,
|
|
uint64_t val)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
|
|
struct intel_digital_port *intel_dig_port =
|
|
hdmi_to_dig_port(intel_hdmi);
|
|
struct drm_i915_private *dev_priv = connector->dev->dev_private;
|
|
int ret;
|
|
|
|
ret = drm_object_property_set_value(&connector->base, property, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (property == dev_priv->force_audio_property) {
|
|
enum hdmi_force_audio i = val;
|
|
bool has_audio;
|
|
|
|
if (i == intel_hdmi->force_audio)
|
|
return 0;
|
|
|
|
intel_hdmi->force_audio = i;
|
|
|
|
if (i == HDMI_AUDIO_AUTO)
|
|
has_audio = intel_hdmi_detect_audio(connector);
|
|
else
|
|
has_audio = (i == HDMI_AUDIO_ON);
|
|
|
|
if (i == HDMI_AUDIO_OFF_DVI)
|
|
intel_hdmi->has_hdmi_sink = 0;
|
|
|
|
intel_hdmi->has_audio = has_audio;
|
|
goto done;
|
|
}
|
|
|
|
if (property == dev_priv->broadcast_rgb_property) {
|
|
bool old_auto = intel_hdmi->color_range_auto;
|
|
bool old_range = intel_hdmi->limited_color_range;
|
|
|
|
switch (val) {
|
|
case INTEL_BROADCAST_RGB_AUTO:
|
|
intel_hdmi->color_range_auto = true;
|
|
break;
|
|
case INTEL_BROADCAST_RGB_FULL:
|
|
intel_hdmi->color_range_auto = false;
|
|
intel_hdmi->limited_color_range = false;
|
|
break;
|
|
case INTEL_BROADCAST_RGB_LIMITED:
|
|
intel_hdmi->color_range_auto = false;
|
|
intel_hdmi->limited_color_range = true;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (old_auto == intel_hdmi->color_range_auto &&
|
|
old_range == intel_hdmi->limited_color_range)
|
|
return 0;
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (property == connector->dev->mode_config.aspect_ratio_property) {
|
|
switch (val) {
|
|
case DRM_MODE_PICTURE_ASPECT_NONE:
|
|
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
|
|
break;
|
|
case DRM_MODE_PICTURE_ASPECT_4_3:
|
|
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
|
|
break;
|
|
case DRM_MODE_PICTURE_ASPECT_16_9:
|
|
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
return -EINVAL;
|
|
|
|
done:
|
|
if (intel_dig_port->base.base.crtc)
|
|
intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
|
|
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
|
|
|
|
intel_hdmi_prepare(encoder);
|
|
|
|
intel_hdmi->set_infoframes(&encoder->base,
|
|
intel_crtc->config->has_hdmi_sink,
|
|
adjusted_mode);
|
|
}
|
|
|
|
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct intel_hdmi *intel_hdmi = &dport->hdmi;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
|
|
enum dpio_channel port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 val;
|
|
|
|
/* Enable clock channels for this port */
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
|
|
val = 0;
|
|
if (pipe)
|
|
val |= (1<<21);
|
|
else
|
|
val &= ~(1<<21);
|
|
val |= 0x001000c4;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
|
|
|
|
/* HDMI 1.0V-2dB */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
|
|
|
|
/* Program lane clock */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
intel_hdmi->set_infoframes(&encoder->base,
|
|
intel_crtc->config->has_hdmi_sink,
|
|
adjusted_mode);
|
|
|
|
g4x_enable_hdmi(encoder);
|
|
|
|
vlv_wait_port_ready(dev_priv, dport, 0x0);
|
|
}
|
|
|
|
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
intel_hdmi_prepare(encoder);
|
|
|
|
/* Program Tx lane resets to default */
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
|
|
DPIO_PCS_TX_LANE2_RESET |
|
|
DPIO_PCS_TX_LANE1_RESET);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
|
|
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
|
|
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
|
|
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
|
|
DPIO_PCS_CLK_SOFT_RESET);
|
|
|
|
/* Fix up inter-pair skew failure */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
|
|
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
|
|
bool reset)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
enum pipe pipe = crtc->pipe;
|
|
uint32_t val;
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
|
|
if (reset)
|
|
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
|
|
else
|
|
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
|
|
|
|
if (crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
|
|
if (reset)
|
|
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
|
|
else
|
|
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
|
|
}
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
|
|
val |= CHV_PCS_REQ_SOFTRESET_EN;
|
|
if (reset)
|
|
val &= ~DPIO_PCS_CLK_SOFT_RESET;
|
|
else
|
|
val |= DPIO_PCS_CLK_SOFT_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
|
|
|
|
if (crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
|
|
val |= CHV_PCS_REQ_SOFTRESET_EN;
|
|
if (reset)
|
|
val &= ~DPIO_PCS_CLK_SOFT_RESET;
|
|
else
|
|
val |= DPIO_PCS_CLK_SOFT_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
|
|
}
|
|
}
|
|
|
|
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel ch = vlv_dport_to_channel(dport);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
u32 val;
|
|
|
|
intel_hdmi_prepare(encoder);
|
|
|
|
/*
|
|
* Must trick the second common lane into life.
|
|
* Otherwise we can't even access the PLL.
|
|
*/
|
|
if (ch == DPIO_CH0 && pipe == PIPE_B)
|
|
dport->release_cl2_override =
|
|
!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
|
|
|
|
chv_phy_powergate_lanes(encoder, true, 0x0);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Assert data lane reset */
|
|
chv_data_lane_soft_reset(encoder, true);
|
|
|
|
/* program left/right clock distribution */
|
|
if (pipe != PIPE_B) {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
|
|
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
|
|
if (ch == DPIO_CH0)
|
|
val |= CHV_BUFLEFTENA1_FORCE;
|
|
if (ch == DPIO_CH1)
|
|
val |= CHV_BUFRIGHTENA1_FORCE;
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
|
|
} else {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
|
|
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
|
|
if (ch == DPIO_CH0)
|
|
val |= CHV_BUFLEFTENA2_FORCE;
|
|
if (ch == DPIO_CH1)
|
|
val |= CHV_BUFRIGHTENA2_FORCE;
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
|
|
}
|
|
|
|
/* program clock channel usage */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
|
|
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
|
|
if (pipe != PIPE_B)
|
|
val &= ~CHV_PCS_USEDCLKCHANNEL;
|
|
else
|
|
val |= CHV_PCS_USEDCLKCHANNEL;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
|
|
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
|
|
if (pipe != PIPE_B)
|
|
val &= ~CHV_PCS_USEDCLKCHANNEL;
|
|
else
|
|
val |= CHV_PCS_USEDCLKCHANNEL;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
|
|
|
|
/*
|
|
* This a a bit weird since generally CL
|
|
* matches the pipe, but here we need to
|
|
* pick the CL based on the port.
|
|
*/
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
|
|
if (pipe != PIPE_B)
|
|
val &= ~CHV_CMN_USEDCLKCHANNEL;
|
|
else
|
|
val |= CHV_CMN_USEDCLKCHANNEL;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* disable left/right clock distribution */
|
|
if (pipe != PIPE_B) {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
|
|
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
|
|
} else {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
|
|
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
/*
|
|
* Leave the power down bit cleared for at least one
|
|
* lane so that chv_powergate_phy_ch() will power
|
|
* on something when the channel is otherwise unused.
|
|
* When the port is off and the override is removed
|
|
* the lanes power down anyway, so otherwise it doesn't
|
|
* really matter what the state of power down bits is
|
|
* after this.
|
|
*/
|
|
chv_phy_powergate_lanes(encoder, false, 0x0);
|
|
}
|
|
|
|
static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
/* Reset lanes to avoid HDMI flicker (VLV w/a) */
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
static void chv_hdmi_post_disable(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Assert data lane reset */
|
|
chv_data_lane_soft_reset(encoder, true);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct intel_hdmi *intel_hdmi = &dport->hdmi;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
|
|
enum dpio_channel ch = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
int data, i, stagger;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* allow hardware to manage TX FIFO reset source */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
|
|
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
|
|
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
|
|
|
|
/* Program Tx latency optimal setting */
|
|
for (i = 0; i < 4; i++) {
|
|
/* Set the upar bit */
|
|
data = (i == 1) ? 0x0 : 0x1;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
|
|
data << DPIO_UPAR_SHIFT);
|
|
}
|
|
|
|
/* Data lane stagger programming */
|
|
if (intel_crtc->config->port_clock > 270000)
|
|
stagger = 0x18;
|
|
else if (intel_crtc->config->port_clock > 135000)
|
|
stagger = 0xd;
|
|
else if (intel_crtc->config->port_clock > 67500)
|
|
stagger = 0x7;
|
|
else if (intel_crtc->config->port_clock > 33750)
|
|
stagger = 0x4;
|
|
else
|
|
stagger = 0x2;
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
|
|
val |= DPIO_TX2_STAGGER_MASK(0x1f);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
|
|
val |= DPIO_TX2_STAGGER_MASK(0x1f);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
|
|
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
|
|
DPIO_LANESTAGGER_STRAP(stagger) |
|
|
DPIO_LANESTAGGER_STRAP_OVRD |
|
|
DPIO_TX1_STAGGER_MASK(0x1f) |
|
|
DPIO_TX1_STAGGER_MULT(6) |
|
|
DPIO_TX2_STAGGER_MULT(0));
|
|
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
|
|
DPIO_LANESTAGGER_STRAP(stagger) |
|
|
DPIO_LANESTAGGER_STRAP_OVRD |
|
|
DPIO_TX1_STAGGER_MASK(0x1f) |
|
|
DPIO_TX1_STAGGER_MULT(7) |
|
|
DPIO_TX2_STAGGER_MULT(5));
|
|
|
|
/* Deassert data lane reset */
|
|
chv_data_lane_soft_reset(encoder, false);
|
|
|
|
/* Clear calc init */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
|
|
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
|
|
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
|
|
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
|
|
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
|
|
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
|
|
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
|
|
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
|
|
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
|
|
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
|
|
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
|
|
|
|
/* FIXME: Program the support xxx V-dB */
|
|
/* Use 800mV-0dB */
|
|
for (i = 0; i < 4; i++) {
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
|
|
val &= ~DPIO_SWING_DEEMPH9P5_MASK;
|
|
val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
|
|
|
|
val &= ~DPIO_SWING_MARGIN000_MASK;
|
|
val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
|
|
|
|
/*
|
|
* Supposedly this value shouldn't matter when unique transition
|
|
* scale is disabled, but in fact it does matter. Let's just
|
|
* always program the same value and hope it's OK.
|
|
*/
|
|
val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
|
|
val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
|
|
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
|
|
}
|
|
|
|
/*
|
|
* The document said it needs to set bit 27 for ch0 and bit 26
|
|
* for ch1. Might be a typo in the doc.
|
|
* For now, for this unique transition scale selection, set bit
|
|
* 27 for ch0 and ch1.
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
|
|
val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
|
|
}
|
|
|
|
/* Start swing calculation */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
|
|
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
|
|
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
intel_hdmi->set_infoframes(&encoder->base,
|
|
intel_crtc->config->has_hdmi_sink,
|
|
adjusted_mode);
|
|
|
|
g4x_enable_hdmi(encoder);
|
|
|
|
vlv_wait_port_ready(dev_priv, dport, 0x0);
|
|
|
|
/* Second common lane will stay alive on its own now */
|
|
if (dport->release_cl2_override) {
|
|
chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
|
|
dport->release_cl2_override = false;
|
|
}
|
|
}
|
|
|
|
static void intel_hdmi_destroy(struct drm_connector *connector)
|
|
{
|
|
kfree(to_intel_connector(connector)->detect_edid);
|
|
drm_connector_cleanup(connector);
|
|
kfree(connector);
|
|
}
|
|
|
|
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
|
|
.dpms = drm_atomic_helper_connector_dpms,
|
|
.detect = intel_hdmi_detect,
|
|
.force = intel_hdmi_force,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.set_property = intel_hdmi_set_property,
|
|
.atomic_get_property = intel_connector_atomic_get_property,
|
|
.destroy = intel_hdmi_destroy,
|
|
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
|
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
|
|
.get_modes = intel_hdmi_get_modes,
|
|
.mode_valid = intel_hdmi_mode_valid,
|
|
.best_encoder = intel_best_encoder,
|
|
};
|
|
|
|
static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
|
|
.destroy = intel_encoder_destroy,
|
|
};
|
|
|
|
static void
|
|
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
|
|
{
|
|
intel_attach_force_audio_property(connector);
|
|
intel_attach_broadcast_rgb_property(connector);
|
|
intel_hdmi->color_range_auto = true;
|
|
intel_attach_aspect_ratio_property(connector);
|
|
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
|
|
}
|
|
|
|
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = intel_dig_port->port;
|
|
uint8_t alternate_ddc_pin;
|
|
|
|
drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
|
|
DRM_MODE_CONNECTOR_HDMIA);
|
|
drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
|
|
|
|
connector->interlace_allowed = 1;
|
|
connector->doublescan_allowed = 0;
|
|
connector->stereo_allowed = 1;
|
|
|
|
switch (port) {
|
|
case PORT_B:
|
|
if (IS_BROXTON(dev_priv))
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
|
|
else
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
|
|
/*
|
|
* On BXT A0/A1, sw needs to activate DDIA HPD logic and
|
|
* interrupts to check the external panel connection.
|
|
*/
|
|
if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
|
|
intel_encoder->hpd_pin = HPD_PORT_A;
|
|
else
|
|
intel_encoder->hpd_pin = HPD_PORT_B;
|
|
break;
|
|
case PORT_C:
|
|
if (IS_BROXTON(dev_priv))
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
|
|
else
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
|
|
intel_encoder->hpd_pin = HPD_PORT_C;
|
|
break;
|
|
case PORT_D:
|
|
if (WARN_ON(IS_BROXTON(dev_priv)))
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
|
|
else
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
|
|
intel_encoder->hpd_pin = HPD_PORT_D;
|
|
break;
|
|
case PORT_E:
|
|
/* On SKL PORT E doesn't have seperate GMBUS pin
|
|
* We rely on VBT to set a proper alternate GMBUS pin. */
|
|
alternate_ddc_pin =
|
|
dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
|
|
switch (alternate_ddc_pin) {
|
|
case DDC_PIN_B:
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
|
|
break;
|
|
case DDC_PIN_C:
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
|
|
break;
|
|
case DDC_PIN_D:
|
|
intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
|
|
break;
|
|
default:
|
|
MISSING_CASE(alternate_ddc_pin);
|
|
}
|
|
intel_encoder->hpd_pin = HPD_PORT_E;
|
|
break;
|
|
case PORT_A:
|
|
intel_encoder->hpd_pin = HPD_PORT_A;
|
|
/* Internal port only for eDP. */
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
intel_hdmi->write_infoframe = vlv_write_infoframe;
|
|
intel_hdmi->set_infoframes = vlv_set_infoframes;
|
|
intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
|
|
} else if (IS_G4X(dev)) {
|
|
intel_hdmi->write_infoframe = g4x_write_infoframe;
|
|
intel_hdmi->set_infoframes = g4x_set_infoframes;
|
|
intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
|
|
} else if (HAS_DDI(dev)) {
|
|
intel_hdmi->write_infoframe = hsw_write_infoframe;
|
|
intel_hdmi->set_infoframes = hsw_set_infoframes;
|
|
intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
|
|
} else if (HAS_PCH_IBX(dev)) {
|
|
intel_hdmi->write_infoframe = ibx_write_infoframe;
|
|
intel_hdmi->set_infoframes = ibx_set_infoframes;
|
|
intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
|
|
} else {
|
|
intel_hdmi->write_infoframe = cpt_write_infoframe;
|
|
intel_hdmi->set_infoframes = cpt_set_infoframes;
|
|
intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
|
|
}
|
|
|
|
if (HAS_DDI(dev))
|
|
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
|
|
else
|
|
intel_connector->get_hw_state = intel_connector_get_hw_state;
|
|
intel_connector->unregister = intel_connector_unregister;
|
|
|
|
intel_hdmi_add_properties(intel_hdmi, connector);
|
|
|
|
intel_connector_attach_encoder(intel_connector, intel_encoder);
|
|
drm_connector_register(connector);
|
|
intel_hdmi->attached_connector = intel_connector;
|
|
|
|
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
|
|
* 0xd. Failure to do so will result in spurious interrupts being
|
|
* generated on the port when a cable is not attached.
|
|
*/
|
|
if (IS_G4X(dev) && !IS_GM45(dev)) {
|
|
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
|
|
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
|
|
}
|
|
}
|
|
|
|
void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
|
|
{
|
|
struct intel_digital_port *intel_dig_port;
|
|
struct intel_encoder *intel_encoder;
|
|
struct intel_connector *intel_connector;
|
|
|
|
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
|
|
if (!intel_dig_port)
|
|
return;
|
|
|
|
intel_connector = intel_connector_alloc();
|
|
if (!intel_connector) {
|
|
kfree(intel_dig_port);
|
|
return;
|
|
}
|
|
|
|
intel_encoder = &intel_dig_port->base;
|
|
|
|
drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
|
|
DRM_MODE_ENCODER_TMDS);
|
|
|
|
intel_encoder->compute_config = intel_hdmi_compute_config;
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
intel_encoder->disable = pch_disable_hdmi;
|
|
intel_encoder->post_disable = pch_post_disable_hdmi;
|
|
} else {
|
|
intel_encoder->disable = g4x_disable_hdmi;
|
|
}
|
|
intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
|
|
intel_encoder->get_config = intel_hdmi_get_config;
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
|
|
intel_encoder->pre_enable = chv_hdmi_pre_enable;
|
|
intel_encoder->enable = vlv_enable_hdmi;
|
|
intel_encoder->post_disable = chv_hdmi_post_disable;
|
|
intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
|
|
intel_encoder->pre_enable = vlv_hdmi_pre_enable;
|
|
intel_encoder->enable = vlv_enable_hdmi;
|
|
intel_encoder->post_disable = vlv_hdmi_post_disable;
|
|
} else {
|
|
intel_encoder->pre_enable = intel_hdmi_pre_enable;
|
|
if (HAS_PCH_CPT(dev))
|
|
intel_encoder->enable = cpt_enable_hdmi;
|
|
else if (HAS_PCH_IBX(dev))
|
|
intel_encoder->enable = ibx_enable_hdmi;
|
|
else
|
|
intel_encoder->enable = g4x_enable_hdmi;
|
|
}
|
|
|
|
intel_encoder->type = INTEL_OUTPUT_HDMI;
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
if (port == PORT_D)
|
|
intel_encoder->crtc_mask = 1 << 2;
|
|
else
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
|
|
} else {
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
|
|
}
|
|
intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
|
|
/*
|
|
* BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
|
|
* to work on real hardware. And since g4x can send infoframes to
|
|
* only one port anyway, nothing is lost by allowing it.
|
|
*/
|
|
if (IS_G4X(dev))
|
|
intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
|
|
|
|
intel_dig_port->port = port;
|
|
intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
|
|
intel_dig_port->dp.output_reg = 0;
|
|
|
|
intel_hdmi_init_connector(intel_dig_port, intel_connector);
|
|
}
|