linux/arch/x86/boot/compressed/eboot.c

1279 lines
29 KiB
C

/* -----------------------------------------------------------------------
*
* Copyright 2011 Intel Corporation; author Matt Fleming
*
* This file is part of the Linux kernel, and is made available under
* the terms of the GNU General Public License version 2.
*
* ----------------------------------------------------------------------- */
#include <linux/efi.h>
#include <linux/pci.h>
#include <asm/efi.h>
#include <asm/setup.h>
#include <asm/desc.h>
#undef memcpy /* Use memcpy from misc.c */
#include "eboot.h"
static efi_system_table_t *sys_table;
static void efi_char16_printk(efi_char16_t *str)
{
struct efi_simple_text_output_protocol *out;
out = (struct efi_simple_text_output_protocol *)sys_table->con_out;
efi_call_phys2(out->output_string, out, str);
}
static void efi_printk(char *str)
{
char *s8;
for (s8 = str; *s8; s8++) {
efi_char16_t ch[2] = { 0 };
ch[0] = *s8;
if (*s8 == '\n') {
efi_char16_t nl[2] = { '\r', 0 };
efi_char16_printk(nl);
}
efi_char16_printk(ch);
}
}
static efi_status_t __get_map(efi_memory_desc_t **map, unsigned long *map_size,
unsigned long *desc_size)
{
efi_memory_desc_t *m = NULL;
efi_status_t status;
unsigned long key;
u32 desc_version;
*map_size = sizeof(*m) * 32;
again:
/*
* Add an additional efi_memory_desc_t because we're doing an
* allocation which may be in a new descriptor region.
*/
*map_size += sizeof(*m);
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, *map_size, (void **)&m);
if (status != EFI_SUCCESS)
goto fail;
status = efi_call_phys5(sys_table->boottime->get_memory_map, map_size,
m, &key, desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL) {
efi_call_phys1(sys_table->boottime->free_pool, m);
goto again;
}
if (status != EFI_SUCCESS)
efi_call_phys1(sys_table->boottime->free_pool, m);
fail:
*map = m;
return status;
}
/*
* Allocate at the highest possible address that is not above 'max'.
*/
static efi_status_t high_alloc(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long max)
{
unsigned long map_size, desc_size;
efi_memory_desc_t *map;
efi_status_t status;
unsigned long nr_pages;
u64 max_addr = 0;
int i;
status = __get_map(&map, &map_size, &desc_size);
if (status != EFI_SUCCESS)
goto fail;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
again:
for (i = 0; i < map_size / desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
u64 start, end;
desc = (efi_memory_desc_t *)(m + (i * desc_size));
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (desc->num_pages < nr_pages)
continue;
start = desc->phys_addr;
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
if ((start + size) > end || (start + size) > max)
continue;
if (end - size > max)
end = max;
if (round_down(end - size, align) < start)
continue;
start = round_down(end - size, align);
/*
* Don't allocate at 0x0. It will confuse code that
* checks pointers against NULL.
*/
if (start == 0x0)
continue;
if (start > max_addr)
max_addr = start;
}
if (!max_addr)
status = EFI_NOT_FOUND;
else {
status = efi_call_phys4(sys_table->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &max_addr);
if (status != EFI_SUCCESS) {
max = max_addr;
max_addr = 0;
goto again;
}
*addr = max_addr;
}
free_pool:
efi_call_phys1(sys_table->boottime->free_pool, map);
fail:
return status;
}
/*
* Allocate at the lowest possible address.
*/
static efi_status_t low_alloc(unsigned long size, unsigned long align,
unsigned long *addr)
{
unsigned long map_size, desc_size;
efi_memory_desc_t *map;
efi_status_t status;
unsigned long nr_pages;
int i;
status = __get_map(&map, &map_size, &desc_size);
if (status != EFI_SUCCESS)
goto fail;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
for (i = 0; i < map_size / desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
u64 start, end;
desc = (efi_memory_desc_t *)(m + (i * desc_size));
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (desc->num_pages < nr_pages)
continue;
start = desc->phys_addr;
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
/*
* Don't allocate at 0x0. It will confuse code that
* checks pointers against NULL. Skip the first 8
* bytes so we start at a nice even number.
*/
if (start == 0x0)
start += 8;
start = round_up(start, align);
if ((start + size) > end)
continue;
status = efi_call_phys4(sys_table->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &start);
if (status == EFI_SUCCESS) {
*addr = start;
break;
}
}
if (i == map_size / desc_size)
status = EFI_NOT_FOUND;
free_pool:
efi_call_phys1(sys_table->boottime->free_pool, map);
fail:
return status;
}
static void low_free(unsigned long size, unsigned long addr)
{
unsigned long nr_pages;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
efi_call_phys2(sys_table->boottime->free_pages, addr, nr_pages);
}
static void find_bits(unsigned long mask, u8 *pos, u8 *size)
{
u8 first, len;
first = 0;
len = 0;
if (mask) {
while (!(mask & 0x1)) {
mask = mask >> 1;
first++;
}
while (mask & 0x1) {
mask = mask >> 1;
len++;
}
}
*pos = first;
*size = len;
}
static efi_status_t setup_efi_pci(struct boot_params *params)
{
efi_pci_io_protocol *pci;
efi_status_t status;
void **pci_handle;
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
unsigned long nr_pci, size = 0;
int i;
struct setup_data *data;
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
while (data && data->next)
data = (struct setup_data *)(unsigned long)data->next;
status = efi_call_phys5(sys_table->boottime->locate_handle,
EFI_LOCATE_BY_PROTOCOL, &pci_proto,
NULL, &size, pci_handle);
if (status == EFI_BUFFER_TOO_SMALL) {
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, size, &pci_handle);
if (status != EFI_SUCCESS)
return status;
status = efi_call_phys5(sys_table->boottime->locate_handle,
EFI_LOCATE_BY_PROTOCOL, &pci_proto,
NULL, &size, pci_handle);
}
if (status != EFI_SUCCESS)
goto free_handle;
nr_pci = size / sizeof(void *);
for (i = 0; i < nr_pci; i++) {
void *h = pci_handle[i];
uint64_t attributes;
struct pci_setup_rom *rom;
status = efi_call_phys3(sys_table->boottime->handle_protocol,
h, &pci_proto, &pci);
if (status != EFI_SUCCESS)
continue;
if (!pci)
continue;
#ifdef CONFIG_X86_64
status = efi_call_phys4(pci->attributes, pci,
EfiPciIoAttributeOperationGet, 0,
&attributes);
#else
status = efi_call_phys5(pci->attributes, pci,
EfiPciIoAttributeOperationGet, 0, 0,
&attributes);
#endif
if (status != EFI_SUCCESS)
continue;
if (!pci->romimage || !pci->romsize)
continue;
size = pci->romsize + sizeof(*rom);
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, size, &rom);
if (status != EFI_SUCCESS)
continue;
rom->data.type = SETUP_PCI;
rom->data.len = size - sizeof(struct setup_data);
rom->data.next = 0;
rom->pcilen = pci->romsize;
status = efi_call_phys5(pci->pci.read, pci,
EfiPciIoWidthUint16, PCI_VENDOR_ID,
1, &(rom->vendor));
if (status != EFI_SUCCESS)
goto free_struct;
status = efi_call_phys5(pci->pci.read, pci,
EfiPciIoWidthUint16, PCI_DEVICE_ID,
1, &(rom->devid));
if (status != EFI_SUCCESS)
goto free_struct;
status = efi_call_phys5(pci->get_location, pci,
&(rom->segment), &(rom->bus),
&(rom->device), &(rom->function));
if (status != EFI_SUCCESS)
goto free_struct;
memcpy(rom->romdata, pci->romimage, pci->romsize);
if (data)
data->next = (unsigned long)rom;
else
params->hdr.setup_data = (unsigned long)rom;
data = (struct setup_data *)rom;
continue;
free_struct:
efi_call_phys1(sys_table->boottime->free_pool, rom);
}
free_handle:
efi_call_phys1(sys_table->boottime->free_pool, pci_handle);
return status;
}
/*
* See if we have Graphics Output Protocol
*/
static efi_status_t setup_gop(struct screen_info *si, efi_guid_t *proto,
unsigned long size)
{
struct efi_graphics_output_protocol *gop, *first_gop;
struct efi_pixel_bitmask pixel_info;
unsigned long nr_gops;
efi_status_t status;
void **gop_handle;
u16 width, height;
u32 fb_base, fb_size;
u32 pixels_per_scan_line;
int pixel_format;
int i;
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, size, &gop_handle);
if (status != EFI_SUCCESS)
return status;
status = efi_call_phys5(sys_table->boottime->locate_handle,
EFI_LOCATE_BY_PROTOCOL, proto,
NULL, &size, gop_handle);
if (status != EFI_SUCCESS)
goto free_handle;
first_gop = NULL;
nr_gops = size / sizeof(void *);
for (i = 0; i < nr_gops; i++) {
struct efi_graphics_output_mode_info *info;
efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID;
bool conout_found = false;
void *dummy;
void *h = gop_handle[i];
status = efi_call_phys3(sys_table->boottime->handle_protocol,
h, proto, &gop);
if (status != EFI_SUCCESS)
continue;
status = efi_call_phys3(sys_table->boottime->handle_protocol,
h, &conout_proto, &dummy);
if (status == EFI_SUCCESS)
conout_found = true;
status = efi_call_phys4(gop->query_mode, gop,
gop->mode->mode, &size, &info);
if (status == EFI_SUCCESS && (!first_gop || conout_found)) {
/*
* Systems that use the UEFI Console Splitter may
* provide multiple GOP devices, not all of which are
* backed by real hardware. The workaround is to search
* for a GOP implementing the ConOut protocol, and if
* one isn't found, to just fall back to the first GOP.
*/
width = info->horizontal_resolution;
height = info->vertical_resolution;
fb_base = gop->mode->frame_buffer_base;
fb_size = gop->mode->frame_buffer_size;
pixel_format = info->pixel_format;
pixel_info = info->pixel_information;
pixels_per_scan_line = info->pixels_per_scan_line;
/*
* Once we've found a GOP supporting ConOut,
* don't bother looking any further.
*/
first_gop = gop;
if (conout_found)
break;
}
}
/* Did we find any GOPs? */
if (!first_gop)
goto free_handle;
/* EFI framebuffer */
si->orig_video_isVGA = VIDEO_TYPE_EFI;
si->lfb_width = width;
si->lfb_height = height;
si->lfb_base = fb_base;
si->pages = 1;
if (pixel_format == PIXEL_RGB_RESERVED_8BIT_PER_COLOR) {
si->lfb_depth = 32;
si->lfb_linelength = pixels_per_scan_line * 4;
si->red_size = 8;
si->red_pos = 0;
si->green_size = 8;
si->green_pos = 8;
si->blue_size = 8;
si->blue_pos = 16;
si->rsvd_size = 8;
si->rsvd_pos = 24;
} else if (pixel_format == PIXEL_BGR_RESERVED_8BIT_PER_COLOR) {
si->lfb_depth = 32;
si->lfb_linelength = pixels_per_scan_line * 4;
si->red_size = 8;
si->red_pos = 16;
si->green_size = 8;
si->green_pos = 8;
si->blue_size = 8;
si->blue_pos = 0;
si->rsvd_size = 8;
si->rsvd_pos = 24;
} else if (pixel_format == PIXEL_BIT_MASK) {
find_bits(pixel_info.red_mask, &si->red_pos, &si->red_size);
find_bits(pixel_info.green_mask, &si->green_pos,
&si->green_size);
find_bits(pixel_info.blue_mask, &si->blue_pos, &si->blue_size);
find_bits(pixel_info.reserved_mask, &si->rsvd_pos,
&si->rsvd_size);
si->lfb_depth = si->red_size + si->green_size +
si->blue_size + si->rsvd_size;
si->lfb_linelength = (pixels_per_scan_line * si->lfb_depth) / 8;
} else {
si->lfb_depth = 4;
si->lfb_linelength = si->lfb_width / 2;
si->red_size = 0;
si->red_pos = 0;
si->green_size = 0;
si->green_pos = 0;
si->blue_size = 0;
si->blue_pos = 0;
si->rsvd_size = 0;
si->rsvd_pos = 0;
}
si->lfb_size = si->lfb_linelength * si->lfb_height;
si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS;
free_handle:
efi_call_phys1(sys_table->boottime->free_pool, gop_handle);
return status;
}
/*
* See if we have Universal Graphics Adapter (UGA) protocol
*/
static efi_status_t setup_uga(struct screen_info *si, efi_guid_t *uga_proto,
unsigned long size)
{
struct efi_uga_draw_protocol *uga, *first_uga;
unsigned long nr_ugas;
efi_status_t status;
u32 width, height;
void **uga_handle = NULL;
int i;
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, size, &uga_handle);
if (status != EFI_SUCCESS)
return status;
status = efi_call_phys5(sys_table->boottime->locate_handle,
EFI_LOCATE_BY_PROTOCOL, uga_proto,
NULL, &size, uga_handle);
if (status != EFI_SUCCESS)
goto free_handle;
first_uga = NULL;
nr_ugas = size / sizeof(void *);
for (i = 0; i < nr_ugas; i++) {
efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
void *handle = uga_handle[i];
u32 w, h, depth, refresh;
void *pciio;
status = efi_call_phys3(sys_table->boottime->handle_protocol,
handle, uga_proto, &uga);
if (status != EFI_SUCCESS)
continue;
efi_call_phys3(sys_table->boottime->handle_protocol,
handle, &pciio_proto, &pciio);
status = efi_call_phys5(uga->get_mode, uga, &w, &h,
&depth, &refresh);
if (status == EFI_SUCCESS && (!first_uga || pciio)) {
width = w;
height = h;
/*
* Once we've found a UGA supporting PCIIO,
* don't bother looking any further.
*/
if (pciio)
break;
first_uga = uga;
}
}
if (!first_uga)
goto free_handle;
/* EFI framebuffer */
si->orig_video_isVGA = VIDEO_TYPE_EFI;
si->lfb_depth = 32;
si->lfb_width = width;
si->lfb_height = height;
si->red_size = 8;
si->red_pos = 16;
si->green_size = 8;
si->green_pos = 8;
si->blue_size = 8;
si->blue_pos = 0;
si->rsvd_size = 8;
si->rsvd_pos = 24;
free_handle:
efi_call_phys1(sys_table->boottime->free_pool, uga_handle);
return status;
}
void setup_graphics(struct boot_params *boot_params)
{
efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
struct screen_info *si;
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
efi_status_t status;
unsigned long size;
void **gop_handle = NULL;
void **uga_handle = NULL;
si = &boot_params->screen_info;
memset(si, 0, sizeof(*si));
size = 0;
status = efi_call_phys5(sys_table->boottime->locate_handle,
EFI_LOCATE_BY_PROTOCOL, &graphics_proto,
NULL, &size, gop_handle);
if (status == EFI_BUFFER_TOO_SMALL)
status = setup_gop(si, &graphics_proto, size);
if (status != EFI_SUCCESS) {
size = 0;
status = efi_call_phys5(sys_table->boottime->locate_handle,
EFI_LOCATE_BY_PROTOCOL, &uga_proto,
NULL, &size, uga_handle);
if (status == EFI_BUFFER_TOO_SMALL)
setup_uga(si, &uga_proto, size);
}
}
struct initrd {
efi_file_handle_t *handle;
u64 size;
};
/*
* Check the cmdline for a LILO-style initrd= arguments.
*
* We only support loading an initrd from the same filesystem as the
* kernel image.
*/
static efi_status_t handle_ramdisks(efi_loaded_image_t *image,
struct setup_header *hdr)
{
struct initrd *initrds;
unsigned long initrd_addr;
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
u64 initrd_total;
efi_file_io_interface_t *io;
efi_file_handle_t *fh;
efi_status_t status;
int nr_initrds;
char *str;
int i, j, k;
initrd_addr = 0;
initrd_total = 0;
str = (char *)(unsigned long)hdr->cmd_line_ptr;
j = 0; /* See close_handles */
if (!str || !*str)
return EFI_SUCCESS;
for (nr_initrds = 0; *str; nr_initrds++) {
str = strstr(str, "initrd=");
if (!str)
break;
str += 7;
/* Skip any leading slashes */
while (*str == '/' || *str == '\\')
str++;
while (*str && *str != ' ' && *str != '\n')
str++;
}
if (!nr_initrds)
return EFI_SUCCESS;
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA,
nr_initrds * sizeof(*initrds),
&initrds);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for initrds\n");
goto fail;
}
str = (char *)(unsigned long)hdr->cmd_line_ptr;
for (i = 0; i < nr_initrds; i++) {
struct initrd *initrd;
efi_file_handle_t *h;
efi_file_info_t *info;
efi_char16_t filename_16[256];
unsigned long info_sz;
efi_guid_t info_guid = EFI_FILE_INFO_ID;
efi_char16_t *p;
u64 file_sz;
str = strstr(str, "initrd=");
if (!str)
break;
str += 7;
initrd = &initrds[i];
p = filename_16;
/* Skip any leading slashes */
while (*str == '/' || *str == '\\')
str++;
while (*str && *str != ' ' && *str != '\n') {
if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
break;
if (*str == '/') {
*p++ = '\\';
*str++;
} else {
*p++ = *str++;
}
}
*p = '\0';
/* Only open the volume once. */
if (!i) {
efi_boot_services_t *boottime;
boottime = sys_table->boottime;
status = efi_call_phys3(boottime->handle_protocol,
image->device_handle, &fs_proto, &io);
if (status != EFI_SUCCESS) {
efi_printk("Failed to handle fs_proto\n");
goto free_initrds;
}
status = efi_call_phys2(io->open_volume, io, &fh);
if (status != EFI_SUCCESS) {
efi_printk("Failed to open volume\n");
goto free_initrds;
}
}
status = efi_call_phys5(fh->open, fh, &h, filename_16,
EFI_FILE_MODE_READ, (u64)0);
if (status != EFI_SUCCESS) {
efi_printk("Failed to open initrd file: ");
efi_char16_printk(filename_16);
efi_printk("\n");
goto close_handles;
}
initrd->handle = h;
info_sz = 0;
status = efi_call_phys4(h->get_info, h, &info_guid,
&info_sz, NULL);
if (status != EFI_BUFFER_TOO_SMALL) {
efi_printk("Failed to get initrd info size\n");
goto close_handles;
}
grow:
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, info_sz, &info);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for initrd info\n");
goto close_handles;
}
status = efi_call_phys4(h->get_info, h, &info_guid,
&info_sz, info);
if (status == EFI_BUFFER_TOO_SMALL) {
efi_call_phys1(sys_table->boottime->free_pool, info);
goto grow;
}
file_sz = info->file_size;
efi_call_phys1(sys_table->boottime->free_pool, info);
if (status != EFI_SUCCESS) {
efi_printk("Failed to get initrd info\n");
goto close_handles;
}
initrd->size = file_sz;
initrd_total += file_sz;
}
if (initrd_total) {
unsigned long addr;
/*
* Multiple initrd's need to be at consecutive
* addresses in memory, so allocate enough memory for
* all the initrd's.
*/
status = high_alloc(initrd_total, 0x1000,
&initrd_addr, hdr->initrd_addr_max);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc highmem for initrds\n");
goto close_handles;
}
/* We've run out of free low memory. */
if (initrd_addr > hdr->initrd_addr_max) {
efi_printk("We've run out of free low memory\n");
status = EFI_INVALID_PARAMETER;
goto free_initrd_total;
}
addr = initrd_addr;
for (j = 0; j < nr_initrds; j++) {
u64 size;
size = initrds[j].size;
while (size) {
u64 chunksize;
if (size > EFI_READ_CHUNK_SIZE)
chunksize = EFI_READ_CHUNK_SIZE;
else
chunksize = size;
status = efi_call_phys3(fh->read,
initrds[j].handle,
&chunksize, addr);
if (status != EFI_SUCCESS) {
efi_printk("Failed to read initrd\n");
goto free_initrd_total;
}
addr += chunksize;
size -= chunksize;
}
efi_call_phys1(fh->close, initrds[j].handle);
}
}
efi_call_phys1(sys_table->boottime->free_pool, initrds);
hdr->ramdisk_image = initrd_addr;
hdr->ramdisk_size = initrd_total;
return status;
free_initrd_total:
low_free(initrd_total, initrd_addr);
close_handles:
for (k = j; k < i; k++)
efi_call_phys1(fh->close, initrds[k].handle);
free_initrds:
efi_call_phys1(sys_table->boottime->free_pool, initrds);
fail:
hdr->ramdisk_image = 0;
hdr->ramdisk_size = 0;
return status;
}
/*
* Because the x86 boot code expects to be passed a boot_params we
* need to create one ourselves (usually the bootloader would create
* one for us).
*/
struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table)
{
struct boot_params *boot_params;
struct sys_desc_table *sdt;
struct apm_bios_info *bi;
struct setup_header *hdr;
struct efi_info *efi;
efi_loaded_image_t *image;
void *options;
u32 load_options_size;
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
int options_size = 0;
efi_status_t status;
unsigned long cmdline;
u16 *s2;
u8 *s1;
int i;
sys_table = _table;
/* Check if we were booted by the EFI firmware */
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
return NULL;
status = efi_call_phys3(sys_table->boottime->handle_protocol,
handle, &proto, (void *)&image);
if (status != EFI_SUCCESS) {
efi_printk("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
return NULL;
}
status = low_alloc(0x4000, 1, (unsigned long *)&boot_params);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc lowmem for boot params\n");
return NULL;
}
memset(boot_params, 0x0, 0x4000);
hdr = &boot_params->hdr;
efi = &boot_params->efi_info;
bi = &boot_params->apm_bios_info;
sdt = &boot_params->sys_desc_table;
/* Copy the second sector to boot_params */
memcpy(&hdr->jump, image->image_base + 512, 512);
/*
* Fill out some of the header fields ourselves because the
* EFI firmware loader doesn't load the first sector.
*/
hdr->root_flags = 1;
hdr->vid_mode = 0xffff;
hdr->boot_flag = 0xAA55;
hdr->code32_start = (__u64)(unsigned long)image->image_base;
hdr->type_of_loader = 0x21;
/* Convert unicode cmdline to ascii */
options = image->load_options;
load_options_size = image->load_options_size / 2; /* ASCII */
cmdline = 0;
s2 = (u16 *)options;
if (s2) {
while (*s2 && *s2 != '\n' && options_size < load_options_size) {
s2++;
options_size++;
}
if (options_size) {
if (options_size > hdr->cmdline_size)
options_size = hdr->cmdline_size;
options_size++; /* NUL termination */
status = low_alloc(options_size, 1, &cmdline);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for cmdline\n");
goto fail;
}
s1 = (u8 *)(unsigned long)cmdline;
s2 = (u16 *)options;
for (i = 0; i < options_size - 1; i++)
*s1++ = *s2++;
*s1 = '\0';
}
}
hdr->cmd_line_ptr = cmdline;
hdr->ramdisk_image = 0;
hdr->ramdisk_size = 0;
/* Clear APM BIOS info */
memset(bi, 0, sizeof(*bi));
memset(sdt, 0, sizeof(*sdt));
status = handle_ramdisks(image, hdr);
if (status != EFI_SUCCESS)
goto fail2;
return boot_params;
fail2:
if (options_size)
low_free(options_size, hdr->cmd_line_ptr);
fail:
low_free(0x4000, (unsigned long)boot_params);
return NULL;
}
static efi_status_t exit_boot(struct boot_params *boot_params,
void *handle)
{
struct efi_info *efi = &boot_params->efi_info;
struct e820entry *e820_map = &boot_params->e820_map[0];
struct e820entry *prev = NULL;
unsigned long size, key, desc_size, _size;
efi_memory_desc_t *mem_map;
efi_status_t status;
__u32 desc_version;
bool called_exit = false;
u8 nr_entries;
int i;
size = sizeof(*mem_map) * 32;
again:
size += sizeof(*mem_map) * 2;
_size = size;
status = low_alloc(size, 1, (unsigned long *)&mem_map);
if (status != EFI_SUCCESS)
return status;
get_map:
status = efi_call_phys5(sys_table->boottime->get_memory_map, &size,
mem_map, &key, &desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL) {
low_free(_size, (unsigned long)mem_map);
goto again;
}
if (status != EFI_SUCCESS)
goto free_mem_map;
memcpy(&efi->efi_loader_signature, EFI_LOADER_SIGNATURE, sizeof(__u32));
efi->efi_systab = (unsigned long)sys_table;
efi->efi_memdesc_size = desc_size;
efi->efi_memdesc_version = desc_version;
efi->efi_memmap = (unsigned long)mem_map;
efi->efi_memmap_size = size;
#ifdef CONFIG_X86_64
efi->efi_systab_hi = (unsigned long)sys_table >> 32;
efi->efi_memmap_hi = (unsigned long)mem_map >> 32;
#endif
/* Might as well exit boot services now */
status = efi_call_phys2(sys_table->boottime->exit_boot_services,
handle, key);
if (status != EFI_SUCCESS) {
/*
* ExitBootServices() will fail if any of the event
* handlers change the memory map. In which case, we
* must be prepared to retry, but only once so that
* we're guaranteed to exit on repeated failures instead
* of spinning forever.
*/
if (called_exit)
goto free_mem_map;
called_exit = true;
goto get_map;
}
/* Historic? */
boot_params->alt_mem_k = 32 * 1024;
/*
* Convert the EFI memory map to E820.
*/
nr_entries = 0;
for (i = 0; i < size / desc_size; i++) {
efi_memory_desc_t *d;
unsigned int e820_type = 0;
unsigned long m = (unsigned long)mem_map;
d = (efi_memory_desc_t *)(m + (i * desc_size));
switch (d->type) {
case EFI_RESERVED_TYPE:
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
case EFI_MEMORY_MAPPED_IO:
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
case EFI_PAL_CODE:
e820_type = E820_RESERVED;
break;
case EFI_UNUSABLE_MEMORY:
e820_type = E820_UNUSABLE;
break;
case EFI_ACPI_RECLAIM_MEMORY:
e820_type = E820_ACPI;
break;
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
e820_type = E820_RAM;
break;
case EFI_ACPI_MEMORY_NVS:
e820_type = E820_NVS;
break;
default:
continue;
}
/* Merge adjacent mappings */
if (prev && prev->type == e820_type &&
(prev->addr + prev->size) == d->phys_addr)
prev->size += d->num_pages << 12;
else {
e820_map->addr = d->phys_addr;
e820_map->size = d->num_pages << 12;
e820_map->type = e820_type;
prev = e820_map++;
nr_entries++;
}
}
boot_params->e820_entries = nr_entries;
return EFI_SUCCESS;
free_mem_map:
low_free(_size, (unsigned long)mem_map);
return status;
}
static efi_status_t relocate_kernel(struct setup_header *hdr)
{
unsigned long start, nr_pages;
efi_status_t status;
/*
* The EFI firmware loader could have placed the kernel image
* anywhere in memory, but the kernel has various restrictions
* on the max physical address it can run at. Attempt to move
* the kernel to boot_params.pref_address, or as low as
* possible.
*/
start = hdr->pref_address;
nr_pages = round_up(hdr->init_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = efi_call_phys4(sys_table->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &start);
if (status != EFI_SUCCESS) {
status = low_alloc(hdr->init_size, hdr->kernel_alignment,
&start);
if (status != EFI_SUCCESS)
efi_printk("Failed to alloc mem for kernel\n");
}
if (status == EFI_SUCCESS)
memcpy((void *)start, (void *)(unsigned long)hdr->code32_start,
hdr->init_size);
hdr->pref_address = hdr->code32_start;
hdr->code32_start = (__u32)start;
return status;
}
/*
* On success we return a pointer to a boot_params structure, and NULL
* on failure.
*/
struct boot_params *efi_main(void *handle, efi_system_table_t *_table,
struct boot_params *boot_params)
{
struct desc_ptr *gdt, *idt;
efi_loaded_image_t *image;
struct setup_header *hdr = &boot_params->hdr;
efi_status_t status;
struct desc_struct *desc;
sys_table = _table;
/* Check if we were booted by the EFI firmware */
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
goto fail;
setup_graphics(boot_params);
setup_efi_pci(boot_params);
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, sizeof(*gdt),
(void **)&gdt);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for gdt structure\n");
goto fail;
}
gdt->size = 0x800;
status = low_alloc(gdt->size, 8, (unsigned long *)&gdt->address);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for gdt\n");
goto fail;
}
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, sizeof(*idt),
(void **)&idt);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for idt structure\n");
goto fail;
}
idt->size = 0;
idt->address = 0;
/*
* If the kernel isn't already loaded at the preferred load
* address, relocate it.
*/
if (hdr->pref_address != hdr->code32_start) {
status = relocate_kernel(hdr);
if (status != EFI_SUCCESS)
goto fail;
}
status = exit_boot(boot_params, handle);
if (status != EFI_SUCCESS)
goto fail;
memset((char *)gdt->address, 0x0, gdt->size);
desc = (struct desc_struct *)gdt->address;
/* The first GDT is a dummy and the second is unused. */
desc += 2;
desc->limit0 = 0xffff;
desc->base0 = 0x0000;
desc->base1 = 0x0000;
desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ;
desc->s = DESC_TYPE_CODE_DATA;
desc->dpl = 0;
desc->p = 1;
desc->limit = 0xf;
desc->avl = 0;
desc->l = 0;
desc->d = SEG_OP_SIZE_32BIT;
desc->g = SEG_GRANULARITY_4KB;
desc->base2 = 0x00;
desc++;
desc->limit0 = 0xffff;
desc->base0 = 0x0000;
desc->base1 = 0x0000;
desc->type = SEG_TYPE_DATA | SEG_TYPE_READ_WRITE;
desc->s = DESC_TYPE_CODE_DATA;
desc->dpl = 0;
desc->p = 1;
desc->limit = 0xf;
desc->avl = 0;
desc->l = 0;
desc->d = SEG_OP_SIZE_32BIT;
desc->g = SEG_GRANULARITY_4KB;
desc->base2 = 0x00;
#ifdef CONFIG_X86_64
/* Task segment value */
desc++;
desc->limit0 = 0x0000;
desc->base0 = 0x0000;
desc->base1 = 0x0000;
desc->type = SEG_TYPE_TSS;
desc->s = 0;
desc->dpl = 0;
desc->p = 1;
desc->limit = 0x0;
desc->avl = 0;
desc->l = 0;
desc->d = 0;
desc->g = SEG_GRANULARITY_4KB;
desc->base2 = 0x00;
#endif /* CONFIG_X86_64 */
asm volatile ("lidt %0" : : "m" (*idt));
asm volatile ("lgdt %0" : : "m" (*gdt));
asm volatile("cli");
return boot_params;
fail:
return NULL;
}