linux/arch/x86/platform/intel-quark/imr.c

619 lines
16 KiB
C

/**
* imr.c -- Intel Isolated Memory Region driver
*
* Copyright(c) 2013 Intel Corporation.
* Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
*
* IMR registers define an isolated region of memory that can
* be masked to prohibit certain system agents from accessing memory.
* When a device behind a masked port performs an access - snooped or
* not, an IMR may optionally prevent that transaction from changing
* the state of memory or from getting correct data in response to the
* operation.
*
* Write data will be dropped and reads will return 0xFFFFFFFF, the
* system will reset and system BIOS will print out an error message to
* inform the user that an IMR has been violated.
*
* This code is based on the Linux MTRR code and reference code from
* Intel's Quark BSP EFI, Linux and grub code.
*
* See quark-x1000-datasheet.pdf for register definitions.
* http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm-generic/sections.h>
#include <asm/cpu_device_id.h>
#include <asm/imr.h>
#include <asm/iosf_mbi.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>
struct imr_device {
struct dentry *file;
bool init;
struct mutex lock;
int max_imr;
int reg_base;
};
static struct imr_device imr_dev;
/*
* IMR read/write mask control registers.
* See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
* bit definitions.
*
* addr_hi
* 31 Lock bit
* 30:24 Reserved
* 23:2 1 KiB aligned lo address
* 1:0 Reserved
*
* addr_hi
* 31:24 Reserved
* 23:2 1 KiB aligned hi address
* 1:0 Reserved
*/
#define IMR_LOCK BIT(31)
struct imr_regs {
u32 addr_lo;
u32 addr_hi;
u32 rmask;
u32 wmask;
};
#define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32))
#define IMR_SHIFT 8
#define imr_to_phys(x) ((x) << IMR_SHIFT)
#define phys_to_imr(x) ((x) >> IMR_SHIFT)
/**
* imr_is_enabled - true if an IMR is enabled false otherwise.
*
* Determines if an IMR is enabled based on address range and read/write
* mask. An IMR set with an address range set to zero and a read/write
* access mask set to all is considered to be disabled. An IMR in any
* other state - for example set to zero but without read/write access
* all is considered to be enabled. This definition of disabled is how
* firmware switches off an IMR and is maintained in kernel for
* consistency.
*
* @imr: pointer to IMR descriptor.
* @return: true if IMR enabled false if disabled.
*/
static inline int imr_is_enabled(struct imr_regs *imr)
{
return !(imr->rmask == IMR_READ_ACCESS_ALL &&
imr->wmask == IMR_WRITE_ACCESS_ALL &&
imr_to_phys(imr->addr_lo) == 0 &&
imr_to_phys(imr->addr_hi) == 0);
}
/**
* imr_read - read an IMR at a given index.
*
* Requires caller to hold imr mutex.
*
* @idev: pointer to imr_device structure.
* @imr_id: IMR entry to read.
* @imr: IMR structure representing address and access masks.
* @return: 0 on success or error code passed from mbi_iosf on failure.
*/
static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
{
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
int ret;
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
if (ret)
return ret;
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
if (ret)
return ret;
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
if (ret)
return ret;
return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
}
/**
* imr_write - write an IMR at a given index.
*
* Requires caller to hold imr mutex.
* Note lock bits need to be written independently of address bits.
*
* @idev: pointer to imr_device structure.
* @imr_id: IMR entry to write.
* @imr: IMR structure representing address and access masks.
* @return: 0 on success or error code passed from mbi_iosf on failure.
*/
static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
{
unsigned long flags;
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
int ret;
local_irq_save(flags);
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
if (ret)
goto failed;
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
if (ret)
goto failed;
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
if (ret)
goto failed;
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
if (ret)
goto failed;
local_irq_restore(flags);
return 0;
failed:
/*
* If writing to the IOSF failed then we're in an unknown state,
* likely a very bad state. An IMR in an invalid state will almost
* certainly lead to a memory access violation.
*/
local_irq_restore(flags);
WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
return ret;
}
/**
* imr_dbgfs_state_show - print state of IMR registers.
*
* @s: pointer to seq_file for output.
* @unused: unused parameter.
* @return: 0 on success or error code passed from mbi_iosf on failure.
*/
static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
{
phys_addr_t base;
phys_addr_t end;
int i;
struct imr_device *idev = s->private;
struct imr_regs imr;
size_t size;
int ret = -ENODEV;
mutex_lock(&idev->lock);
for (i = 0; i < idev->max_imr; i++) {
ret = imr_read(idev, i, &imr);
if (ret)
break;
/*
* Remember to add IMR_ALIGN bytes to size to indicate the
* inherent IMR_ALIGN size bytes contained in the masked away
* lower ten bits.
*/
if (imr_is_enabled(&imr)) {
base = imr_to_phys(imr.addr_lo);
end = imr_to_phys(imr.addr_hi) + IMR_MASK;
size = end - base + 1;
} else {
base = 0;
end = 0;
size = 0;
}
seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
"rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
&base, &end, size, imr.rmask, imr.wmask,
imr_is_enabled(&imr) ? "enabled " : "disabled",
imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
}
mutex_unlock(&idev->lock);
return ret;
}
/**
* imr_state_open - debugfs open callback.
*
* @inode: pointer to struct inode.
* @file: pointer to struct file.
* @return: result of single open.
*/
static int imr_state_open(struct inode *inode, struct file *file)
{
return single_open(file, imr_dbgfs_state_show, inode->i_private);
}
static const struct file_operations imr_state_ops = {
.open = imr_state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* imr_debugfs_register - register debugfs hooks.
*
* @idev: pointer to imr_device structure.
* @return: 0 on success - errno on failure.
*/
static int imr_debugfs_register(struct imr_device *idev)
{
idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
idev, &imr_state_ops);
return PTR_ERR_OR_ZERO(idev->file);
}
/**
* imr_check_params - check passed address range IMR alignment and non-zero size
*
* @base: base address of intended IMR.
* @size: size of intended IMR.
* @return: zero on valid range -EINVAL on unaligned base/size.
*/
static int imr_check_params(phys_addr_t base, size_t size)
{
if ((base & IMR_MASK) || (size & IMR_MASK)) {
pr_err("base %pa size 0x%08zx must align to 1KiB\n",
&base, size);
return -EINVAL;
}
if (size == 0)
return -EINVAL;
return 0;
}
/**
* imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
*
* IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
* value in the register. We need to subtract IMR_ALIGN bytes from input sizes
* as a result.
*
* @size: input size bytes.
* @return: reduced size.
*/
static inline size_t imr_raw_size(size_t size)
{
return size - IMR_ALIGN;
}
/**
* imr_address_overlap - detects an address overlap.
*
* @addr: address to check against an existing IMR.
* @imr: imr being checked.
* @return: true for overlap false for no overlap.
*/
static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
{
return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
}
/**
* imr_add_range - add an Isolated Memory Region.
*
* @base: physical base address of region aligned to 1KiB.
* @size: physical size of region in bytes must be aligned to 1KiB.
* @read_mask: read access mask.
* @write_mask: write access mask.
* @return: zero on success or negative value indicating error.
*/
int imr_add_range(phys_addr_t base, size_t size,
unsigned int rmask, unsigned int wmask)
{
phys_addr_t end;
unsigned int i;
struct imr_device *idev = &imr_dev;
struct imr_regs imr;
size_t raw_size;
int reg;
int ret;
if (WARN_ONCE(idev->init == false, "driver not initialized"))
return -ENODEV;
ret = imr_check_params(base, size);
if (ret)
return ret;
/* Tweak the size value. */
raw_size = imr_raw_size(size);
end = base + raw_size;
/*
* Check for reserved IMR value common to firmware, kernel and grub
* indicating a disabled IMR.
*/
imr.addr_lo = phys_to_imr(base);
imr.addr_hi = phys_to_imr(end);
imr.rmask = rmask;
imr.wmask = wmask;
if (!imr_is_enabled(&imr))
return -ENOTSUPP;
mutex_lock(&idev->lock);
/*
* Find a free IMR while checking for an existing overlapping range.
* Note there's no restriction in silicon to prevent IMR overlaps.
* For the sake of simplicity and ease in defining/debugging an IMR
* memory map we exclude IMR overlaps.
*/
reg = -1;
for (i = 0; i < idev->max_imr; i++) {
ret = imr_read(idev, i, &imr);
if (ret)
goto failed;
/* Find overlap @ base or end of requested range. */
ret = -EINVAL;
if (imr_is_enabled(&imr)) {
if (imr_address_overlap(base, &imr))
goto failed;
if (imr_address_overlap(end, &imr))
goto failed;
} else {
reg = i;
}
}
/* Error out if we have no free IMR entries. */
if (reg == -1) {
ret = -ENOMEM;
goto failed;
}
pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
reg, &base, &end, raw_size, rmask, wmask);
/* Enable IMR at specified range and access mask. */
imr.addr_lo = phys_to_imr(base);
imr.addr_hi = phys_to_imr(end);
imr.rmask = rmask;
imr.wmask = wmask;
ret = imr_write(idev, reg, &imr);
if (ret < 0) {
/*
* In the highly unlikely event iosf_mbi_write failed
* attempt to rollback the IMR setup skipping the trapping
* of further IOSF write failures.
*/
imr.addr_lo = 0;
imr.addr_hi = 0;
imr.rmask = IMR_READ_ACCESS_ALL;
imr.wmask = IMR_WRITE_ACCESS_ALL;
imr_write(idev, reg, &imr);
}
failed:
mutex_unlock(&idev->lock);
return ret;
}
EXPORT_SYMBOL_GPL(imr_add_range);
/**
* __imr_remove_range - delete an Isolated Memory Region.
*
* This function allows you to delete an IMR by its index specified by reg or
* by address range specified by base and size respectively. If you specify an
* index on its own the base and size parameters are ignored.
* imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
* imr_remove_range(-1, base, size); delete IMR from base to base+size.
*
* @reg: imr index to remove.
* @base: physical base address of region aligned to 1 KiB.
* @size: physical size of region in bytes aligned to 1 KiB.
* @return: -EINVAL on invalid range or out or range id
* -ENODEV if reg is valid but no IMR exists or is locked
* 0 on success.
*/
static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
{
phys_addr_t end;
bool found = false;
unsigned int i;
struct imr_device *idev = &imr_dev;
struct imr_regs imr;
size_t raw_size;
int ret = 0;
if (WARN_ONCE(idev->init == false, "driver not initialized"))
return -ENODEV;
/*
* Validate address range if deleting by address, else we are
* deleting by index where base and size will be ignored.
*/
if (reg == -1) {
ret = imr_check_params(base, size);
if (ret)
return ret;
}
/* Tweak the size value. */
raw_size = imr_raw_size(size);
end = base + raw_size;
mutex_lock(&idev->lock);
if (reg >= 0) {
/* If a specific IMR is given try to use it. */
ret = imr_read(idev, reg, &imr);
if (ret)
goto failed;
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
ret = -ENODEV;
goto failed;
}
found = true;
} else {
/* Search for match based on address range. */
for (i = 0; i < idev->max_imr; i++) {
ret = imr_read(idev, i, &imr);
if (ret)
goto failed;
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
continue;
if ((imr_to_phys(imr.addr_lo) == base) &&
(imr_to_phys(imr.addr_hi) == end)) {
found = true;
reg = i;
break;
}
}
}
if (!found) {
ret = -ENODEV;
goto failed;
}
pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
/* Tear down the IMR. */
imr.addr_lo = 0;
imr.addr_hi = 0;
imr.rmask = IMR_READ_ACCESS_ALL;
imr.wmask = IMR_WRITE_ACCESS_ALL;
ret = imr_write(idev, reg, &imr);
failed:
mutex_unlock(&idev->lock);
return ret;
}
/**
* imr_remove_range - delete an Isolated Memory Region by address
*
* This function allows you to delete an IMR by an address range specified
* by base and size respectively.
* imr_remove_range(base, size); delete IMR from base to base+size.
*
* @base: physical base address of region aligned to 1 KiB.
* @size: physical size of region in bytes aligned to 1 KiB.
* @return: -EINVAL on invalid range or out or range id
* -ENODEV if reg is valid but no IMR exists or is locked
* 0 on success.
*/
int imr_remove_range(phys_addr_t base, size_t size)
{
return __imr_remove_range(-1, base, size);
}
EXPORT_SYMBOL_GPL(imr_remove_range);
/**
* imr_clear - delete an Isolated Memory Region by index
*
* This function allows you to delete an IMR by an address range specified
* by the index of the IMR. Useful for initial sanitization of the IMR
* address map.
* imr_ge(base, size); delete IMR from base to base+size.
*
* @reg: imr index to remove.
* @return: -EINVAL on invalid range or out or range id
* -ENODEV if reg is valid but no IMR exists or is locked
* 0 on success.
*/
static inline int imr_clear(int reg)
{
return __imr_remove_range(reg, 0, 0);
}
/**
* imr_fixup_memmap - Tear down IMRs used during bootup.
*
* BIOS and Grub both setup IMRs around compressed kernel, initrd memory
* that need to be removed before the kernel hands out one of the IMR
* encased addresses to a downstream DMA agent such as the SD or Ethernet.
* IMRs on Galileo are setup to immediately reset the system on violation.
* As a result if you're running a root filesystem from SD - you'll need
* the boot-time IMRs torn down or you'll find seemingly random resets when
* using your filesystem.
*
* @idev: pointer to imr_device structure.
* @return:
*/
static void __init imr_fixup_memmap(struct imr_device *idev)
{
phys_addr_t base = virt_to_phys(&_text);
size_t size = virt_to_phys(&__end_rodata) - base;
unsigned long start, end;
int i;
int ret;
/* Tear down all existing unlocked IMRs. */
for (i = 0; i < idev->max_imr; i++)
imr_clear(i);
start = (unsigned long)_text;
end = (unsigned long)__end_rodata - 1;
/*
* Setup an unlocked IMR around the physical extent of the kernel
* from the beginning of the .text secton to the end of the
* .rodata section as one physically contiguous block.
*
* We don't round up @size since it is already PAGE_SIZE aligned.
* See vmlinux.lds.S for details.
*/
ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
if (ret < 0) {
pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
size / 1024, start, end);
} else {
pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
size / 1024, start, end);
}
}
static const struct x86_cpu_id imr_ids[] __initconst = {
{ X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */
{}
};
/**
* imr_init - entry point for IMR driver.
*
* return: -ENODEV for no IMR support 0 if good to go.
*/
static int __init imr_init(void)
{
struct imr_device *idev = &imr_dev;
int ret;
if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
return -ENODEV;
idev->max_imr = QUARK_X1000_IMR_MAX;
idev->reg_base = QUARK_X1000_IMR_REGBASE;
idev->init = true;
mutex_init(&idev->lock);
ret = imr_debugfs_register(idev);
if (ret != 0)
pr_warn("debugfs register failed!\n");
imr_fixup_memmap(idev);
return 0;
}
device_initcall(imr_init);