mirror of https://gitee.com/openkylin/linux.git
fe8291e82b
Kernel fails to boot 50% of times (form build to build) with RT-patchset applied due to the following race - on late boot stages deferred_probe_work_func->omap_hsmmc_probe races with omap_device_late_ini. The same issue has been reported now on linux-next (4.3) by Keerthy [1] late_initcall - deferred_probe_initcal() tries to re-probe all pending driver's probe. - later on, some driver is probing in this case It's cpsw.c (but could be any other drivers) cpsw_init - platform_driver_register - really_probe - driver_bound - driver_deferred_probe_trigger and boot proceed. So, at this moment we have deferred_probe_work_func scheduled. late_initcall_sync - omap_device_late_init - omap_device_idle CPU1 CPU2 - deferred_probe_work_func - really_probe - omap_hsmmc_probe - pm_runtime_get_sync late_initcall_sync - omap_device_late_init if (od->_driver_status != BUS_NOTIFY_BOUND_DRIVER) { if (od->_state == OMAP_DEVICE_STATE_ENABLED) { - omap_device_idle [ops - IP is disabled] - [fail] - pm_runtime_put_sync - omap_hsmmc_runtime_suspend [ooops!] == log == omap_hsmmc 480b4000.mmc: unable to get vmmc regulator -517 davinci_mdio 48485000.mdio: davinci mdio revision 1.6 davinci_mdio 48485000.mdio: detected phy mask fffffff3 libphy: 48485000.mdio: probed davinci_mdio 48485000.mdio: phy[2]: device 48485000.mdio:02, driver unknown davinci_mdio 48485000.mdio: phy[3]: device 48485000.mdio:03, driver unknown omap_hsmmc 480b4000.mmc: unable to get vmmc regulator -517 cpsw 48484000.ethernet: Detected MACID = b4:99:4c:c7:d2:48 cpsw 48484000.ethernet: cpsw: Detected MACID = b4:99:4c:c7:d2:49 hctosys: unable to open rtc device (rtc0) omap_hsmmc 480b4000.mmc: omap_device_late_idle: enabled but no driver. Idling ldousb: disabling Unhandled fault: imprecise external abort (0x1406) at 0x00000000 [00000000] *pgd=00000000 Internal error: : 1406 [#1] PREEMPT SMP ARM Modules linked in: CPU: 1 PID: 58 Comm: kworker/u4:1 Not tainted 4.1.2-rt1-00467-g6da3c0a-dirty #5 Hardware name: Generic DRA74X (Flattened Device Tree) Workqueue: deferwq deferred_probe_work_func task: ee6ddb00 ti: edd3c000 task.ti: edd3c000 PC is at omap_hsmmc_runtime_suspend+0x1c/0x12c LR is at _od_runtime_suspend+0xc/0x24 pc : [<c0471998>] lr : [<c0029590>] psr: a0000013 sp : edd3dda0 ip : ee6ddb00 fp : c07be540 r10: 00000000 r9 : c07be540 r8 : 00000008 r7 : 00000000 r6 : ee646c10 r5 : ee646c10 r4 : edd79380 r3 : fa0b4100 r2 : 00000000 r1 : 00000000 r0 : ee646c10 Flags: NzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment kernel Control: 10c5387d Table: 8000406a DAC: 00000015 Process kworker/u4:1 (pid: 58, stack limit = 0xedd3c218) Stack: (0xedd3dda0 to 0xedd3e000) dda0: ee646c70 ee646c10 c0029584 00000000 00000008 c0029590 ee646c70 ee646c10 ddc0: c0029584 c03adfb8 ee646c10 00000004 0000000c c03adff0 ee646c10 00000004 dde0: 0000000c c03ae4ec 00000000 edd3c000 ee646c10 00000004 ee646c70 00000004 de00: fa0b4000 c03aec20 ee6ddb00 ee646c10 00000004 ee646c70 ee646c10 fffffdfb de20: edd79380 00000000 fa0b4000 c03aee90 fffffdfb edd79000 ee646c00 c0474290 de40: 00000000 edda24c0 edd79380 edc81f00 00000000 00000200 00000001 c06dd488 de60: edda3960 ee646c10 ee646c10 c0824cc4 fffffdfb c0880c94 00000002 edc92600 de80: c0836378 c03a7f84 ee646c10 c0824cc4 00000000 c0880c80 c0880c94 c03a6568 dea0: 00000000 ee646c10 c03a66ac ee4f8000 00000000 00000001 edc92600 c03a4b40 dec0: ee404c94 edc83c4c ee646c10 ee646c10 ee646c44 c03a63c4 ee646c10 ee646c10 dee0: c0814448 c03a5aa8 ee646c10 c0814220 edd3c000 c03a5ec0 c0814250 ee6be400 df00: edd3c000 c004e5bc ee6ddb01 00000078 ee6ddb00 ee4f8000 ee6be418 edd3c000 df20: ee4f8028 00000088 c0836045 ee4f8000 ee6be400 c004e928 ee4f8028 00000000 df40: c004e8ec 00000000 ee6bf1c0 ee6be400 c004e8ec 00000000 00000000 00000000 df60: 00000000 c0053450 2e56fa97 00000000 afdffbd7 ee6be400 00000000 00000000 df80: edd3df80 edd3df80 00000000 00000000 edd3df90 edd3df90 edd3dfac ee6bf1c0 dfa0: c0053384 00000000 00000000 c000f668 00000000 00000000 00000000 00000000 dfc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 dfe0: 00000000 00000000 00000000 00000000 00000013 00000000 f1fc9d7e febfbdff [<c0471998>] (omap_hsmmc_runtime_suspend) from [<c0029590>] (_od_runtime_suspend+0xc/0x24) [<c0029590>] (_od_runtime_suspend) from [<c03adfb8>] (__rpm_callback+0x24/0x3c) [<c03adfb8>] (__rpm_callback) from [<c03adff0>] (rpm_callback+0x20/0x80) [<c03adff0>] (rpm_callback) from [<c03ae4ec>] (rpm_suspend+0xe4/0x618) [<c03ae4ec>] (rpm_suspend) from [<c03aee90>] (__pm_runtime_idle+0x60/0x80) [<c03aee90>] (__pm_runtime_idle) from [<c0474290>] (omap_hsmmc_probe+0x6bc/0xa7c) [<c0474290>] (omap_hsmmc_probe) from [<c03a7f84>] (platform_drv_probe+0x44/0xa4) [<c03a7f84>] (platform_drv_probe) from [<c03a6568>] (driver_probe_device+0x170/0x2b4) [<c03a6568>] (driver_probe_device) from [<c03a4b40>] (bus_for_each_drv+0x64/0x98) [<c03a4b40>] (bus_for_each_drv) from [<c03a63c4>] (device_attach+0x70/0x88) [<c03a63c4>] (device_attach) from [<c03a5aa8>] (bus_probe_device+0x84/0xac) [<c03a5aa8>] (bus_probe_device) from [<c03a5ec0>] (deferred_probe_work_func+0x58/0x88) [<c03a5ec0>] (deferred_probe_work_func) from [<c004e5bc>] (process_one_work+0x134/0x464) [<c004e5bc>] (process_one_work) from [<c004e928>] (worker_thread+0x3c/0x4fc) [<c004e928>] (worker_thread) from [<c0053450>] (kthread+0xcc/0xe4) [<c0053450>] (kthread) from [<c000f668>] (ret_from_fork+0x14/0x2c) Code: e594302c e593202c e584205c e594302c (e5932128) ---[ end trace 0000000000000002 ]--- The issue happens because omap_device_late_init() do not take into account that some drivers are present, but their probes were not finished successfully and where deferred instead. This is the valid case, and omap_device_late_init() should not idle such devices. To fix this issue, the value of omap_device->_driver_status field should be checked not only for BUS_NOTIFY_BOUND_DRIVER (driver is present and has been bound to device successfully), but also checked for BUS_NOTIFY_BIND_DRIVER (driver about to be bound) - which means driver is present and there was try to bind it to device. [1] http://www.spinics.net/lists/arm-kernel/msg441880.html Cc: Tero Kristo <t-kristo@ti.com> Cc: Keerthy <j-keerthy@ti.com> Tested-by: Keerthy <j-keerthy@ti.com> Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com> |
||
---|---|---|
Documentation | ||
arch | ||
block | ||
crypto | ||
drivers | ||
firmware | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt/kvm | ||
.get_maintainer.ignore | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README | ||
REPORTING-BUGS |
README
Linux kernel release 4.x <http://kernel.org/> These are the release notes for Linux version 4. Read them carefully, as they tell you what this is all about, explain how to install the kernel, and what to do if something goes wrong. WHAT IS LINUX? Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX and Single UNIX Specification compliance. It has all the features you would expect in a modern fully-fledged Unix, including true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables, proper memory management, and multistack networking including IPv4 and IPv6. It is distributed under the GNU General Public License - see the accompanying COPYING file for more details. ON WHAT HARDWARE DOES IT RUN? Although originally developed first for 32-bit x86-based PCs (386 or higher), today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS, Xtensa, Tilera TILE, AVR32 and Renesas M32R architectures. Linux is easily portable to most general-purpose 32- or 64-bit architectures as long as they have a paged memory management unit (PMMU) and a port of the GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has also been ported to a number of architectures without a PMMU, although functionality is then obviously somewhat limited. Linux has also been ported to itself. You can now run the kernel as a userspace application - this is called UserMode Linux (UML). DOCUMENTATION: - There is a lot of documentation available both in electronic form on the Internet and in books, both Linux-specific and pertaining to general UNIX questions. I'd recommend looking into the documentation subdirectories on any Linux FTP site for the LDP (Linux Documentation Project) books. This README is not meant to be documentation on the system: there are much better sources available. - There are various README files in the Documentation/ subdirectory: these typically contain kernel-specific installation notes for some drivers for example. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Changes file, as it contains information about the problems, which may result by upgrading your kernel. - The Documentation/DocBook/ subdirectory contains several guides for kernel developers and users. These guides can be rendered in a number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others. After installation, "make psdocs", "make pdfdocs", "make htmldocs", or "make mandocs" will render the documentation in the requested format. INSTALLING the kernel source: - If you install the full sources, put the kernel tarball in a directory where you have permissions (eg. your home directory) and unpack it: xz -cd linux-4.X.tar.xz | tar xvf - Replace "X" with the version number of the latest kernel. Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are used by the library header files. They should match the library, and not get messed up by whatever the kernel-du-jour happens to be. - You can also upgrade between 4.x releases by patching. Patches are distributed in the xz format. To install by patching, get all the newer patch files, enter the top level directory of the kernel source (linux-4.X) and execute: xz -cd ../patch-4.x.xz | patch -p1 Replace "x" for all versions bigger than the version "X" of your current source tree, _in_order_, and you should be ok. You may want to remove the backup files (some-file-name~ or some-file-name.orig), and make sure that there are no failed patches (some-file-name# or some-file-name.rej). If there are, either you or I have made a mistake. Unlike patches for the 4.x kernels, patches for the 4.x.y kernels (also known as the -stable kernels) are not incremental but instead apply directly to the base 4.x kernel. For example, if your base kernel is 4.0 and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1 and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is, patch -R) _before_ applying the 4.0.3 patch. You can read more on this in Documentation/applying-patches.txt Alternatively, the script patch-kernel can be used to automate this process. It determines the current kernel version and applies any patches found. linux/scripts/patch-kernel linux The first argument in the command above is the location of the kernel source. Patches are applied from the current directory, but an alternative directory can be specified as the second argument. - Make sure you have no stale .o files and dependencies lying around: cd linux make mrproper You should now have the sources correctly installed. SOFTWARE REQUIREMENTS Compiling and running the 4.x kernels requires up-to-date versions of various software packages. Consult Documentation/Changes for the minimum version numbers required and how to get updates for these packages. Beware that using excessively old versions of these packages can cause indirect errors that are very difficult to track down, so don't assume that you can just update packages when obvious problems arise during build or operation. BUILD directory for the kernel: When compiling the kernel, all output files will per default be stored together with the kernel source code. Using the option "make O=output/dir" allow you to specify an alternate place for the output files (including .config). Example: kernel source code: /usr/src/linux-4.X build directory: /home/name/build/kernel To configure and build the kernel, use: cd /usr/src/linux-4.X make O=/home/name/build/kernel menuconfig make O=/home/name/build/kernel sudo make O=/home/name/build/kernel modules_install install Please note: If the 'O=output/dir' option is used, then it must be used for all invocations of make. CONFIGURING the kernel: Do not skip this step even if you are only upgrading one minor version. New configuration options are added in each release, and odd problems will turn up if the configuration files are not set up as expected. If you want to carry your existing configuration to a new version with minimal work, use "make oldconfig", which will only ask you for the answers to new questions. - Alternative configuration commands are: "make config" Plain text interface. "make menuconfig" Text based color menus, radiolists & dialogs. "make nconfig" Enhanced text based color menus. "make xconfig" X windows (Qt) based configuration tool. "make gconfig" X windows (GTK+) based configuration tool. "make oldconfig" Default all questions based on the contents of your existing ./.config file and asking about new config symbols. "make silentoldconfig" Like above, but avoids cluttering the screen with questions already answered. Additionally updates the dependencies. "make olddefconfig" Like above, but sets new symbols to their default values without prompting. "make defconfig" Create a ./.config file by using the default symbol values from either arch/$ARCH/defconfig or arch/$ARCH/configs/${PLATFORM}_defconfig, depending on the architecture. "make ${PLATFORM}_defconfig" Create a ./.config file by using the default symbol values from arch/$ARCH/configs/${PLATFORM}_defconfig. Use "make help" to get a list of all available platforms of your architecture. "make allyesconfig" Create a ./.config file by setting symbol values to 'y' as much as possible. "make allmodconfig" Create a ./.config file by setting symbol values to 'm' as much as possible. "make allnoconfig" Create a ./.config file by setting symbol values to 'n' as much as possible. "make randconfig" Create a ./.config file by setting symbol values to random values. "make localmodconfig" Create a config based on current config and loaded modules (lsmod). Disables any module option that is not needed for the loaded modules. To create a localmodconfig for another machine, store the lsmod of that machine into a file and pass it in as a LSMOD parameter. target$ lsmod > /tmp/mylsmod target$ scp /tmp/mylsmod host:/tmp host$ make LSMOD=/tmp/mylsmod localmodconfig The above also works when cross compiling. "make localyesconfig" Similar to localmodconfig, except it will convert all module options to built in (=y) options. You can find more information on using the Linux kernel config tools in Documentation/kbuild/kconfig.txt. - NOTES on "make config": - Having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems: probing for a nonexistent controller card may confuse your other controllers - Compiling the kernel with "Processor type" set higher than 386 will result in a kernel that does NOT work on a 386. The kernel will detect this on bootup, and give up. - A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless of whether they have a math coprocessor or not. - The "kernel hacking" configuration details usually result in a bigger or slower kernel (or both), and can even make the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmalloc()). Thus you should probably answer 'n' to the questions for "development", "experimental", or "debugging" features. COMPILING the kernel: - Make sure you have at least gcc 3.2 available. For more information, refer to Documentation/Changes. Please note that you can still run a.out user programs with this kernel. - Do a "make" to create a compressed kernel image. It is also possible to do "make install" if you have lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first. To do the actual install, you have to be root, but none of the normal build should require that. Don't take the name of root in vain. - If you configured any of the parts of the kernel as `modules', you will also have to do "make modules_install". - Verbose kernel compile/build output: Normally, the kernel build system runs in a fairly quiet mode (but not totally silent). However, sometimes you or other kernel developers need to see compile, link, or other commands exactly as they are executed. For this, use "verbose" build mode. This is done by inserting "V=1" in the "make" command. E.g.: make V=1 all To have the build system also tell the reason for the rebuild of each target, use "V=2". The default is "V=0". - Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your modules directory before you do a "make modules_install". Alternatively, before compiling, use the kernel config option "LOCALVERSION" to append a unique suffix to the regular kernel version. LOCALVERSION can be set in the "General Setup" menu. - In order to boot your new kernel, you'll need to copy the kernel image (e.g. .../linux/arch/i386/boot/bzImage after compilation) to the place where your regular bootable kernel is found. - Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported. If you boot Linux from the hard drive, chances are you use LILO, which uses the kernel image as specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map!! If you don't, you won't be able to boot the new kernel image. Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information. After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy! If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the 'rdev' program (or alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters. - Reboot with the new kernel and enjoy. IF SOMETHING GOES WRONG: - If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person associated with the part of the kernel that you are having trouble with. If there isn't anyone listed there, then the second best thing is to mail them to me (torvalds@linux-foundation.org), and possibly to any other relevant mailing-list or to the newsgroup. - In all bug-reports, *please* tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it. - If the bug results in a message like unable to handle kernel paging request at address C0000010 Oops: 0002 EIP: 0010:XXXXXXXX eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx ds: xxxx es: xxxx fs: xxxx gs: xxxx Pid: xx, process nr: xx xx xx xx xx xx xx xx xx xx xx or similar kernel debugging information on your screen or in your system log, please duplicate it *exactly*. The dump may look incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also important: it tells something about why the kernel dumped code (in the above example, it's due to a bad kernel pointer). More information on making sense of the dump is in Documentation/oops-tracing.txt - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the "ksymoops" program to make sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred). This utility can be downloaded from ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ . Alternatively, you can do the dump lookup by hand: - In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such doesn't help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the hex value from the EIP line (ignore the "0010:"), and look it up in the kernel namelist to see which kernel function contains the offending address. To find out the kernel function name, you'll need to find the system binary associated with the kernel that exhibited the symptom. This is the file 'linux/vmlinux'. To extract the namelist and match it against the EIP from the kernel crash, do: nm vmlinux | sort | less This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the function addresses (in fact, that is very unlikely), so you can't just 'grep' the list: the list will, however, give you the starting point of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of "context" in your problem report, giving a few lines around the interesting one. If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your setup as possible will help. Please read the REPORTING-BUGS document for details. - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do this, first compile the kernel with -g; edit arch/i386/Makefile appropriately, then do a "make clean". You'll also need to enable CONFIG_PROC_FS (via "make config"). After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore". You can now use all the usual gdb commands. The command to look up the point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes with the EIP value.) gdb'ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled.