nodejs/lib/internal/timers.js

622 lines
18 KiB
JavaScript

'use strict';
// HOW and WHY the timers implementation works the way it does.
//
// Timers are crucial to Node.js. Internally, any TCP I/O connection creates a
// timer so that we can time out of connections. Additionally, many user
// libraries and applications also use timers. As such there may be a
// significantly large amount of timeouts scheduled at any given time.
// Therefore, it is very important that the timers implementation is performant
// and efficient.
//
// Note: It is suggested you first read through the lib/internal/linkedlist.js
// linked list implementation, since timers depend on it extensively. It can be
// somewhat counter-intuitive at first, as it is not actually a class. Instead,
// it is a set of helpers that operate on an existing object.
//
// In order to be as performant as possible, the architecture and data
// structures are designed so that they are optimized to handle the following
// use cases as efficiently as possible:
// - Adding a new timer. (insert)
// - Removing an existing timer. (remove)
// - Handling a timer timing out. (timeout)
//
// Whenever possible, the implementation tries to make the complexity of these
// operations as close to constant-time as possible.
// (So that performance is not impacted by the number of scheduled timers.)
//
// Object maps are kept which contain linked lists keyed by their duration in
// milliseconds.
//
/* eslint-disable node-core/non-ascii-character */
//
// ╔════ > Object Map
// ║
// ╠══
// ║ lists: { '40': { }, '320': { etc } } (keys of millisecond duration)
// ╚══ ┌────┘
// │
// ╔══ │
// ║ TimersList { _idleNext: { }, _idlePrev: (self) }
// ║ ┌────────────────┘
// ║ ╔══ │ ^
// ║ ║ { _idleNext: { }, _idlePrev: { }, _onTimeout: (callback) }
// ║ ║ ┌───────────┘
// ║ ║ │ ^
// ║ ║ { _idleNext: { etc }, _idlePrev: { }, _onTimeout: (callback) }
// ╠══ ╠══
// ║ ║
// ║ ╚════ > Actual JavaScript timeouts
// ║
// ╚════ > Linked List
//
/* eslint-enable node-core/non-ascii-character */
//
// With this, virtually constant-time insertion (append), removal, and timeout
// is possible in the JavaScript layer. Any one list of timers is able to be
// sorted by just appending to it because all timers within share the same
// duration. Therefore, any timer added later will always have been scheduled to
// timeout later, thus only needing to be appended.
// Removal from an object-property linked list is also virtually constant-time
// as can be seen in the lib/internal/linkedlist.js implementation.
// Timeouts only need to process any timers currently due to expire, which will
// always be at the beginning of the list for reasons stated above. Any timers
// after the first one encountered that does not yet need to timeout will also
// always be due to timeout at a later time.
//
// Less-than constant time operations are thus contained in two places:
// The PriorityQueue — an efficient binary heap implementation that does all
// operations in worst-case O(log n) time — which manages the order of expiring
// Timeout lists and the object map lookup of a specific list by the duration of
// timers within (or creation of a new list). However, these operations combined
// have shown to be trivial in comparison to other timers architectures.
const {
MathMax,
MathTrunc,
NumberMIN_SAFE_INTEGER,
ObjectCreate,
Symbol,
} = primordials;
const {
scheduleTimer,
toggleTimerRef,
getLibuvNow,
immediateInfo
} = internalBinding('timers');
const {
getDefaultTriggerAsyncId,
newAsyncId,
initHooksExist,
destroyHooksExist,
// The needed emit*() functions.
emitInit,
emitBefore,
emitAfter,
emitDestroy,
} = require('internal/async_hooks');
// Symbols for storing async id state.
const async_id_symbol = Symbol('asyncId');
const trigger_async_id_symbol = Symbol('triggerId');
const kHasPrimitive = Symbol('kHasPrimitive');
const {
ERR_INVALID_CALLBACK,
ERR_OUT_OF_RANGE
} = require('internal/errors').codes;
const { validateNumber } = require('internal/validators');
const L = require('internal/linkedlist');
const PriorityQueue = require('internal/priority_queue');
const { inspect } = require('internal/util/inspect');
let debug = require('internal/util/debuglog').debuglog('timer', (fn) => {
debug = fn;
});
// *Must* match Environment::ImmediateInfo::Fields in src/env.h.
const kCount = 0;
const kRefCount = 1;
const kHasOutstanding = 2;
// Timeout values > TIMEOUT_MAX are set to 1.
const TIMEOUT_MAX = 2 ** 31 - 1;
let timerListId = NumberMIN_SAFE_INTEGER;
const kRefed = Symbol('refed');
// Create a single linked list instance only once at startup
const immediateQueue = new ImmediateList();
let nextExpiry = Infinity;
let refCount = 0;
// This is a priority queue with a custom sorting function that first compares
// the expiry times of two lists and if they're the same then compares their
// individual IDs to determine which list was created first.
const timerListQueue = new PriorityQueue(compareTimersLists, setPosition);
// Object map containing linked lists of timers, keyed and sorted by their
// duration in milliseconds.
//
// - key = time in milliseconds
// - value = linked list
const timerListMap = ObjectCreate(null);
function initAsyncResource(resource, type) {
const asyncId = resource[async_id_symbol] = newAsyncId();
const triggerAsyncId =
resource[trigger_async_id_symbol] = getDefaultTriggerAsyncId();
if (initHooksExist())
emitInit(asyncId, type, triggerAsyncId, resource);
}
// Timer constructor function.
// The entire prototype is defined in lib/timers.js
function Timeout(callback, after, args, isRepeat, isRefed) {
after *= 1; // Coalesce to number or NaN
if (!(after >= 1 && after <= TIMEOUT_MAX)) {
if (after > TIMEOUT_MAX) {
process.emitWarning(`${after} does not fit into` +
' a 32-bit signed integer.' +
'\nTimeout duration was set to 1.',
'TimeoutOverflowWarning');
}
after = 1; // Schedule on next tick, follows browser behavior
}
this._idleTimeout = after;
this._idlePrev = this;
this._idleNext = this;
this._idleStart = null;
// This must be set to null first to avoid function tracking
// on the hidden class, revisit in V8 versions after 6.2
this._onTimeout = null;
this._onTimeout = callback;
this._timerArgs = args;
this._repeat = isRepeat ? after : null;
this._destroyed = false;
if (isRefed)
incRefCount();
this[kRefed] = isRefed;
this[kHasPrimitive] = false;
initAsyncResource(this, 'Timeout');
}
// Make sure the linked list only shows the minimal necessary information.
Timeout.prototype[inspect.custom] = function(_, options) {
return inspect(this, {
...options,
// Only inspect one level.
depth: 0,
// It should not recurse.
customInspect: false
});
};
Timeout.prototype.refresh = function() {
if (this[kRefed])
active(this);
else
unrefActive(this);
return this;
};
Timeout.prototype.unref = function() {
if (this[kRefed]) {
this[kRefed] = false;
if (!this._destroyed)
decRefCount();
}
return this;
};
Timeout.prototype.ref = function() {
if (!this[kRefed]) {
this[kRefed] = true;
if (!this._destroyed)
incRefCount();
}
return this;
};
Timeout.prototype.hasRef = function() {
return this[kRefed];
};
function TimersList(expiry, msecs) {
this._idleNext = this; // Create the list with the linkedlist properties to
this._idlePrev = this; // Prevent any unnecessary hidden class changes.
this.expiry = expiry;
this.id = timerListId++;
this.msecs = msecs;
this.priorityQueuePosition = null;
}
// Make sure the linked list only shows the minimal necessary information.
TimersList.prototype[inspect.custom] = function(_, options) {
return inspect(this, {
...options,
// Only inspect one level.
depth: 0,
// It should not recurse.
customInspect: false
});
};
// A linked list for storing `setImmediate()` requests
function ImmediateList() {
this.head = null;
this.tail = null;
}
// Appends an item to the end of the linked list, adjusting the current tail's
// previous and next pointers where applicable
ImmediateList.prototype.append = function(item) {
if (this.tail !== null) {
this.tail._idleNext = item;
item._idlePrev = this.tail;
} else {
this.head = item;
}
this.tail = item;
};
// Removes an item from the linked list, adjusting the pointers of adjacent
// items and the linked list's head or tail pointers as necessary
ImmediateList.prototype.remove = function(item) {
if (item._idleNext !== null) {
item._idleNext._idlePrev = item._idlePrev;
}
if (item._idlePrev !== null) {
item._idlePrev._idleNext = item._idleNext;
}
if (item === this.head)
this.head = item._idleNext;
if (item === this.tail)
this.tail = item._idlePrev;
item._idleNext = null;
item._idlePrev = null;
};
function incRefCount() {
if (refCount++ === 0)
toggleTimerRef(true);
}
function decRefCount() {
if (--refCount === 0)
toggleTimerRef(false);
}
// Schedule or re-schedule a timer.
// The item must have been enroll()'d first.
function active(item) {
insertGuarded(item, true);
}
// Internal APIs that need timeouts should use `unrefActive()` instead of
// `active()` so that they do not unnecessarily keep the process open.
function unrefActive(item) {
insertGuarded(item, false);
}
// The underlying logic for scheduling or re-scheduling a timer.
//
// Appends a timer onto the end of an existing timers list, or creates a new
// list if one does not already exist for the specified timeout duration.
function insertGuarded(item, refed, start) {
const msecs = item._idleTimeout;
if (msecs < 0 || msecs === undefined)
return;
insert(item, msecs, start);
const isDestroyed = item._destroyed;
if (isDestroyed || !item[async_id_symbol]) {
item._destroyed = false;
initAsyncResource(item, 'Timeout');
}
if (isDestroyed) {
if (refed)
incRefCount();
} else if (refed === !item[kRefed]) {
if (refed)
incRefCount();
else
decRefCount();
}
item[kRefed] = refed;
}
function insert(item, msecs, start = getLibuvNow()) {
// Truncate so that accuracy of sub-millisecond timers is not assumed.
msecs = MathTrunc(msecs);
item._idleStart = start;
// Use an existing list if there is one, otherwise we need to make a new one.
let list = timerListMap[msecs];
if (list === undefined) {
debug('no %d list was found in insert, creating a new one', msecs);
const expiry = start + msecs;
timerListMap[msecs] = list = new TimersList(expiry, msecs);
timerListQueue.insert(list);
if (nextExpiry > expiry) {
scheduleTimer(msecs);
nextExpiry = expiry;
}
}
L.append(list, item);
}
function setUnrefTimeout(callback, after) {
// Type checking identical to setTimeout()
if (typeof callback !== 'function') {
throw new ERR_INVALID_CALLBACK(callback);
}
const timer = new Timeout(callback, after, undefined, false, false);
insert(timer, timer._idleTimeout);
return timer;
}
// Type checking used by timers.enroll() and Socket#setTimeout()
function getTimerDuration(msecs, name) {
validateNumber(msecs, name);
if (msecs < 0 || !isFinite(msecs)) {
throw new ERR_OUT_OF_RANGE(name, 'a non-negative finite number', msecs);
}
// Ensure that msecs fits into signed int32
if (msecs > TIMEOUT_MAX) {
process.emitWarning(`${msecs} does not fit into a 32-bit signed integer.` +
`\nTimer duration was truncated to ${TIMEOUT_MAX}.`,
'TimeoutOverflowWarning');
return TIMEOUT_MAX;
}
return msecs;
}
function compareTimersLists(a, b) {
const expiryDiff = a.expiry - b.expiry;
if (expiryDiff === 0) {
if (a.id < b.id)
return -1;
if (a.id > b.id)
return 1;
}
return expiryDiff;
}
function setPosition(node, pos) {
node.priorityQueuePosition = pos;
}
function getTimerCallbacks(runNextTicks) {
// If an uncaught exception was thrown during execution of immediateQueue,
// this queue will store all remaining Immediates that need to run upon
// resolution of all error handling (if process is still alive).
const outstandingQueue = new ImmediateList();
function processImmediate() {
const queue = outstandingQueue.head !== null ?
outstandingQueue : immediateQueue;
let immediate = queue.head;
// Clear the linked list early in case new `setImmediate()`
// calls occur while immediate callbacks are executed
if (queue !== outstandingQueue) {
queue.head = queue.tail = null;
immediateInfo[kHasOutstanding] = 1;
}
let prevImmediate;
let ranAtLeastOneImmediate = false;
while (immediate !== null) {
if (ranAtLeastOneImmediate)
runNextTicks();
else
ranAtLeastOneImmediate = true;
// It's possible for this current Immediate to be cleared while executing
// the next tick queue above, which means we need to use the previous
// Immediate's _idleNext which is guaranteed to not have been cleared.
if (immediate._destroyed) {
outstandingQueue.head = immediate = prevImmediate._idleNext;
continue;
}
immediate._destroyed = true;
immediateInfo[kCount]--;
if (immediate[kRefed])
immediateInfo[kRefCount]--;
immediate[kRefed] = null;
prevImmediate = immediate;
const asyncId = immediate[async_id_symbol];
emitBefore(asyncId, immediate[trigger_async_id_symbol], immediate);
try {
const argv = immediate._argv;
if (!argv)
immediate._onImmediate();
else
immediate._onImmediate(...argv);
} finally {
immediate._onImmediate = null;
if (destroyHooksExist())
emitDestroy(asyncId);
outstandingQueue.head = immediate = immediate._idleNext;
}
emitAfter(asyncId);
}
if (queue === outstandingQueue)
outstandingQueue.head = null;
immediateInfo[kHasOutstanding] = 0;
}
function processTimers(now) {
debug('process timer lists %d', now);
nextExpiry = Infinity;
let list;
let ranAtLeastOneList = false;
while (list = timerListQueue.peek()) {
if (list.expiry > now) {
nextExpiry = list.expiry;
return refCount > 0 ? nextExpiry : -nextExpiry;
}
if (ranAtLeastOneList)
runNextTicks();
else
ranAtLeastOneList = true;
listOnTimeout(list, now);
}
return 0;
}
function listOnTimeout(list, now) {
const msecs = list.msecs;
debug('timeout callback %d', msecs);
let ranAtLeastOneTimer = false;
let timer;
while (timer = L.peek(list)) {
const diff = now - timer._idleStart;
// Check if this loop iteration is too early for the next timer.
// This happens if there are more timers scheduled for later in the list.
if (diff < msecs) {
list.expiry = MathMax(timer._idleStart + msecs, now + 1);
list.id = timerListId++;
timerListQueue.percolateDown(1);
debug('%d list wait because diff is %d', msecs, diff);
return;
}
if (ranAtLeastOneTimer)
runNextTicks();
else
ranAtLeastOneTimer = true;
// The actual logic for when a timeout happens.
L.remove(timer);
const asyncId = timer[async_id_symbol];
if (!timer._onTimeout) {
if (!timer._destroyed) {
timer._destroyed = true;
if (timer[kRefed])
refCount--;
if (destroyHooksExist())
emitDestroy(asyncId);
}
continue;
}
emitBefore(asyncId, timer[trigger_async_id_symbol], timer);
let start;
if (timer._repeat)
start = getLibuvNow();
try {
const args = timer._timerArgs;
if (args === undefined)
timer._onTimeout();
else
timer._onTimeout(...args);
} finally {
if (timer._repeat && timer._idleTimeout !== -1) {
timer._idleTimeout = timer._repeat;
insert(timer, timer._idleTimeout, start);
} else if (!timer._idleNext && !timer._idlePrev && !timer._destroyed) {
timer._destroyed = true;
if (timer[kRefed])
refCount--;
if (destroyHooksExist())
emitDestroy(asyncId);
}
}
emitAfter(asyncId);
}
// If `L.peek(list)` returned nothing, the list was either empty or we have
// called all of the timer timeouts.
// As such, we can remove the list from the object map and
// the PriorityQueue.
debug('%d list empty', msecs);
// The current list may have been removed and recreated since the reference
// to `list` was created. Make sure they're the same instance of the list
// before destroying.
if (list === timerListMap[msecs]) {
delete timerListMap[msecs];
timerListQueue.shift();
}
}
return {
processImmediate,
processTimers
};
}
module.exports = {
TIMEOUT_MAX,
kTimeout: Symbol('timeout'), // For hiding Timeouts on other internals.
async_id_symbol,
trigger_async_id_symbol,
Timeout,
kRefed,
kHasPrimitive,
initAsyncResource,
setUnrefTimeout,
getTimerDuration,
immediateQueue,
getTimerCallbacks,
immediateInfoFields: {
kCount,
kRefCount,
kHasOutstanding
},
active,
unrefActive,
insert,
timerListMap,
timerListQueue,
decRefCount,
incRefCount
};