openmpi/ompi/mca/fcoll/dynamic/fcoll_dynamic_file_write_all.c

1193 lines
43 KiB
C

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2008-2015 University of Houston. All rights reserved.
* Copyright (c) 2015-2018 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2017 IBM Corporation. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "fcoll_dynamic.h"
#include "mpi.h"
#include "ompi/constants.h"
#include "ompi/mca/fcoll/fcoll.h"
#include "ompi/mca/fcoll/base/fcoll_base_coll_array.h"
#include "ompi/mca/common/ompio/common_ompio.h"
#include "ompi/mca/io/io.h"
#include "math.h"
#include "ompi/mca/pml/pml.h"
#include <unistd.h>
#define DEBUG_ON 0
/*Used for loading file-offsets per aggregator*/
typedef struct mca_io_ompio_local_io_array{
OMPI_MPI_OFFSET_TYPE offset;
MPI_Aint length;
int process_id;
}mca_io_ompio_local_io_array;
static int local_heap_sort (mca_io_ompio_local_io_array *io_array,
int num_entries,
int *sorted);
int
mca_fcoll_dynamic_file_write_all (ompio_file_t *fh,
const void *buf,
int count,
struct ompi_datatype_t *datatype,
ompi_status_public_t *status)
{
MPI_Aint total_bytes_written = 0; /* total bytes that have been written*/
MPI_Aint total_bytes = 0; /* total bytes to be written */
MPI_Aint bytes_to_write_in_cycle = 0; /* left to be written in a cycle*/
MPI_Aint bytes_per_cycle = 0; /* total written in each cycle by each process*/
int index = 0;
int cycles = 0;
int i=0, j=0, l=0;
int n=0; /* current position in total_bytes_per_process array */
MPI_Aint bytes_remaining = 0; /* how many bytes have been written from the current
value from total_bytes_per_process */
int bytes_sent = 0, ret =0;
int blocks=0, entries_per_aggregator=0;
/* iovec structure and count of the buffer passed in */
uint32_t iov_count = 0;
struct iovec *decoded_iov = NULL;
int iov_index = 0;
char *send_buf = NULL;
size_t current_position = 0;
struct iovec *local_iov_array=NULL, *global_iov_array=NULL;
mca_io_ompio_local_io_array *file_offsets_for_agg=NULL;
/* global iovec at the writers that contain the iovecs created from
file_set_view */
uint32_t total_fview_count = 0;
int local_count = 0, temp_pindex;
int *fview_count = NULL, *disp_index=NULL, *temp_disp_index=NULL;
int current_index = 0, temp_index=0;
char *global_buf = NULL;
MPI_Aint global_count = 0;
/* array that contains the sorted indices of the global_iov */
int *sorted = NULL, *sorted_file_offsets=NULL;
int *displs = NULL;
int dynamic_num_io_procs;
size_t max_data = 0, datatype_size = 0;
int **blocklen_per_process=NULL;
MPI_Aint **displs_per_process=NULL, *memory_displacements=NULL;
ompi_datatype_t **recvtype = NULL;
MPI_Aint *total_bytes_per_process = NULL;
MPI_Request send_req=NULL, *recv_req=NULL;
int my_aggregator=-1;
bool sendbuf_is_contiguous = false;
size_t ftype_size;
ptrdiff_t ftype_extent, lb;
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
double write_time = 0.0, start_write_time = 0.0, end_write_time = 0.0;
double comm_time = 0.0, start_comm_time = 0.0, end_comm_time = 0.0;
double exch_write = 0.0, start_exch = 0.0, end_exch = 0.0;
mca_common_ompio_print_entry nentry;
#endif
opal_datatype_type_size ( &datatype->super, &ftype_size );
opal_datatype_get_extent ( &datatype->super, &lb, &ftype_extent );
/**************************************************************************
** 1. In case the data is not contigous in memory, decode it into an iovec
**************************************************************************/
if ( ( ftype_extent == (ptrdiff_t) ftype_size) &&
opal_datatype_is_contiguous_memory_layout(&datatype->super,1) &&
0 == lb ) {
sendbuf_is_contiguous = true;
}
if (! sendbuf_is_contiguous ) {
ret = mca_common_ompio_decode_datatype ((struct ompio_file_t *) fh,
datatype,
count,
buf,
&max_data,
fh->f_mem_convertor,
&decoded_iov,
&iov_count);
if (OMPI_SUCCESS != ret ){
goto exit;
}
}
else {
max_data = count * datatype->super.size;
}
if ( MPI_STATUS_IGNORE != status ) {
status->_ucount = max_data;
}
dynamic_num_io_procs = fh->f_get_mca_parameter_value ( "num_aggregators", strlen ("num_aggregators"));
if ( OMPI_ERR_MAX == dynamic_num_io_procs ) {
ret = OMPI_ERROR;
goto exit;
}
ret = mca_common_ompio_set_aggregator_props ((struct ompio_file_t *) fh,
dynamic_num_io_procs,
max_data);
if (OMPI_SUCCESS != ret){
goto exit;
}
my_aggregator = fh->f_procs_in_group[0];
/**************************************************************************
** 2. Determine the total amount of data to be written
**************************************************************************/
total_bytes_per_process = (MPI_Aint*)malloc
(fh->f_procs_per_group*sizeof(MPI_Aint));
if (NULL == total_bytes_per_process) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
start_comm_time = MPI_Wtime();
#endif
ret = ompi_fcoll_base_coll_allgather_array (&max_data,
1,
MPI_LONG,
total_bytes_per_process,
1,
MPI_LONG,
0,
fh->f_procs_in_group,
fh->f_procs_per_group,
fh->f_comm);
if( OMPI_SUCCESS != ret){
goto exit;
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
end_comm_time = MPI_Wtime();
comm_time += (end_comm_time - start_comm_time);
#endif
for (i=0 ; i<fh->f_procs_per_group ; i++) {
total_bytes += total_bytes_per_process[i];
}
if (NULL != total_bytes_per_process) {
free (total_bytes_per_process);
total_bytes_per_process = NULL;
}
/*********************************************************************
*** 3. Generate the local offsets/lengths array corresponding to
*** this write operation
********************************************************************/
ret = fh->f_generate_current_file_view( (struct ompio_file_t *) fh,
max_data,
&local_iov_array,
&local_count);
if (ret != OMPI_SUCCESS){
goto exit;
}
#if DEBUG_ON
for (i=0 ; i<local_count ; i++) {
printf("%d: OFFSET: %d LENGTH: %ld\n",
fh->f_rank,
local_iov_array[i].iov_base,
local_iov_array[i].iov_len);
}
#endif
/*************************************************************
*** 4. Allgather the offset/lengths array from all processes
*************************************************************/
fview_count = (int *) malloc (fh->f_procs_per_group * sizeof (int));
if (NULL == fview_count) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
start_comm_time = MPI_Wtime();
#endif
ret = ompi_fcoll_base_coll_allgather_array (&local_count,
1,
MPI_INT,
fview_count,
1,
MPI_INT,
0,
fh->f_procs_in_group,
fh->f_procs_per_group,
fh->f_comm);
if( OMPI_SUCCESS != ret){
goto exit;
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
end_comm_time = MPI_Wtime();
comm_time += (end_comm_time - start_comm_time);
#endif
displs = (int*) malloc (fh->f_procs_per_group * sizeof (int));
if (NULL == displs) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
displs[0] = 0;
total_fview_count = fview_count[0];
for (i=1 ; i<fh->f_procs_per_group ; i++) {
total_fview_count += fview_count[i];
displs[i] = displs[i-1] + fview_count[i-1];
}
#if DEBUG_ON
printf("total_fview_count : %d\n", total_fview_count);
if (my_aggregator == fh->f_rank) {
for (i=0 ; i<fh->f_procs_per_group ; i++) {
printf ("%d: PROCESS: %d ELEMENTS: %d DISPLS: %d\n",
fh->f_rank,
i,
fview_count[i],
displs[i]);
}
}
#endif
/* allocate the global iovec */
if (0 != total_fview_count) {
global_iov_array = (struct iovec*) malloc (total_fview_count *
sizeof(struct iovec));
if (NULL == global_iov_array){
opal_output(1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
start_comm_time = MPI_Wtime();
#endif
ret = ompi_fcoll_base_coll_allgatherv_array (local_iov_array,
local_count,
fh->f_iov_type,
global_iov_array,
fview_count,
displs,
fh->f_iov_type,
0,
fh->f_procs_in_group,
fh->f_procs_per_group,
fh->f_comm);
if (OMPI_SUCCESS != ret){
goto exit;
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
end_comm_time = MPI_Wtime();
comm_time += (end_comm_time - start_comm_time);
#endif
/****************************************************************************************
*** 5. Sort the global offset/lengths list based on the offsets.
*** The result of the sort operation is the 'sorted', an integer array,
*** which contains the indexes of the global_iov_array based on the offset.
*** For example, if global_iov_array[x].offset is followed by global_iov_array[y].offset
*** in the file, and that one is followed by global_iov_array[z].offset, than
*** sorted[0] = x, sorted[1]=y and sorted[2]=z;
******************************************************************************************/
if (0 != total_fview_count) {
sorted = (int *)malloc (total_fview_count * sizeof(int));
if (NULL == sorted) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
ompi_fcoll_base_sort_iovec (global_iov_array, total_fview_count, sorted);
}
if (NULL != local_iov_array){
free(local_iov_array);
local_iov_array = NULL;
}
if (NULL != displs){
free(displs);
displs=NULL;
}
#if DEBUG_ON
if (my_aggregator == fh->f_rank) {
uint32_t tv=0;
for (tv=0 ; tv<total_fview_count ; tv++) {
printf("%d: OFFSET: %lld LENGTH: %ld\n",
fh->f_rank,
global_iov_array[sorted[tv]].iov_base,
global_iov_array[sorted[tv]].iov_len);
}
}
#endif
/*************************************************************
*** 6. Determine the number of cycles required to execute this
*** operation
*************************************************************/
bytes_per_cycle = fh->f_bytes_per_agg;
cycles = ceil((double)total_bytes/bytes_per_cycle);
if (my_aggregator == fh->f_rank) {
disp_index = (int *)malloc (fh->f_procs_per_group * sizeof (int));
if (NULL == disp_index) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
blocklen_per_process = (int **)calloc (fh->f_procs_per_group, sizeof (int*));
if (NULL == blocklen_per_process) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
displs_per_process = (MPI_Aint **)calloc (fh->f_procs_per_group, sizeof (MPI_Aint*));
if (NULL == displs_per_process) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
recv_req = (MPI_Request *)malloc ((fh->f_procs_per_group)*sizeof(MPI_Request));
if ( NULL == recv_req ) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
global_buf = (char *) malloc (bytes_per_cycle);
if (NULL == global_buf){
opal_output(1, "OUT OF MEMORY");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
recvtype = (ompi_datatype_t **) malloc (fh->f_procs_per_group * sizeof(ompi_datatype_t *));
if (NULL == recvtype) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
for(l=0;l<fh->f_procs_per_group;l++){
recvtype[l] = MPI_DATATYPE_NULL;
}
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
start_exch = MPI_Wtime();
#endif
n = 0;
bytes_remaining = 0;
current_index = 0;
for (index = 0; index < cycles; index++) {
/**********************************************************************
*** 7a. Getting ready for next cycle: initializing and freeing buffers
**********************************************************************/
if (my_aggregator == fh->f_rank) {
if (NULL != fh->f_io_array) {
free (fh->f_io_array);
fh->f_io_array = NULL;
}
fh->f_num_of_io_entries = 0;
if (NULL != recvtype){
for (i =0; i< fh->f_procs_per_group; i++) {
if ( MPI_DATATYPE_NULL != recvtype[i] ) {
ompi_datatype_destroy(&recvtype[i]);
recvtype[i] = MPI_DATATYPE_NULL;
}
}
}
for(l=0;l<fh->f_procs_per_group;l++){
disp_index[l] = 1;
free(blocklen_per_process[l]);
free(displs_per_process[l]);
blocklen_per_process[l] = (int *) calloc (1, sizeof(int));
displs_per_process[l] = (MPI_Aint *) calloc (1, sizeof(MPI_Aint));
if (NULL == displs_per_process[l] || NULL == blocklen_per_process[l]){
opal_output (1, "OUT OF MEMORY for displs\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
}
if (NULL != sorted_file_offsets){
free(sorted_file_offsets);
sorted_file_offsets = NULL;
}
if(NULL != file_offsets_for_agg){
free(file_offsets_for_agg);
file_offsets_for_agg = NULL;
}
if (NULL != memory_displacements){
free(memory_displacements);
memory_displacements = NULL;
}
} /* (my_aggregator == fh->f_rank */
/**************************************************************************
*** 7b. Determine the number of bytes to be actually written in this cycle
**************************************************************************/
if (cycles-1 == index) {
bytes_to_write_in_cycle = total_bytes - bytes_per_cycle*index;
}
else {
bytes_to_write_in_cycle = bytes_per_cycle;
}
#if DEBUG_ON
if (my_aggregator == fh->f_rank) {
printf ("****%d: CYCLE %d Bytes %lld**********\n",
fh->f_rank,
index,
bytes_to_write_in_cycle);
}
#endif
/**********************************************************
**Gather the Data from all the processes at the writers **
*********************************************************/
#if DEBUG_ON
printf("bytes_to_write_in_cycle: %ld, cycle : %d\n", bytes_to_write_in_cycle,
index);
#endif
/*****************************************************************
*** 7c. Calculate how much data will be contributed in this cycle
*** by each process
*****************************************************************/
bytes_sent = 0;
/* The blocklen and displs calculation only done at aggregators!*/
while (bytes_to_write_in_cycle) {
/* This next block identifies which process is the holder
** of the sorted[current_index] element;
*/
blocks = fview_count[0];
for (j=0 ; j<fh->f_procs_per_group ; j++) {
if (sorted[current_index] < blocks) {
n = j;
break;
}
else {
blocks += fview_count[j+1];
}
}
if (bytes_remaining) {
/* Finish up a partially used buffer from the previous cycle */
if (bytes_remaining <= bytes_to_write_in_cycle) {
/* The data fits completely into the block */
if (my_aggregator == fh->f_rank) {
blocklen_per_process[n][disp_index[n] - 1] = bytes_remaining;
displs_per_process[n][disp_index[n] - 1] =
(ptrdiff_t)global_iov_array[sorted[current_index]].iov_base +
(global_iov_array[sorted[current_index]].iov_len
- bytes_remaining);
/* In this cases the length is consumed so allocating for
next displacement and blocklength*/
blocklen_per_process[n] = (int *) realloc
((void *)blocklen_per_process[n], (disp_index[n]+1)*sizeof(int));
displs_per_process[n] = (MPI_Aint *) realloc
((void *)displs_per_process[n], (disp_index[n]+1)*sizeof(MPI_Aint));
blocklen_per_process[n][disp_index[n]] = 0;
displs_per_process[n][disp_index[n]] = 0;
disp_index[n] += 1;
}
if (fh->f_procs_in_group[n] == fh->f_rank) {
bytes_sent += bytes_remaining;
}
current_index ++;
bytes_to_write_in_cycle -= bytes_remaining;
bytes_remaining = 0;
continue;
}
else {
/* the remaining data from the previous cycle is larger than the
bytes_to_write_in_cycle, so we have to segment again */
if (my_aggregator == fh->f_rank) {
blocklen_per_process[n][disp_index[n] - 1] = bytes_to_write_in_cycle;
displs_per_process[n][disp_index[n] - 1] =
(ptrdiff_t)global_iov_array[sorted[current_index]].iov_base +
(global_iov_array[sorted[current_index]].iov_len
- bytes_remaining);
}
if (fh->f_procs_in_group[n] == fh->f_rank) {
bytes_sent += bytes_to_write_in_cycle;
}
bytes_remaining -= bytes_to_write_in_cycle;
bytes_to_write_in_cycle = 0;
break;
}
}
else {
/* No partially used entry available, have to start a new one */
if (bytes_to_write_in_cycle <
(MPI_Aint) global_iov_array[sorted[current_index]].iov_len) {
/* This entry has more data than we can sendin one cycle */
if (my_aggregator == fh->f_rank) {
blocklen_per_process[n][disp_index[n] - 1] = bytes_to_write_in_cycle;
displs_per_process[n][disp_index[n] - 1] =
(ptrdiff_t)global_iov_array[sorted[current_index]].iov_base ;
}
if (fh->f_procs_in_group[n] == fh->f_rank) {
bytes_sent += bytes_to_write_in_cycle;
}
bytes_remaining = global_iov_array[sorted[current_index]].iov_len -
bytes_to_write_in_cycle;
bytes_to_write_in_cycle = 0;
break;
}
else {
/* Next data entry is less than bytes_to_write_in_cycle */
if (my_aggregator == fh->f_rank) {
blocklen_per_process[n][disp_index[n] - 1] =
global_iov_array[sorted[current_index]].iov_len;
displs_per_process[n][disp_index[n] - 1] = (ptrdiff_t)
global_iov_array[sorted[current_index]].iov_base;
/*realloc for next blocklength
and assign this displacement and check for next displs as
the total length of this entry has been consumed!*/
blocklen_per_process[n] =
(int *) realloc ((void *)blocklen_per_process[n], (disp_index[n]+1)*sizeof(int));
displs_per_process[n] = (MPI_Aint *)realloc
((void *)displs_per_process[n], (disp_index[n]+1)*sizeof(MPI_Aint));
blocklen_per_process[n][disp_index[n]] = 0;
displs_per_process[n][disp_index[n]] = 0;
disp_index[n] += 1;
}
if (fh->f_procs_in_group[n] == fh->f_rank) {
bytes_sent += global_iov_array[sorted[current_index]].iov_len;
}
bytes_to_write_in_cycle -=
global_iov_array[sorted[current_index]].iov_len;
current_index ++;
continue;
}
}
}
/*************************************************************************
*** 7d. Calculate the displacement on where to put the data and allocate
*** the recieve buffer (global_buf)
*************************************************************************/
if (my_aggregator == fh->f_rank) {
entries_per_aggregator=0;
for (i=0;i<fh->f_procs_per_group; i++){
for (j=0;j<disp_index[i];j++){
if (blocklen_per_process[i][j] > 0)
entries_per_aggregator++ ;
}
}
#if DEBUG_ON
printf("%d: cycle: %d, bytes_sent: %d\n ",fh->f_rank,index,
bytes_sent);
printf("%d : Entries per aggregator : %d\n",fh->f_rank,entries_per_aggregator);
#endif
if (entries_per_aggregator > 0){
file_offsets_for_agg = (mca_io_ompio_local_io_array *)
malloc(entries_per_aggregator*sizeof(mca_io_ompio_local_io_array));
if (NULL == file_offsets_for_agg) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
sorted_file_offsets = (int *)
malloc (entries_per_aggregator*sizeof(int));
if (NULL == sorted_file_offsets){
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
/*Moving file offsets to an IO array!*/
temp_index = 0;
for (i=0;i<fh->f_procs_per_group; i++){
for(j=0;j<disp_index[i];j++){
if (blocklen_per_process[i][j] > 0){
file_offsets_for_agg[temp_index].length =
blocklen_per_process[i][j];
file_offsets_for_agg[temp_index].process_id = i;
file_offsets_for_agg[temp_index].offset =
displs_per_process[i][j];
temp_index++;
#if DEBUG_ON
printf("************Cycle: %d, Aggregator: %d ***************\n",
index+1,fh->f_rank);
printf("%d sends blocklen[%d]: %d, disp[%d]: %ld to %d\n",
fh->f_procs_in_group[i],j,
blocklen_per_process[i][j],j,
displs_per_process[i][j],
fh->f_rank);
#endif
}
}
}
}
else{
continue;
}
/* Sort the displacements for each aggregator*/
local_heap_sort (file_offsets_for_agg,
entries_per_aggregator,
sorted_file_offsets);
/*create contiguous memory displacements
based on blocklens on the same displs array
and map it to this aggregator's actual
file-displacements (this is in the io-array created above)*/
memory_displacements = (MPI_Aint *) malloc
(entries_per_aggregator * sizeof(MPI_Aint));
memory_displacements[sorted_file_offsets[0]] = 0;
for (i=1; i<entries_per_aggregator; i++){
memory_displacements[sorted_file_offsets[i]] =
memory_displacements[sorted_file_offsets[i-1]] +
file_offsets_for_agg[sorted_file_offsets[i-1]].length;
}
temp_disp_index = (int *)calloc (1, fh->f_procs_per_group * sizeof (int));
if (NULL == temp_disp_index) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
/*Now update the displacements array with memory offsets*/
global_count = 0;
for (i=0;i<entries_per_aggregator;i++){
temp_pindex =
file_offsets_for_agg[sorted_file_offsets[i]].process_id;
displs_per_process[temp_pindex][temp_disp_index[temp_pindex]] =
memory_displacements[sorted_file_offsets[i]];
if (temp_disp_index[temp_pindex] < disp_index[temp_pindex])
temp_disp_index[temp_pindex] += 1;
else{
printf("temp_disp_index[%d]: %d is greater than disp_index[%d]: %d\n",
temp_pindex, temp_disp_index[temp_pindex],
temp_pindex, disp_index[temp_pindex]);
}
global_count +=
file_offsets_for_agg[sorted_file_offsets[i]].length;
}
if (NULL != temp_disp_index){
free(temp_disp_index);
temp_disp_index = NULL;
}
#if DEBUG_ON
printf("************Cycle: %d, Aggregator: %d ***************\n",
index+1,fh->f_rank);
for (i=0;i<fh->f_procs_per_group; i++){
for(j=0;j<disp_index[i];j++){
if (blocklen_per_process[i][j] > 0){
printf("%d sends blocklen[%d]: %d, disp[%d]: %ld to %d\n",
fh->f_procs_in_group[i],j,
blocklen_per_process[i][j],j,
displs_per_process[i][j],
fh->f_rank);
}
}
}
printf("************Cycle: %d, Aggregator: %d ***************\n",
index+1,fh->f_rank);
for (i=0; i<entries_per_aggregator;i++){
printf("%d: OFFSET: %lld LENGTH: %ld, Mem-offset: %ld\n",
file_offsets_for_agg[sorted_file_offsets[i]].process_id,
file_offsets_for_agg[sorted_file_offsets[i]].offset,
file_offsets_for_agg[sorted_file_offsets[i]].length,
memory_displacements[sorted_file_offsets[i]]);
}
printf("%d : global_count : %ld, bytes_sent : %d\n",
fh->f_rank,global_count, bytes_sent);
#endif
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
start_comm_time = MPI_Wtime();
#endif
/*************************************************************************
*** 7e. Perform the actual communication
*************************************************************************/
for (i=0;i<fh->f_procs_per_group; i++) {
recv_req[i] = MPI_REQUEST_NULL;
if ( 0 < disp_index[i] ) {
ompi_datatype_create_hindexed(disp_index[i],
blocklen_per_process[i],
displs_per_process[i],
MPI_BYTE,
&recvtype[i]);
ompi_datatype_commit(&recvtype[i]);
opal_datatype_type_size(&recvtype[i]->super, &datatype_size);
if (datatype_size){
ret = MCA_PML_CALL(irecv(global_buf,
1,
recvtype[i],
fh->f_procs_in_group[i],
123,
fh->f_comm,
&recv_req[i]));
if (OMPI_SUCCESS != ret){
goto exit;
}
}
}
}
} /* end if (my_aggregator == fh->f_rank ) */
if ( sendbuf_is_contiguous ) {
send_buf = &((char*)buf)[total_bytes_written];
}
else if (bytes_sent) {
/* allocate a send buffer and copy the data that needs
to be sent into it in case the data is non-contigous
in memory */
ptrdiff_t mem_address;
size_t remaining = 0;
size_t temp_position = 0;
send_buf = malloc (bytes_sent);
if (NULL == send_buf) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
remaining = bytes_sent;
while (remaining) {
mem_address = (ptrdiff_t)
(decoded_iov[iov_index].iov_base) + current_position;
if (remaining >=
(decoded_iov[iov_index].iov_len - current_position)) {
memcpy (send_buf+temp_position,
(IOVBASE_TYPE *)mem_address,
decoded_iov[iov_index].iov_len - current_position);
remaining = remaining -
(decoded_iov[iov_index].iov_len - current_position);
temp_position = temp_position +
(decoded_iov[iov_index].iov_len - current_position);
iov_index = iov_index + 1;
current_position = 0;
}
else {
memcpy (send_buf+temp_position,
(IOVBASE_TYPE *) mem_address,
remaining);
current_position = current_position + remaining;
remaining = 0;
}
}
}
total_bytes_written += bytes_sent;
/* Gather the sendbuf from each process in appropritate locations in
aggregators*/
if (bytes_sent){
ret = MCA_PML_CALL(isend(send_buf,
bytes_sent,
MPI_BYTE,
my_aggregator,
123,
MCA_PML_BASE_SEND_STANDARD,
fh->f_comm,
&send_req));
if ( OMPI_SUCCESS != ret ){
goto exit;
}
ret = ompi_request_wait(&send_req, MPI_STATUS_IGNORE);
if (OMPI_SUCCESS != ret){
goto exit;
}
}
if (my_aggregator == fh->f_rank) {
ret = ompi_request_wait_all (fh->f_procs_per_group,
recv_req,
MPI_STATUS_IGNORE);
if (OMPI_SUCCESS != ret){
goto exit;
}
}
#if DEBUG_ON
if (my_aggregator == fh->f_rank){
printf("************Cycle: %d, Aggregator: %d ***************\n",
index+1,fh->f_rank);
for (i=0 ; i<global_count/4 ; i++)
printf (" RECV %d \n",((int *)global_buf)[i]);
}
#endif
if (! sendbuf_is_contiguous) {
if (NULL != send_buf) {
free (send_buf);
send_buf = NULL;
}
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
end_comm_time = MPI_Wtime();
comm_time += (end_comm_time - start_comm_time);
#endif
/**********************************************************
*** 7f. Create the io array, and pass it to fbtl
*********************************************************/
if (my_aggregator == fh->f_rank) {
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
start_write_time = MPI_Wtime();
#endif
fh->f_io_array = (mca_common_ompio_io_array_t *) malloc
(entries_per_aggregator * sizeof (mca_common_ompio_io_array_t));
if (NULL == fh->f_io_array) {
opal_output(1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
fh->f_num_of_io_entries = 0;
/*First entry for every aggregator*/
fh->f_io_array[0].offset =
(IOVBASE_TYPE *)(intptr_t)file_offsets_for_agg[sorted_file_offsets[0]].offset;
fh->f_io_array[0].length =
file_offsets_for_agg[sorted_file_offsets[0]].length;
fh->f_io_array[0].memory_address =
global_buf+memory_displacements[sorted_file_offsets[0]];
fh->f_num_of_io_entries++;
for (i=1;i<entries_per_aggregator;i++){
/* If the enrties are contiguous merge them,
else make a new entry */
if (file_offsets_for_agg[sorted_file_offsets[i-1]].offset +
file_offsets_for_agg[sorted_file_offsets[i-1]].length ==
file_offsets_for_agg[sorted_file_offsets[i]].offset){
fh->f_io_array[fh->f_num_of_io_entries - 1].length +=
file_offsets_for_agg[sorted_file_offsets[i]].length;
}
else {
fh->f_io_array[fh->f_num_of_io_entries].offset =
(IOVBASE_TYPE *)(intptr_t)file_offsets_for_agg[sorted_file_offsets[i]].offset;
fh->f_io_array[fh->f_num_of_io_entries].length =
file_offsets_for_agg[sorted_file_offsets[i]].length;
fh->f_io_array[fh->f_num_of_io_entries].memory_address =
global_buf+memory_displacements[sorted_file_offsets[i]];
fh->f_num_of_io_entries++;
}
}
#if DEBUG_ON
printf("*************************** %d\n", fh->f_num_of_io_entries);
for (i=0 ; i<fh->f_num_of_io_entries ; i++) {
printf(" ADDRESS: %p OFFSET: %ld LENGTH: %ld\n",
fh->f_io_array[i].memory_address,
(ptrdiff_t)fh->f_io_array[i].offset,
fh->f_io_array[i].length);
}
#endif
if (fh->f_num_of_io_entries) {
if ( 0 > fh->f_fbtl->fbtl_pwritev (fh)) {
opal_output (1, "WRITE FAILED\n");
ret = OMPI_ERROR;
goto exit;
}
}
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
end_write_time = MPI_Wtime();
write_time += end_write_time - start_write_time;
#endif
} /* end if (my_aggregator == fh->f_rank) */
} /* end for (index = 0; index < cycles; index++) */
#if OMPIO_FCOLL_WANT_TIME_BREAKDOWN
end_exch = MPI_Wtime();
exch_write += end_exch - start_exch;
nentry.time[0] = write_time;
nentry.time[1] = comm_time;
nentry.time[2] = exch_write;
if (my_aggregator == fh->f_rank)
nentry.aggregator = 1;
else
nentry.aggregator = 0;
nentry.nprocs_for_coll = dynamic_num_io_procs;
if (!mca_common_ompio_full_print_queue(fh->f_coll_write_time)){
mca_common_ompio_register_print_entry(fh->f_coll_write_time,
nentry);
}
#endif
exit :
if (my_aggregator == fh->f_rank) {
if (NULL != sorted_file_offsets){
free(sorted_file_offsets);
sorted_file_offsets = NULL;
}
if(NULL != file_offsets_for_agg){
free(file_offsets_for_agg);
file_offsets_for_agg = NULL;
}
if (NULL != memory_displacements){
free(memory_displacements);
memory_displacements = NULL;
}
if (NULL != recvtype){
for (i =0; i< fh->f_procs_per_group; i++) {
if ( MPI_DATATYPE_NULL != recvtype[i] ) {
ompi_datatype_destroy(&recvtype[i]);
}
}
free(recvtype);
recvtype=NULL;
}
if (NULL != fh->f_io_array) {
free (fh->f_io_array);
fh->f_io_array = NULL;
}
if (NULL != disp_index){
free(disp_index);
disp_index = NULL;
}
if (NULL != recvtype){
free(recvtype);
recvtype=NULL;
}
if (NULL != recv_req){
free(recv_req);
recv_req = NULL;
}
if (NULL != global_buf) {
free (global_buf);
global_buf = NULL;
}
for(l=0;l<fh->f_procs_per_group;l++){
if (NULL != blocklen_per_process){
free(blocklen_per_process[l]);
}
if (NULL != displs_per_process){
free(displs_per_process[l]);
}
}
free(blocklen_per_process);
free(displs_per_process);
}
if (NULL != displs){
free(displs);
displs=NULL;
}
if (! sendbuf_is_contiguous) {
if (NULL != send_buf) {
free (send_buf);
send_buf = NULL;
}
}
if (NULL != global_buf) {
free (global_buf);
global_buf = NULL;
}
if (NULL != sorted) {
free (sorted);
sorted = NULL;
}
if (NULL != global_iov_array) {
free (global_iov_array);
global_iov_array = NULL;
}
if (NULL != fview_count) {
free (fview_count);
fview_count = NULL;
}
if (NULL != decoded_iov) {
free (decoded_iov);
decoded_iov = NULL;
}
return OMPI_SUCCESS;
}
static int local_heap_sort (mca_io_ompio_local_io_array *io_array,
int num_entries,
int *sorted)
{
int i = 0;
int j = 0;
int left = 0;
int right = 0;
int largest = 0;
int heap_size = num_entries - 1;
int temp = 0;
unsigned char done = 0;
int* temp_arr = NULL;
temp_arr = (int*)malloc(num_entries*sizeof(int));
if (NULL == temp_arr) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
temp_arr[0] = 0;
for (i = 1; i < num_entries; ++i) {
temp_arr[i] = i;
}
/* num_entries can be a large no. so NO RECURSION */
for (i = num_entries/2-1 ; i>=0 ; i--) {
done = 0;
j = i;
largest = j;
while (!done) {
left = j*2+1;
right = j*2+2;
if ((left <= heap_size) &&
(io_array[temp_arr[left]].offset > io_array[temp_arr[j]].offset)) {
largest = left;
}
else {
largest = j;
}
if ((right <= heap_size) &&
(io_array[temp_arr[right]].offset >
io_array[temp_arr[largest]].offset)) {
largest = right;
}
if (largest != j) {
temp = temp_arr[largest];
temp_arr[largest] = temp_arr[j];
temp_arr[j] = temp;
j = largest;
}
else {
done = 1;
}
}
}
for (i = num_entries-1; i >=1; --i) {
temp = temp_arr[0];
temp_arr[0] = temp_arr[i];
temp_arr[i] = temp;
heap_size--;
done = 0;
j = 0;
largest = j;
while (!done) {
left = j*2+1;
right = j*2+2;
if ((left <= heap_size) &&
(io_array[temp_arr[left]].offset >
io_array[temp_arr[j]].offset)) {
largest = left;
}
else {
largest = j;
}
if ((right <= heap_size) &&
(io_array[temp_arr[right]].offset >
io_array[temp_arr[largest]].offset)) {
largest = right;
}
if (largest != j) {
temp = temp_arr[largest];
temp_arr[largest] = temp_arr[j];
temp_arr[j] = temp;
j = largest;
}
else {
done = 1;
}
}
sorted[i] = temp_arr[i];
}
sorted[0] = temp_arr[0];
if (NULL != temp_arr) {
free(temp_arr);
temp_arr = NULL;
}
return OMPI_SUCCESS;
}