635 lines
22 KiB
C++
635 lines
22 KiB
C++
|
/*
|
||
|
* Copyright (C) 2015 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "VectorDrawable.h"
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <string.h>
|
||
|
#include <utils/Log.h>
|
||
|
|
||
|
#include "PathParser.h"
|
||
|
#include "SkColorFilter.h"
|
||
|
#include "SkImageInfo.h"
|
||
|
#include "SkShader.h"
|
||
|
#include "hwui/Paint.h"
|
||
|
|
||
|
#ifdef __ANDROID__
|
||
|
#include "renderthread/RenderThread.h"
|
||
|
#endif
|
||
|
|
||
|
#include <gui/TraceUtils.h>
|
||
|
#include "utils/Macros.h"
|
||
|
#include "utils/VectorDrawableUtils.h"
|
||
|
|
||
|
namespace android {
|
||
|
namespace uirenderer {
|
||
|
namespace VectorDrawable {
|
||
|
|
||
|
const int Tree::MAX_CACHED_BITMAP_SIZE = 2048;
|
||
|
|
||
|
void Path::dump() {
|
||
|
ALOGD("Path: %s has %zu points", mName.c_str(), mProperties.getData().points.size());
|
||
|
}
|
||
|
|
||
|
// Called from UI thread during the initial setup/theme change.
|
||
|
Path::Path(const char* pathStr, size_t strLength) {
|
||
|
PathParser::ParseResult result;
|
||
|
Data data;
|
||
|
PathParser::getPathDataFromAsciiString(&data, &result, pathStr, strLength);
|
||
|
mStagingProperties.setData(data);
|
||
|
}
|
||
|
|
||
|
Path::Path(const Path& path) : Node(path) {
|
||
|
mStagingProperties.syncProperties(path.mStagingProperties);
|
||
|
}
|
||
|
|
||
|
const SkPath& Path::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) {
|
||
|
if (useStagingData) {
|
||
|
tempStagingPath->reset();
|
||
|
VectorDrawableUtils::verbsToPath(tempStagingPath, mStagingProperties.getData());
|
||
|
return *tempStagingPath;
|
||
|
} else {
|
||
|
if (mSkPathDirty) {
|
||
|
mSkPath.reset();
|
||
|
VectorDrawableUtils::verbsToPath(&mSkPath, mProperties.getData());
|
||
|
mSkPathDirty = false;
|
||
|
}
|
||
|
return mSkPath;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Path::syncProperties() {
|
||
|
if (mStagingPropertiesDirty) {
|
||
|
mProperties.syncProperties(mStagingProperties);
|
||
|
} else {
|
||
|
mStagingProperties.syncProperties(mProperties);
|
||
|
}
|
||
|
mStagingPropertiesDirty = false;
|
||
|
}
|
||
|
|
||
|
FullPath::FullPath(const FullPath& path) : Path(path) {
|
||
|
mStagingProperties.syncProperties(path.mStagingProperties);
|
||
|
}
|
||
|
|
||
|
static void applyTrim(SkPath* outPath, const SkPath& inPath, float trimPathStart, float trimPathEnd,
|
||
|
float trimPathOffset) {
|
||
|
if (trimPathStart == 0.0f && trimPathEnd == 1.0f) {
|
||
|
*outPath = inPath;
|
||
|
return;
|
||
|
}
|
||
|
outPath->reset();
|
||
|
if (trimPathStart == trimPathEnd) {
|
||
|
// Trimmed path should be empty.
|
||
|
return;
|
||
|
}
|
||
|
SkPathMeasure measure(inPath, false);
|
||
|
float len = SkScalarToFloat(measure.getLength());
|
||
|
float start = len * fmod((trimPathStart + trimPathOffset), 1.0f);
|
||
|
float end = len * fmod((trimPathEnd + trimPathOffset), 1.0f);
|
||
|
|
||
|
if (start > end) {
|
||
|
measure.getSegment(start, len, outPath, true);
|
||
|
if (end > 0) {
|
||
|
measure.getSegment(0, end, outPath, true);
|
||
|
}
|
||
|
} else {
|
||
|
measure.getSegment(start, end, outPath, true);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const SkPath& FullPath::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) {
|
||
|
if (!useStagingData && !mSkPathDirty && !mProperties.mTrimDirty) {
|
||
|
return mTrimmedSkPath;
|
||
|
}
|
||
|
Path::getUpdatedPath(useStagingData, tempStagingPath);
|
||
|
SkPath* outPath;
|
||
|
if (useStagingData) {
|
||
|
SkPath inPath = *tempStagingPath;
|
||
|
applyTrim(tempStagingPath, inPath, mStagingProperties.getTrimPathStart(),
|
||
|
mStagingProperties.getTrimPathEnd(), mStagingProperties.getTrimPathOffset());
|
||
|
outPath = tempStagingPath;
|
||
|
} else {
|
||
|
if (mProperties.getTrimPathStart() != 0.0f || mProperties.getTrimPathEnd() != 1.0f) {
|
||
|
mProperties.mTrimDirty = false;
|
||
|
applyTrim(&mTrimmedSkPath, mSkPath, mProperties.getTrimPathStart(),
|
||
|
mProperties.getTrimPathEnd(), mProperties.getTrimPathOffset());
|
||
|
outPath = &mTrimmedSkPath;
|
||
|
} else {
|
||
|
outPath = &mSkPath;
|
||
|
}
|
||
|
}
|
||
|
const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties;
|
||
|
bool setFillPath = properties.getFillGradient() != nullptr ||
|
||
|
properties.getFillColor() != SK_ColorTRANSPARENT;
|
||
|
if (setFillPath) {
|
||
|
outPath->setFillType(static_cast<SkPathFillType>(properties.getFillType()));
|
||
|
}
|
||
|
return *outPath;
|
||
|
}
|
||
|
|
||
|
void FullPath::dump() {
|
||
|
Path::dump();
|
||
|
ALOGD("stroke width, color, alpha: %f, %d, %f, fill color, alpha: %d, %f",
|
||
|
mProperties.getStrokeWidth(), mProperties.getStrokeColor(), mProperties.getStrokeAlpha(),
|
||
|
mProperties.getFillColor(), mProperties.getFillAlpha());
|
||
|
}
|
||
|
|
||
|
inline SkColor applyAlpha(SkColor color, float alpha) {
|
||
|
int alphaBytes = SkColorGetA(color);
|
||
|
return SkColorSetA(color, alphaBytes * alpha);
|
||
|
}
|
||
|
|
||
|
void FullPath::draw(SkCanvas* outCanvas, bool useStagingData) {
|
||
|
const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties;
|
||
|
SkPath tempStagingPath;
|
||
|
const SkPath& renderPath = getUpdatedPath(useStagingData, &tempStagingPath);
|
||
|
|
||
|
// Draw path's fill, if fill color or gradient is valid
|
||
|
bool needsFill = false;
|
||
|
SkPaint paint;
|
||
|
if (properties.getFillGradient() != nullptr) {
|
||
|
paint.setColor(applyAlpha(SK_ColorBLACK, properties.getFillAlpha()));
|
||
|
paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getFillGradient())));
|
||
|
needsFill = true;
|
||
|
} else if (properties.getFillColor() != SK_ColorTRANSPARENT) {
|
||
|
paint.setColor(applyAlpha(properties.getFillColor(), properties.getFillAlpha()));
|
||
|
needsFill = true;
|
||
|
}
|
||
|
|
||
|
if (needsFill) {
|
||
|
paint.setStyle(SkPaint::Style::kFill_Style);
|
||
|
paint.setAntiAlias(mAntiAlias);
|
||
|
outCanvas->drawPath(renderPath, paint);
|
||
|
}
|
||
|
|
||
|
// Draw path's stroke, if stroke color or Gradient is valid
|
||
|
bool needsStroke = false;
|
||
|
if (properties.getStrokeGradient() != nullptr) {
|
||
|
paint.setColor(applyAlpha(SK_ColorBLACK, properties.getStrokeAlpha()));
|
||
|
paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getStrokeGradient())));
|
||
|
needsStroke = true;
|
||
|
} else if (properties.getStrokeColor() != SK_ColorTRANSPARENT) {
|
||
|
paint.setColor(applyAlpha(properties.getStrokeColor(), properties.getStrokeAlpha()));
|
||
|
needsStroke = true;
|
||
|
}
|
||
|
if (needsStroke) {
|
||
|
paint.setStyle(SkPaint::Style::kStroke_Style);
|
||
|
paint.setAntiAlias(mAntiAlias);
|
||
|
paint.setStrokeJoin(SkPaint::Join(properties.getStrokeLineJoin()));
|
||
|
paint.setStrokeCap(SkPaint::Cap(properties.getStrokeLineCap()));
|
||
|
paint.setStrokeMiter(properties.getStrokeMiterLimit());
|
||
|
paint.setStrokeWidth(properties.getStrokeWidth());
|
||
|
outCanvas->drawPath(renderPath, paint);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FullPath::syncProperties() {
|
||
|
Path::syncProperties();
|
||
|
|
||
|
if (mStagingPropertiesDirty) {
|
||
|
mProperties.syncProperties(mStagingProperties);
|
||
|
} else {
|
||
|
// Update staging property with property values from animation.
|
||
|
mStagingProperties.syncProperties(mProperties);
|
||
|
}
|
||
|
mStagingPropertiesDirty = false;
|
||
|
}
|
||
|
|
||
|
REQUIRE_COMPATIBLE_LAYOUT(FullPath::FullPathProperties::PrimitiveFields);
|
||
|
|
||
|
static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t");
|
||
|
static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t");
|
||
|
|
||
|
bool FullPath::FullPathProperties::copyProperties(int8_t* outProperties, int length) const {
|
||
|
int propertyDataSize = sizeof(FullPathProperties::PrimitiveFields);
|
||
|
if (length != propertyDataSize) {
|
||
|
LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
|
||
|
propertyDataSize, length);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties);
|
||
|
*out = mPrimitiveFields;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void FullPath::FullPathProperties::setColorPropertyValue(int propertyId, int32_t value) {
|
||
|
Property currentProperty = static_cast<Property>(propertyId);
|
||
|
if (currentProperty == Property::strokeColor) {
|
||
|
setStrokeColor(value);
|
||
|
} else if (currentProperty == Property::fillColor) {
|
||
|
setFillColor(value);
|
||
|
} else {
|
||
|
LOG_ALWAYS_FATAL(
|
||
|
"Error setting color property on FullPath: No valid property"
|
||
|
" with id: %d",
|
||
|
propertyId);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FullPath::FullPathProperties::setPropertyValue(int propertyId, float value) {
|
||
|
Property property = static_cast<Property>(propertyId);
|
||
|
switch (property) {
|
||
|
case Property::strokeWidth:
|
||
|
setStrokeWidth(value);
|
||
|
break;
|
||
|
case Property::strokeAlpha:
|
||
|
setStrokeAlpha(value);
|
||
|
break;
|
||
|
case Property::fillAlpha:
|
||
|
setFillAlpha(value);
|
||
|
break;
|
||
|
case Property::trimPathStart:
|
||
|
setTrimPathStart(value);
|
||
|
break;
|
||
|
case Property::trimPathEnd:
|
||
|
setTrimPathEnd(value);
|
||
|
break;
|
||
|
case Property::trimPathOffset:
|
||
|
setTrimPathOffset(value);
|
||
|
break;
|
||
|
default:
|
||
|
LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ClipPath::draw(SkCanvas* outCanvas, bool useStagingData) {
|
||
|
SkPath tempStagingPath;
|
||
|
outCanvas->clipPath(getUpdatedPath(useStagingData, &tempStagingPath));
|
||
|
}
|
||
|
|
||
|
Group::Group(const Group& group) : Node(group) {
|
||
|
mStagingProperties.syncProperties(group.mStagingProperties);
|
||
|
}
|
||
|
|
||
|
void Group::draw(SkCanvas* outCanvas, bool useStagingData) {
|
||
|
// Save the current clip and matrix information, which is local to this group.
|
||
|
SkAutoCanvasRestore saver(outCanvas, true);
|
||
|
// apply the current group's matrix to the canvas
|
||
|
SkMatrix stackedMatrix;
|
||
|
const GroupProperties& prop = useStagingData ? mStagingProperties : mProperties;
|
||
|
getLocalMatrix(&stackedMatrix, prop);
|
||
|
outCanvas->concat(stackedMatrix);
|
||
|
// Draw the group tree in the same order as the XML file.
|
||
|
for (auto& child : mChildren) {
|
||
|
child->draw(outCanvas, useStagingData);
|
||
|
}
|
||
|
// Restore the previous clip and matrix information.
|
||
|
}
|
||
|
|
||
|
void Group::dump() {
|
||
|
ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size());
|
||
|
ALOGD("Group translateX, Y : %f, %f, scaleX, Y: %f, %f", mProperties.getTranslateX(),
|
||
|
mProperties.getTranslateY(), mProperties.getScaleX(), mProperties.getScaleY());
|
||
|
for (size_t i = 0; i < mChildren.size(); i++) {
|
||
|
mChildren[i]->dump();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Group::syncProperties() {
|
||
|
// Copy over the dirty staging properties
|
||
|
if (mStagingPropertiesDirty) {
|
||
|
mProperties.syncProperties(mStagingProperties);
|
||
|
} else {
|
||
|
mStagingProperties.syncProperties(mProperties);
|
||
|
}
|
||
|
mStagingPropertiesDirty = false;
|
||
|
for (auto& child : mChildren) {
|
||
|
child->syncProperties();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Group::getLocalMatrix(SkMatrix* outMatrix, const GroupProperties& properties) {
|
||
|
outMatrix->reset();
|
||
|
// TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of
|
||
|
// translating to pivot for rotating and scaling, then translating back.
|
||
|
outMatrix->postTranslate(-properties.getPivotX(), -properties.getPivotY());
|
||
|
outMatrix->postScale(properties.getScaleX(), properties.getScaleY());
|
||
|
outMatrix->postRotate(properties.getRotation(), 0, 0);
|
||
|
outMatrix->postTranslate(properties.getTranslateX() + properties.getPivotX(),
|
||
|
properties.getTranslateY() + properties.getPivotY());
|
||
|
}
|
||
|
|
||
|
void Group::addChild(Node* child) {
|
||
|
mChildren.emplace_back(child);
|
||
|
if (mPropertyChangedListener != nullptr) {
|
||
|
child->setPropertyChangedListener(mPropertyChangedListener);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool Group::GroupProperties::copyProperties(float* outProperties, int length) const {
|
||
|
int propertyCount = static_cast<int>(Property::count);
|
||
|
if (length != propertyCount) {
|
||
|
LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
|
||
|
propertyCount, length);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties);
|
||
|
*out = mPrimitiveFields;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// TODO: Consider animating the properties as float pointers
|
||
|
// Called on render thread
|
||
|
float Group::GroupProperties::getPropertyValue(int propertyId) const {
|
||
|
Property currentProperty = static_cast<Property>(propertyId);
|
||
|
switch (currentProperty) {
|
||
|
case Property::rotate:
|
||
|
return getRotation();
|
||
|
case Property::pivotX:
|
||
|
return getPivotX();
|
||
|
case Property::pivotY:
|
||
|
return getPivotY();
|
||
|
case Property::scaleX:
|
||
|
return getScaleX();
|
||
|
case Property::scaleY:
|
||
|
return getScaleY();
|
||
|
case Property::translateX:
|
||
|
return getTranslateX();
|
||
|
case Property::translateY:
|
||
|
return getTranslateY();
|
||
|
default:
|
||
|
LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Called on render thread
|
||
|
void Group::GroupProperties::setPropertyValue(int propertyId, float value) {
|
||
|
Property currentProperty = static_cast<Property>(propertyId);
|
||
|
switch (currentProperty) {
|
||
|
case Property::rotate:
|
||
|
setRotation(value);
|
||
|
break;
|
||
|
case Property::pivotX:
|
||
|
setPivotX(value);
|
||
|
break;
|
||
|
case Property::pivotY:
|
||
|
setPivotY(value);
|
||
|
break;
|
||
|
case Property::scaleX:
|
||
|
setScaleX(value);
|
||
|
break;
|
||
|
case Property::scaleY:
|
||
|
setScaleY(value);
|
||
|
break;
|
||
|
case Property::translateX:
|
||
|
setTranslateX(value);
|
||
|
break;
|
||
|
case Property::translateY:
|
||
|
setTranslateY(value);
|
||
|
break;
|
||
|
default:
|
||
|
LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool Group::isValidProperty(int propertyId) {
|
||
|
return GroupProperties::isValidProperty(propertyId);
|
||
|
}
|
||
|
|
||
|
bool Group::GroupProperties::isValidProperty(int propertyId) {
|
||
|
return propertyId >= 0 && propertyId < static_cast<int>(Property::count);
|
||
|
}
|
||
|
|
||
|
int Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, const SkRect& bounds,
|
||
|
bool needsMirroring, bool canReuseCache) {
|
||
|
// The imageView can scale the canvas in different ways, in order to
|
||
|
// avoid blurry scaling, we have to draw into a bitmap with exact pixel
|
||
|
// size first. This bitmap size is determined by the bounds and the
|
||
|
// canvas scale.
|
||
|
SkMatrix canvasMatrix;
|
||
|
outCanvas->getMatrix(&canvasMatrix);
|
||
|
float canvasScaleX = 1.0f;
|
||
|
float canvasScaleY = 1.0f;
|
||
|
if (canvasMatrix.getSkewX() == 0 && canvasMatrix.getSkewY() == 0) {
|
||
|
// Only use the scale value when there's no skew or rotation in the canvas matrix.
|
||
|
// TODO: Add a cts test for drawing VD on a canvas with negative scaling factors.
|
||
|
canvasScaleX = fabs(canvasMatrix.getScaleX());
|
||
|
canvasScaleY = fabs(canvasMatrix.getScaleY());
|
||
|
}
|
||
|
int scaledWidth = (int)(bounds.width() * canvasScaleX);
|
||
|
int scaledHeight = (int)(bounds.height() * canvasScaleY);
|
||
|
scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth);
|
||
|
scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight);
|
||
|
|
||
|
if (scaledWidth <= 0 || scaledHeight <= 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
mStagingProperties.setScaledSize(scaledWidth, scaledHeight);
|
||
|
int saveCount = outCanvas->save(SaveFlags::MatrixClip);
|
||
|
outCanvas->translate(bounds.fLeft, bounds.fTop);
|
||
|
|
||
|
// Handle RTL mirroring.
|
||
|
if (needsMirroring) {
|
||
|
outCanvas->translate(bounds.width(), 0);
|
||
|
outCanvas->scale(-1.0f, 1.0f);
|
||
|
}
|
||
|
mStagingProperties.setColorFilter(colorFilter);
|
||
|
|
||
|
// At this point, canvas has been translated to the right position.
|
||
|
// And we use this bound for the destination rect for the drawBitmap, so
|
||
|
// we offset to (0, 0);
|
||
|
SkRect tmpBounds = bounds;
|
||
|
tmpBounds.offsetTo(0, 0);
|
||
|
mStagingProperties.setBounds(tmpBounds);
|
||
|
outCanvas->drawVectorDrawable(this);
|
||
|
outCanvas->restoreToCount(saveCount);
|
||
|
return scaledWidth * scaledHeight;
|
||
|
}
|
||
|
|
||
|
void Tree::drawStaging(Canvas* outCanvas) {
|
||
|
bool redrawNeeded = allocateBitmapIfNeeded(mStagingCache, mStagingProperties.getScaledWidth(),
|
||
|
mStagingProperties.getScaledHeight());
|
||
|
// draw bitmap cache
|
||
|
if (redrawNeeded || mStagingCache.dirty) {
|
||
|
updateBitmapCache(*mStagingCache.bitmap, true);
|
||
|
mStagingCache.dirty = false;
|
||
|
}
|
||
|
|
||
|
SkPaint skp;
|
||
|
getPaintFor(&skp, mStagingProperties);
|
||
|
Paint paint;
|
||
|
paint.setFilterQuality(skp.getFilterQuality());
|
||
|
paint.setColorFilter(skp.refColorFilter());
|
||
|
paint.setAlpha(skp.getAlpha());
|
||
|
outCanvas->drawBitmap(*mStagingCache.bitmap, 0, 0, mStagingCache.bitmap->width(),
|
||
|
mStagingCache.bitmap->height(), mStagingProperties.getBounds().left(),
|
||
|
mStagingProperties.getBounds().top(),
|
||
|
mStagingProperties.getBounds().right(),
|
||
|
mStagingProperties.getBounds().bottom(), &paint);
|
||
|
}
|
||
|
|
||
|
void Tree::getPaintFor(SkPaint* outPaint, const TreeProperties& prop) const {
|
||
|
// HWUI always draws VD with bilinear filtering.
|
||
|
outPaint->setFilterQuality(kLow_SkFilterQuality);
|
||
|
if (prop.getColorFilter() != nullptr) {
|
||
|
outPaint->setColorFilter(sk_ref_sp(prop.getColorFilter()));
|
||
|
}
|
||
|
outPaint->setAlpha(prop.getRootAlpha() * 255);
|
||
|
}
|
||
|
|
||
|
Bitmap& Tree::getBitmapUpdateIfDirty() {
|
||
|
bool redrawNeeded = allocateBitmapIfNeeded(mCache, mProperties.getScaledWidth(),
|
||
|
mProperties.getScaledHeight());
|
||
|
if (redrawNeeded || mCache.dirty) {
|
||
|
updateBitmapCache(*mCache.bitmap, false);
|
||
|
mCache.dirty = false;
|
||
|
}
|
||
|
return *mCache.bitmap;
|
||
|
}
|
||
|
|
||
|
void Tree::draw(SkCanvas* canvas, const SkRect& bounds, const SkPaint& inPaint) {
|
||
|
if (canvas->quickReject(bounds)) {
|
||
|
// The RenderNode is on screen, but the AVD is not.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Update the paint for any animatable properties
|
||
|
SkPaint paint = inPaint;
|
||
|
paint.setAlpha(mProperties.getRootAlpha() * 255);
|
||
|
|
||
|
sk_sp<SkImage> cachedBitmap = getBitmapUpdateIfDirty().makeImage();
|
||
|
|
||
|
// HWUI always draws VD with bilinear filtering.
|
||
|
auto sampling = SkSamplingOptions(SkFilterMode::kLinear);
|
||
|
int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth());
|
||
|
int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight());
|
||
|
canvas->drawImageRect(cachedBitmap, SkRect::MakeWH(scaledWidth, scaledHeight), bounds,
|
||
|
sampling, &paint, SkCanvas::kFast_SrcRectConstraint);
|
||
|
}
|
||
|
|
||
|
void Tree::updateBitmapCache(Bitmap& bitmap, bool useStagingData) {
|
||
|
SkBitmap outCache;
|
||
|
bitmap.getSkBitmap(&outCache);
|
||
|
int cacheWidth = outCache.width();
|
||
|
int cacheHeight = outCache.height();
|
||
|
ATRACE_FORMAT("VectorDrawable repaint %dx%d", cacheWidth, cacheHeight);
|
||
|
outCache.eraseColor(SK_ColorTRANSPARENT);
|
||
|
SkCanvas outCanvas(outCache);
|
||
|
float viewportWidth =
|
||
|
useStagingData ? mStagingProperties.getViewportWidth() : mProperties.getViewportWidth();
|
||
|
float viewportHeight = useStagingData ? mStagingProperties.getViewportHeight()
|
||
|
: mProperties.getViewportHeight();
|
||
|
float scaleX = cacheWidth / viewportWidth;
|
||
|
float scaleY = cacheHeight / viewportHeight;
|
||
|
outCanvas.scale(scaleX, scaleY);
|
||
|
mRootNode->draw(&outCanvas, useStagingData);
|
||
|
}
|
||
|
|
||
|
bool Tree::allocateBitmapIfNeeded(Cache& cache, int width, int height) {
|
||
|
if (!canReuseBitmap(cache.bitmap.get(), width, height)) {
|
||
|
SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType);
|
||
|
cache.bitmap = Bitmap::allocateHeapBitmap(info);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool Tree::canReuseBitmap(Bitmap* bitmap, int width, int height) {
|
||
|
return bitmap && width <= bitmap->width() && height <= bitmap->height();
|
||
|
}
|
||
|
|
||
|
void Tree::onPropertyChanged(TreeProperties* prop) {
|
||
|
if (prop == &mStagingProperties) {
|
||
|
mStagingCache.dirty = true;
|
||
|
} else {
|
||
|
mCache.dirty = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class MinMaxAverage {
|
||
|
public:
|
||
|
void add(float sample) {
|
||
|
if (mCount == 0) {
|
||
|
mMin = sample;
|
||
|
mMax = sample;
|
||
|
} else {
|
||
|
mMin = std::min(mMin, sample);
|
||
|
mMax = std::max(mMax, sample);
|
||
|
}
|
||
|
mTotal += sample;
|
||
|
mCount++;
|
||
|
}
|
||
|
|
||
|
float average() { return mTotal / mCount; }
|
||
|
|
||
|
float min() { return mMin; }
|
||
|
|
||
|
float max() { return mMax; }
|
||
|
|
||
|
float delta() { return mMax - mMin; }
|
||
|
|
||
|
private:
|
||
|
float mMin = 0.0f;
|
||
|
float mMax = 0.0f;
|
||
|
float mTotal = 0.0f;
|
||
|
int mCount = 0;
|
||
|
};
|
||
|
|
||
|
BitmapPalette Tree::computePalette() {
|
||
|
// TODO Cache this and share the code with Bitmap.cpp
|
||
|
|
||
|
ATRACE_CALL();
|
||
|
|
||
|
// TODO: This calculation of converting to HSV & tracking min/max is probably overkill
|
||
|
// Experiment with something simpler since we just want to figure out if it's "color-ful"
|
||
|
// and then the average perceptual lightness.
|
||
|
|
||
|
MinMaxAverage hue, saturation, value;
|
||
|
int sampledCount = 0;
|
||
|
|
||
|
// Sample a grid of 100 pixels to get an overall estimation of the colors in play
|
||
|
mRootNode->forEachFillColor([&](SkColor color) {
|
||
|
if (SkColorGetA(color) < 75) {
|
||
|
return;
|
||
|
}
|
||
|
sampledCount++;
|
||
|
float hsv[3];
|
||
|
SkColorToHSV(color, hsv);
|
||
|
hue.add(hsv[0]);
|
||
|
saturation.add(hsv[1]);
|
||
|
value.add(hsv[2]);
|
||
|
});
|
||
|
|
||
|
if (sampledCount == 0) {
|
||
|
ALOGV("VectorDrawable is mostly translucent");
|
||
|
return BitmapPalette::Unknown;
|
||
|
}
|
||
|
|
||
|
ALOGV("samples = %d, hue [min = %f, max = %f, avg = %f]; saturation [min = %f, max = %f, avg = "
|
||
|
"%f]; value [min = %f, max = %f, avg = %f]",
|
||
|
sampledCount, hue.min(), hue.max(), hue.average(), saturation.min(), saturation.max(),
|
||
|
saturation.average(), value.min(), value.max(), value.average());
|
||
|
|
||
|
if (hue.delta() <= 20 && saturation.delta() <= .1f) {
|
||
|
if (value.average() >= .5f) {
|
||
|
return BitmapPalette::Light;
|
||
|
} else {
|
||
|
return BitmapPalette::Dark;
|
||
|
}
|
||
|
}
|
||
|
return BitmapPalette::Unknown;
|
||
|
}
|
||
|
|
||
|
} // namespace VectorDrawable
|
||
|
|
||
|
} // namespace uirenderer
|
||
|
} // namespace android
|