Merge branch 'dsa-docs'
Vladimir Oltean says: ==================== DSA documentation updates for v5.15 There were some documentation-visible changes made to DSA in the net-next tree for v5.15. There may be more, but these are the ones I am aware of. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
commit
9b60ac54ab
|
@ -43,7 +43,6 @@ parameters, info versions, and other features it supports.
|
|||
mv88e6xxx
|
||||
netdevsim
|
||||
nfp
|
||||
sja1105
|
||||
qed
|
||||
ti-cpsw-switch
|
||||
am65-nuss-cpsw-switch
|
||||
|
|
|
@ -1,49 +0,0 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
=======================
|
||||
sja1105 devlink support
|
||||
=======================
|
||||
|
||||
This document describes the devlink features implemented
|
||||
by the ``sja1105`` device driver.
|
||||
|
||||
Parameters
|
||||
==========
|
||||
|
||||
.. list-table:: Driver-specific parameters implemented
|
||||
:widths: 5 5 5 85
|
||||
|
||||
* - Name
|
||||
- Type
|
||||
- Mode
|
||||
- Description
|
||||
* - ``best_effort_vlan_filtering``
|
||||
- Boolean
|
||||
- runtime
|
||||
- Allow plain ETH_P_8021Q headers to be used as DSA tags.
|
||||
|
||||
Benefits:
|
||||
|
||||
- Can terminate untagged traffic over switch net
|
||||
devices even when enslaved to a bridge with
|
||||
vlan_filtering=1.
|
||||
- Can terminate VLAN-tagged traffic over switch net
|
||||
devices even when enslaved to a bridge with
|
||||
vlan_filtering=1, with some constraints (no more than
|
||||
7 non-pvid VLANs per user port).
|
||||
- Can do QoS based on VLAN PCP and VLAN membership
|
||||
admission control for autonomously forwarded frames
|
||||
(regardless of whether they can be terminated on the
|
||||
CPU or not).
|
||||
|
||||
Drawbacks:
|
||||
|
||||
- User cannot use VLANs in range 1024-3071. If the
|
||||
switch receives frames with such VIDs, it will
|
||||
misinterpret them as DSA tags.
|
||||
- Switch uses Shared VLAN Learning (FDB lookup uses
|
||||
only DMAC as key).
|
||||
- When VLANs span cross-chip topologies, the total
|
||||
number of permitted VLANs may be less than 7 per
|
||||
port, due to a maximum number of 32 VLAN retagging
|
||||
rules per switch.
|
|
@ -200,19 +200,6 @@ receive all frames regardless of the value of the MAC DA. This can be done by
|
|||
setting the ``promisc_on_master`` property of the ``struct dsa_device_ops``.
|
||||
Note that this assumes a DSA-unaware master driver, which is the norm.
|
||||
|
||||
Hardware manufacturers are strongly discouraged to do this, but some tagging
|
||||
protocols might not provide source port information on RX for all packets, but
|
||||
e.g. only for control traffic (link-local PDUs). In this case, by implementing
|
||||
the ``filter`` method of ``struct dsa_device_ops``, the tagger might select
|
||||
which packets are to be redirected on RX towards the virtual DSA user network
|
||||
interfaces, and which are to be left in the DSA master's RX data path.
|
||||
|
||||
It might also happen (although silicon vendors are strongly discouraged to
|
||||
produce hardware like this) that a tagging protocol splits the switch-specific
|
||||
information into a header portion and a tail portion, therefore not falling
|
||||
cleanly into any of the above 3 categories. DSA does not support this
|
||||
configuration.
|
||||
|
||||
Master network devices
|
||||
----------------------
|
||||
|
||||
|
@ -663,6 +650,22 @@ Bridge layer
|
|||
CPU port, and flooding towards the CPU port should also be enabled, due to a
|
||||
lack of an explicit address filtering mechanism in the DSA core.
|
||||
|
||||
- ``port_bridge_tx_fwd_offload``: bridge layer function invoked after
|
||||
``port_bridge_join`` when a driver sets ``ds->num_fwd_offloading_bridges`` to
|
||||
a non-zero value. Returning success in this function activates the TX
|
||||
forwarding offload bridge feature for this port, which enables the tagging
|
||||
protocol driver to inject data plane packets towards the bridging domain that
|
||||
the port is a part of. Data plane packets are subject to FDB lookup, hardware
|
||||
learning on the CPU port, and do not override the port STP state.
|
||||
Additionally, replication of data plane packets (multicast, flooding) is
|
||||
handled in hardware and the bridge driver will transmit a single skb for each
|
||||
packet that needs replication. The method is provided as a configuration
|
||||
point for drivers that need to configure the hardware for enabling this
|
||||
feature.
|
||||
|
||||
- ``port_bridge_tx_fwd_unoffload``: bridge layer function invoken when a driver
|
||||
leaves a bridge port which had the TX forwarding offload feature enabled.
|
||||
|
||||
Bridge VLAN filtering
|
||||
---------------------
|
||||
|
||||
|
|
|
@ -65,199 +65,6 @@ If that changed setting can be transmitted to the switch through the dynamic
|
|||
reconfiguration interface, it is; otherwise the switch is reset and
|
||||
reprogrammed with the updated static configuration.
|
||||
|
||||
Traffic support
|
||||
===============
|
||||
|
||||
The switches do not have hardware support for DSA tags, except for "slow
|
||||
protocols" for switch control as STP and PTP. For these, the switches have two
|
||||
programmable filters for link-local destination MACs.
|
||||
These are used to trap BPDUs and PTP traffic to the master netdevice, and are
|
||||
further used to support STP and 1588 ordinary clock/boundary clock
|
||||
functionality. For frames trapped to the CPU, source port and switch ID
|
||||
information is encoded by the hardware into the frames.
|
||||
|
||||
But by leveraging ``CONFIG_NET_DSA_TAG_8021Q`` (a software-defined DSA tagging
|
||||
format based on VLANs), general-purpose traffic termination through the network
|
||||
stack can be supported under certain circumstances.
|
||||
|
||||
Depending on VLAN awareness state, the following operating modes are possible
|
||||
with the switch:
|
||||
|
||||
- Mode 1 (VLAN-unaware): a port is in this mode when it is used as a standalone
|
||||
net device, or when it is enslaved to a bridge with ``vlan_filtering=0``.
|
||||
- Mode 2 (fully VLAN-aware): a port is in this mode when it is enslaved to a
|
||||
bridge with ``vlan_filtering=1``. Access to the entire VLAN range is given to
|
||||
the user through ``bridge vlan`` commands, but general-purpose (anything
|
||||
other than STP, PTP etc) traffic termination is not possible through the
|
||||
switch net devices. The other packets can be still by user space processed
|
||||
through the DSA master interface (similar to ``DSA_TAG_PROTO_NONE``).
|
||||
- Mode 3 (best-effort VLAN-aware): a port is in this mode when enslaved to a
|
||||
bridge with ``vlan_filtering=1``, and the devlink property of its parent
|
||||
switch named ``best_effort_vlan_filtering`` is set to ``true``. When
|
||||
configured like this, the range of usable VIDs is reduced (0 to 1023 and 3072
|
||||
to 4094), so is the number of usable VIDs (maximum of 7 non-pvid VLANs per
|
||||
port*), and shared VLAN learning is performed (FDB lookup is done only by
|
||||
DMAC, not also by VID).
|
||||
|
||||
To summarize, in each mode, the following types of traffic are supported over
|
||||
the switch net devices:
|
||||
|
||||
+-------------+-----------+--------------+------------+
|
||||
| | Mode 1 | Mode 2 | Mode 3 |
|
||||
+=============+===========+==============+============+
|
||||
| Regular | Yes | No | Yes |
|
||||
| traffic | | (use master) | |
|
||||
+-------------+-----------+--------------+------------+
|
||||
| Management | Yes | Yes | Yes |
|
||||
| traffic | | | |
|
||||
| (BPDU, PTP) | | | |
|
||||
+-------------+-----------+--------------+------------+
|
||||
|
||||
To configure the switch to operate in Mode 3, the following steps can be
|
||||
followed::
|
||||
|
||||
ip link add dev br0 type bridge
|
||||
# swp2 operates in Mode 1 now
|
||||
ip link set dev swp2 master br0
|
||||
# swp2 temporarily moves to Mode 2
|
||||
ip link set dev br0 type bridge vlan_filtering 1
|
||||
[ 61.204770] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
|
||||
[ 61.239944] sja1105 spi0.1: Disabled switch tagging
|
||||
# swp3 now operates in Mode 3
|
||||
devlink dev param set spi/spi0.1 name best_effort_vlan_filtering value true cmode runtime
|
||||
[ 64.682927] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
|
||||
[ 64.711925] sja1105 spi0.1: Enabled switch tagging
|
||||
# Cannot use VLANs in range 1024-3071 while in Mode 3.
|
||||
bridge vlan add dev swp2 vid 1025 untagged pvid
|
||||
RTNETLINK answers: Operation not permitted
|
||||
bridge vlan add dev swp2 vid 100
|
||||
bridge vlan add dev swp2 vid 101 untagged
|
||||
bridge vlan
|
||||
port vlan ids
|
||||
swp5 1 PVID Egress Untagged
|
||||
|
||||
swp2 1 PVID Egress Untagged
|
||||
100
|
||||
101 Egress Untagged
|
||||
|
||||
swp3 1 PVID Egress Untagged
|
||||
|
||||
swp4 1 PVID Egress Untagged
|
||||
|
||||
br0 1 PVID Egress Untagged
|
||||
bridge vlan add dev swp2 vid 102
|
||||
bridge vlan add dev swp2 vid 103
|
||||
bridge vlan add dev swp2 vid 104
|
||||
bridge vlan add dev swp2 vid 105
|
||||
bridge vlan add dev swp2 vid 106
|
||||
bridge vlan add dev swp2 vid 107
|
||||
# Cannot use mode than 7 VLANs per port while in Mode 3.
|
||||
[ 3885.216832] sja1105 spi0.1: No more free subvlans
|
||||
|
||||
\* "maximum of 7 non-pvid VLANs per port": Decoding VLAN-tagged packets on the
|
||||
CPU in mode 3 is possible through VLAN retagging of packets that go from the
|
||||
switch to the CPU. In cross-chip topologies, the port that goes to the CPU
|
||||
might also go to other switches. In that case, those other switches will see
|
||||
only a retagged packet (which only has meaning for the CPU). So if they are
|
||||
interested in this VLAN, they need to apply retagging in the reverse direction,
|
||||
to recover the original value from it. This consumes extra hardware resources
|
||||
for this switch. There is a maximum of 32 entries in the Retagging Table of
|
||||
each switch device.
|
||||
|
||||
As an example, consider this cross-chip topology::
|
||||
|
||||
+-------------------------------------------------+
|
||||
| Host SoC |
|
||||
| +-------------------------+ |
|
||||
| | DSA master for embedded | |
|
||||
| | switch (non-sja1105) | |
|
||||
| +--------+-------------------------+--------+ |
|
||||
| | embedded L2 switch | |
|
||||
| | | |
|
||||
| | +--------------+ +--------------+ | |
|
||||
| | |DSA master for| |DSA master for| | |
|
||||
| | | SJA1105 1 | | SJA1105 2 | | |
|
||||
+--+---+--------------+-----+--------------+---+--+
|
||||
|
||||
+-----------------------+ +-----------------------+
|
||||
| SJA1105 switch 1 | | SJA1105 switch 2 |
|
||||
+-----+-----+-----+-----+ +-----+-----+-----+-----+
|
||||
|sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3|
|
||||
+-----+-----+-----+-----+ +-----+-----+-----+-----+
|
||||
|
||||
To reach the CPU, SJA1105 switch 1 (spi/spi2.1) uses the same port as is uses
|
||||
to reach SJA1105 switch 2 (spi/spi2.2), which would be port 4 (not drawn).
|
||||
Similarly for SJA1105 switch 2.
|
||||
|
||||
Also consider the following commands, that add VLAN 100 to every sja1105 user
|
||||
port::
|
||||
|
||||
devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value true cmode runtime
|
||||
devlink dev param set spi/spi2.2 name best_effort_vlan_filtering value true cmode runtime
|
||||
ip link add dev br0 type bridge
|
||||
for port in sw1p0 sw1p1 sw1p2 sw1p3 \
|
||||
sw2p0 sw2p1 sw2p2 sw2p3; do
|
||||
ip link set dev $port master br0
|
||||
done
|
||||
ip link set dev br0 type bridge vlan_filtering 1
|
||||
for port in sw1p0 sw1p1 sw1p2 sw1p3 \
|
||||
sw2p0 sw2p1 sw2p2; do
|
||||
bridge vlan add dev $port vid 100
|
||||
done
|
||||
ip link add link br0 name br0.100 type vlan id 100 && ip link set dev br0.100 up
|
||||
ip addr add 192.168.100.3/24 dev br0.100
|
||||
bridge vlan add dev br0 vid 100 self
|
||||
|
||||
bridge vlan
|
||||
port vlan ids
|
||||
sw1p0 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
sw1p1 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
sw1p2 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
sw1p3 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
sw2p0 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
sw2p1 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
sw2p2 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
sw2p3 1 PVID Egress Untagged
|
||||
|
||||
br0 1 PVID Egress Untagged
|
||||
100
|
||||
|
||||
SJA1105 switch 1 consumes 1 retagging entry for each VLAN on each user port
|
||||
towards the CPU. It also consumes 1 retagging entry for each non-pvid VLAN that
|
||||
it is also interested in, which is configured on any port of any neighbor
|
||||
switch.
|
||||
|
||||
In this case, SJA1105 switch 1 consumes a total of 11 retagging entries, as
|
||||
follows:
|
||||
|
||||
- 8 retagging entries for VLANs 1 and 100 installed on its user ports
|
||||
(``sw1p0`` - ``sw1p3``)
|
||||
- 3 retagging entries for VLAN 100 installed on the user ports of SJA1105
|
||||
switch 2 (``sw2p0`` - ``sw2p2``), because it also has ports that are
|
||||
interested in it. The VLAN 1 is a pvid on SJA1105 switch 2 and does not need
|
||||
reverse retagging.
|
||||
|
||||
SJA1105 switch 2 also consumes 11 retagging entries, but organized as follows:
|
||||
|
||||
- 7 retagging entries for the bridge VLANs on its user ports (``sw2p0`` -
|
||||
``sw2p3``).
|
||||
- 4 retagging entries for VLAN 100 installed on the user ports of SJA1105
|
||||
switch 1 (``sw1p0`` - ``sw1p3``).
|
||||
|
||||
Switching features
|
||||
==================
|
||||
|
||||
|
@ -282,33 +89,10 @@ untagged), and therefore this mode is also supported.
|
|||
|
||||
Segregating the switch ports in multiple bridges is supported (e.g. 2 + 2), but
|
||||
all bridges should have the same level of VLAN awareness (either both have
|
||||
``vlan_filtering`` 0, or both 1). Also an inevitable limitation of the fact
|
||||
that VLAN awareness is global at the switch level is that once a bridge with
|
||||
``vlan_filtering`` enslaves at least one switch port, the other un-bridged
|
||||
ports are no longer available for standalone traffic termination.
|
||||
``vlan_filtering`` 0, or both 1).
|
||||
|
||||
Topology and loop detection through STP is supported.
|
||||
|
||||
L2 FDB manipulation (add/delete/dump) is currently possible for the first
|
||||
generation devices. Aging time of FDB entries, as well as enabling fully static
|
||||
management (no address learning and no flooding of unknown traffic) is not yet
|
||||
configurable in the driver.
|
||||
|
||||
A special comment about bridging with other netdevices (illustrated with an
|
||||
example):
|
||||
|
||||
A board has eth0, eth1, swp0@eth1, swp1@eth1, swp2@eth1, swp3@eth1.
|
||||
The switch ports (swp0-3) are under br0.
|
||||
It is desired that eth0 is turned into another switched port that communicates
|
||||
with swp0-3.
|
||||
|
||||
If br0 has vlan_filtering 0, then eth0 can simply be added to br0 with the
|
||||
intended results.
|
||||
If br0 has vlan_filtering 1, then a new br1 interface needs to be created that
|
||||
enslaves eth0 and eth1 (the DSA master of the switch ports). This is because in
|
||||
this mode, the switch ports beneath br0 are not capable of regular traffic, and
|
||||
are only used as a conduit for switchdev operations.
|
||||
|
||||
Offloads
|
||||
========
|
||||
|
||||
|
|
Loading…
Reference in New Issue