* __fixup_smp_on_up has been modified with support for the
THUMB2_KERNEL case. For THUMB2_KERNEL only, fixups are split
into halfwords in case of misalignment, since we can't rely on
unaligned accesses working before turning the MMU on.
No attempt is made to optimise the aligned case, since the
number of fixups is typically small, and it seems best to keep
the code as simple as possible.
* Add a rotate in the fixup_smp code in order to support
CPU_BIG_ENDIAN, as suggested by Nicolas Pitre.
* Add an assembly-time sanity-check to ALT_UP() to ensure that
the content really is the right size (4 bytes).
(No check is done for ALT_SMP(). Possibly, this could be fixed
by splitting the two uses ot ALT_SMP() (ALT_SMP...SMP_UP versus
ALT_SMP...SMP_UP_B) into two macros. In the first case,
ALT_SMP needs to expand to >= 4 bytes, not == 4.)
* smp_mpidr.h (which implements ALT_SMP()/ALT_UP() manually due
to macro limitations) has not been modified: the affected
instruction (mov) has no 16-bit encoding, so the correct
instruction size is satisfied in this case.
* A "mode" parameter has been added to smp_dmb:
smp_dmb arm @ assumes 4-byte instructions (for ARM code, e.g. kuser)
smp_dmb @ uses W() to ensure 4-byte instructions for ALT_SMP()
This avoids assembly failures due to use of W() inside smp_dmb,
when assembling pure-ARM code in the vectors page.
There might be a better way to achieve this.
* Kconfig: make SMP_ON_UP depend on
(!THUMB2_KERNEL || !BIG_ENDIAN) i.e., THUMB2_KERNEL is now
supported, but only if !BIG_ENDIAN (The fixup code for Thumb-2
currently assumes little-endian order.)
Tested using a single generic realview kernel on:
ARM RealView PB-A8 (CONFIG_THUMB2_KERNEL={n,y})
ARM RealView PBX-A9 (SMP)
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Don't call idle_task_exit() with interrupts disabled, and ensure
that we have a memory barrier after interrupts are disabled but
before signalling that this CPU has shut down.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We always need to wait for the dying CPU to reach a safe state before
taking it down, irrespective of the requirements of the platform.
Move the completion code into the ARM SMP hotplug code rather than
having each platform re-implement this.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
All platforms call trace_hardirqs_off() in their secondary startup code,
so move this into the core SMP code - it doesn't need to be in the
per-platform code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There is a certain amount of smp_prepare_cpus() which doesn't belong
in the platform support code - that is, code which is invariant to the
SMP implementation. Move this code into arch/arm/kernel/smp.c, and
add a platform_ prefix to the original function.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Wait for CPUs to indicate that they've stopped, after sending the
stop IPI, rather than blindly continuing on and hoping that they've
stopped in time. Print a warning if we fail to stop the other CPUs.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Use r0,r3-r6 rather than r0,r3,r4,r6,r7, which makes it easier to
understand which registers can be modified. Also document which
registers hold values which must be preserved.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The IPI and local timer interrupts weren't being properly accounted
for in /proc/stat. Collect them from the irq_stat structure, and
return their sum.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This separates out the individual IPI interrupt counts from the
total IPI count, which allows better visibility of what IPIs are
being used for.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
iwmmxt is used in XScale, XScale3, Mohawk and PJ4 core. But the instructions
of accessing CP0 and CP1 is changed in PJ4. Append more files to support
iwmmxt in PJ4 core.
Signed-off-by: Zhou Zhu <zzhu3@marvell.com>
Signed-off-by: Haojian Zhuang <haojian.zhuang@marvell.com>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Eric Miao <eric.y.miao@gmail.com>
As per x86, align the initial column according to how many IRQs we
have. Also, provide an english explaination for the 'LOC:' and
'IPI:' lines.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move the ipi_count into irq_stat, which allows the ipi_data structure
to be entirely removed.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Provide __inc_irq_stat() and __get_irq_stat() to increment and
read the irq stat counters.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
send_ipi_message() does nothing except call smp_cross_call(). As
this is a static function, nothing external to this file calls it,
so we can easily clean up this now unnecessary indirection.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We should not be incrementing mm_users when we startup a secondary
CPU - doing so results in mm_users incrementing by one each time we
hotplug a CPU, which will eventually wrap, and will cause problems.
Other architectures such as x86 do not increment mm_users, but only
mm_count, so we follow that pattern.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Extend the perf_pmu_register() interface to allow for named and
dynamic pmu types.
Because we need to support the existing static types we cannot use
dynamic types for everything, hence provide a type argument.
If we want to enumerate the PMUs they need a name, provide one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20101117222056.259707703@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The debug registers can only be manipulated from software if monitor
debug mode is enabled. On some cores, this can never be enabled (i.e.
the corresponding bit in the DSCR is RAZ/WI).
This patch ensures we can handle this hardware configuration and fail
gracefully, rather than blow up the kernel during boot.
Reported-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Avoid adding nasty genirq-specific code to local timers to enable PPI
interrupts. Instead, provide a gic function to do this.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
sparse doesn't like per-cpu accesses such as:
static DEFINE_PER_CPU(struct perf_event *, foo[MAXLEN]);
struct perf_event **bar = __get_cpu_var(foo);
and shouts quite loudly about it:
| warning: incorrect type in assignment (different modifiers)
| expected struct perf_event **slots
| got struct perf_event *[noderef] *<noident>
This patch adds casts to these sorts of assignments in hw_breakpoint.c
in order to silence the warnings.
Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Single-stepping a breakpoint requires us to disable it temporarily so that
we don't get stuck in a recursive debug trap. With per-cpu breakpoints this
presents a problem where an interrupt can be taken before the single-step has
completed and a new task is eventually scheduled. This new task will not
hit the breakpoint because it will have been disabled during the previous
handling code.
This patch disallows per-cpu breakpoints on ARM when an overflow handler
is not present. A similar effect can be created by placing breakpoints on
a shell and then running applications there.
Signed-off-by: Will Deacon <will.deacon@arm.com>
The single-stepping code is currently different depending on whether
we are stepping over a breakpoint or a watchpoint. There is no good
reason for this, so let's sort it out.
This patch adds functions for enabling/disabling single-step for
a particular hw_breakpoint and integrates this with the exception
handling code.
Signed-off-by: Will Deacon <will.deacon@arm.com>
The watchpoint single-stepping code calls register_user_hw_breakpoint to
register a mismatch breakpoint for stepping over the watchpoint. This is
performed with preemption disabled, which is unsafe as we may end up scheduling
whilst in_atomic(). Furthermore, using the perf API is rather overkill since
we are already in the hw-breakpoint backend and only require access to reserved
breakpoints anyway.
This patch reworks the watchpoint stepping code so that we don't require
another perf_event for the mismatch breakpoint. Instead, we hold a separate
arch_hw_breakpoint_ctrl struct inside the watchpoint which is used exclusively
for stepping. We can check whether or not stepping is enabled when installing
or uninstalling the watchpoint and operate on the breakpoint accordingly.
Signed-off-by: Will Deacon <will.deacon@arm.com>
To permit handling of watchpoint exceptions without signalling a
debugger, it is necessary to reserve breakpoint registers for in-kernel
use only.
This patch ensures that we record and subtract the number of reserved
breakpoints from the number of usable breakpoint registers that we
advertise to userspace via the ptrace API.
Signed-off-by: Will Deacon <will.deacon@arm.com>
On ARM, debug exceptions occur in the form of data or prefetch aborts.
One difference is that debug exceptions require access to per-cpu banked
registers and data structures which are not saved in the low-level exception
code. For kernels built with CONFIG_PREEMPT, there is an unlikely scenario
that the debug handler ends up running on a different CPU from the one
that originally signalled the event, resulting in random data being read
from the wrong registers.
This patch adds a debug_entry macro to the low-level exception handling
code which checks whether the taken exception is a debug exception. If
it is, the preempt count for the faulting process is incremented. After
the debug handler has finished, the count is decremented.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The current hw_breakpoint code tries to fix up the alignment of
breakpoints so that we can make use of sparse byte-address-select
bits in the control register and give the illusion that we can
set breakpoints on unaligned addresses.
Although this works on v6 cores, v7 forbids this behaviour, instead
requiring breakpoints to be set on aligned addresses and have contiguous
byte-address-select ranges depending on the instruction set in use.
For ARM the only supported size is 4 bytes, whilst Thumb-2 also permits
2 byte breakpoints (watchpoints can be of 1, 2, 4 or 8 bytes long).
This patch simplifies the alignment fixup code so that we require
addresses to be aligned to the size of the corresponding breakpoint.
This allows us to handle the common case of breaking on a half-word
aligned Thumb-2 instruction and also allows us to set byte watchpoints
on arbitrary addresses.
Signed-off-by: Will Deacon <will.deacon@arm.com>
The ARMv7 debug architecture doesn't make any guarantees about the
contents of debug control registers following a debug logic reset.
This patch ensures that we reset the control registers when a cpu
comes ONLINE (for example, with hotplug) so that when we enable
monitor mode while inserting a breakpoint we won't exhibit random
behaviour.
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARMv7 architects a system for saving and restoring the debug registers
across low-power modes. At the heart of this system is a lock register
which, when set, forbids writes to the debug registers. While locked,
writes to debug registers via the co-processor interface will result
in undefined instruction traps. Linux currently doesn't make use of
this feature because we update the debug registers on context switch
anyway, however the status of the lock is IMPLEMENTATION DEFINED on
reset.
This patch ensures that the lock is cleared during boot so that we
can write to the debug registers safely.
Signed-off-by: Will Deacon <will.deacon@arm.com>
As our SMP implementation uses MESI protocols. Grouping together data
which is mostly only read together means that we avoid unnecessary
cache line bouncing when this code shares a cache line with other data.
In other words, cache lines associated with read-mostly data are
expected to spend most of their time in shared state.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For kernels built with PREEMPT_RT, critical sections protected
by standard spinlocks are preemptible. This is not acceptable
on perf as (a) we may be scheduled onto a different CPU whilst
reading/writing banked PMU registers and (b) the latency when
reading the PMU registers becomes unpredictable.
This patch upgrades the pmu_lock spinlock to a raw_spinlock
instead.
Reported-by: Jamie Iles <jamie@jamieiles.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Russell reported a number of warnings coming from sparse when
checking the ARM perf_event.c files:
| perf_event.c seems to also have problems too:
|
| CHECK arch/arm/kernel/perf_event.c
| arch/arm/kernel/perf_event.c:37:1: warning: symbol 'pmu_lock' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:70:1: warning: symbol 'cpu_hw_events' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:1006:1: warning: symbol 'armv6pmu_enable_event' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:1113:1: warning: symbol 'armv6pmu_stop' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:1956:6: warning: symbol 'armv7pmu_enable_event' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:3072:14: warning: incorrect type in argument 1 (different address spaces)
| arch/arm/kernel/perf_event.c:3072:14: expected void const volatile [noderef] <asn:1>*<noident>
| arch/arm/kernel/perf_event.c:3072:14: got struct frame_tail *tail
| arch/arm/kernel/perf_event.c:3074:49: warning: incorrect type in argument 2 (different address spaces)
| arch/arm/kernel/perf_event.c:3074:49: expected void const [noderef] <asn:1>*from
| arch/arm/kernel/perf_event.c:3074:49: got struct frame_tail *tail
This patch resolves these issues so we can live in silence
again.
Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When kexec is used to start a crash kernel the other cores
are notified. These non-crashing cores will save their state
in the crash notes and then do nothing.
Signed-off-by: Per Fransson <per.xx.fransson@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The existing code invokes the syscall with rubbish in r7,
due to what looks like an incorrect literal load idiom.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As we've now removed the spinlock and bitmask, we have nothing left
which requires interrupts to be disabled when sending an IPI. All
current IPI-sending implementations use the GIC, which also does not
require interrupts disabled when calling gic_raise_softirq().
Remove the now unnecessary IRQ disable.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Avoid using bitmasks and locks in the percpu area for IPIs, and instead
use individual software generated interrupts to identify the reason for
the IPI. This avoids the problems of having spinlocks in the percpu
area.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This allows us to use smp_cross_call() to trigger a number of different
software generated interrupts, rather than combining them all on one
SGI. Recover the SGI number via do_IPI.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
If a section is not marked with SHF_ALLOC, it will be discarded
by the module code. Therefore, it is not correct to register
the unwind tables.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There's no need to keep pointers to the ELF sections available while
the module is loaded - we only need the section pointers while we're
finding and registering the unwind tables, which can all be done during
the finalize stage of loading.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The 32-bit conditional branches in Thumb-2 have a shorter range
(+/-512K) than their ARM counterparts (+/-32MB). The linker does
not currently generate trampolines to extend the range of these
Thumb-2 conditional branches, resulting in link errors when vmlinux
is sufficiently large, e.g.:
head.o:(.text+0x464): relocation truncated to fit: R_ARM_THM_JUMP19
This patch forces the longer-range, unconditional branch encoding
by use of an explicit IT instruction. The resulting branches are
triggered on the same conditions as before.
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Directives such as .long and .word do not magically cause the
assembler location counter to become aligned in gas. As a result,
using these directives in code sections can result in misaligned
data words when building a Thumb-2 kernel (CONFIG_THUMB2_KERNEL).
This is a Bad Thing, since the ABI permits the compiler to assume
that fundamental types of word size or above are word- aligned when
accessing them from C. If the data is not really word-aligned,
this can cause impaired performance and stray alignment faults in
some circumstances.
In general, the following rules should be applied when using data
word declaration directives inside code sections:
* .quad and .double:
.align 3
* .long, .word, .single, .float:
.align (or .align 2)
* .short:
No explicit alignment required, since Thumb-2
instructions are always 2 or 4 bytes in size.
immediately after an instruction.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Directives such as .long and .word do not magically cause the
assembler location counter to become aligned in gas. As a result,
using these directives in code sections can result in misaligned
data words when building a Thumb-2 kernel (CONFIG_THUMB2_KERNEL).
This is a Bad Thing, since the ABI permits the compiler to assume
that fundamental types of word size or above are word- aligned when
accessing them from C. If the data is not really word-aligned,
this can cause impaired performance and stray alignment faults in
some circumstances.
In general, the following rules should be applied when using data
word declaration directives inside code sections:
* .quad and .double:
.align 3
* .long, .word, .single, .float:
.align (or .align 2)
* .short:
No explicit alignment required, since Thumb-2
instructions are always 2 or 4 bytes in size.
immediately after an instruction.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Rather than passing the pte value to __pte_error, pass the raw pte_t
cookie instead. Do the same for pmd and pgd functions.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The perf hardware pmu got initialized at various points in the boot,
some before early_initcall() some after (notably arch_initcall).
The problem is that the NMI lockup detector is ran from early_initcall()
and expects the hardware pmu to be present.
Sanitize this by moving all architecture hardware pmu implementations to
initialize at early_initcall() and move the lockup detector to an explicit
initcall right after that.
Cc: paulus <paulus@samba.org>
Cc: davem <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1290707759.2145.119.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
swp_emulate is only used on ARMv7+, and includes ARMv7+ assembly
instructions. Allow the assembler to accept ARMv7 instructions,
but leave the compiler's code generation options alone.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The ARM perf_event.c file contains all PMU backends and, as new PMUs
are introduced, will continue to grow.
This patch follows the example of x86 and splits the PMU implementations
into separate files which are then #included back into the main
file. Compile-time guards are added to each PMU file to avoid compiling
in code that is not relevant for the version of the architecture which
we are targetting.
Acked-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, perf uses the PMU ID as an index into a string table
to look up the name of a given PMU.
This patch encodes the name of a PMU directly into the arm_pmu
structure so that PMU-specific code can be factored out into
separate files.
Acked-by: Jamie Iles <jamie@jamieiles.com>
Acked-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for separating the PMU-specific code, this patch adds
self-contained init functions to each PMU, therefore removing any
PMU-specific knowledge from the PMU-agnostic init_hw_perf_events
function.
Acked-by: Jamie Iles <jamie@jamieiles.com>
Acked-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Unlike other pmu functions, armv6pmu_pmu_stop is not declared static.
This patch adds the missing keyword.
Acked-by: Jamie Iles <jamie.iles@jamieiles.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The functions for mapping PMU events (perf, cache and raw) are
common between all PMU types and differ only in the data on which
they operate.
This patch implements common definitions of these mapping functions
and changes the arm_pmu struct to hold pointers to the data which
they require. This is in anticipation of separating out the PMU-specific
code into separate files.
Acked-by: Jamie Iles <jamie.iles@jamieiles.com>
Acked-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Tim Bird <tim.bird@am.sony.com>
[rabin@rab.in: rebase on top of latest code,
keep code in ftrace.c instead of separate file,
check for ftrace_graph_entry also]
Signed-off-by: Rabin Vincent <rabin@rab.in>
Use assembler macros to avoid copy/pasting code between the
implementations of the two variants of the mcount call.
Signed-off-by: Rabin Vincent <rabin@rab.in>
When FUNCTION_GRAPH_TRACER is enabled, place do_IRQ() and friends in the
IRQ_ENTRY section so that the irq-related features of the function graph
tracer work.
Signed-off-by: Rabin Vincent <rabin@rab.in>
armv7_pmnc_counter_has_overflowed can return uninitialised data
if an invalid counter is specified.
This patch fixes the code to return 0 in this case, which squashes
the compiler warning from GCC 4.5.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When unwinding stack frames we must take care not to unwind
areas of memory that lie outside of the known extent of the stack.
This patch fixes an incorrect calculation of the stack base where
THREAD_SIZE is added to the stack pointer after it has already
been aligned to this value. Since the ALIGN macro performs this
addition internally, we end up overshooting the base by 8k.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The SWP instruction was deprecated in the ARMv6 architecture,
superseded by the LDREX/STREX family of instructions for
load-linked/store-conditional operations. The ARMv7 multiprocessing
extensions mandate that SWP/SWPB instructions are treated as undefined
from reset, with the ability to enable them through the System Control
Register SW bit.
This patch adds the alternative solution to emulate the SWP and SWPB
instructions using LDREX/STREX sequences, and log statistics to
/proc/cpu/swp_emulation. To correctly deal with copy-on-write, it also
modifies cpu_v7_set_pte_ext to change the mappings to priviliged RO when
user RO.
Signed-off-by: Leif Lindholm <leif.lindholm@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch removes the domain switching functionality via the set_fs and
__switch_to functions on cores that have a TLS register.
Currently, the ioremap and vmalloc areas share the same level 1 page
tables and therefore have the same domain (DOMAIN_KERNEL). When the
kernel domain is modified from Client to Manager (via the __set_fs or in
the __switch_to function), the XN (eXecute Never) bit is overridden and
newer CPUs can speculatively prefetch the ioremap'ed memory.
Linux performs the kernel domain switching to allow user-specific
functions (copy_to/from_user, get/put_user etc.) to access kernel
memory. In order for these functions to work with the kernel domain set
to Client, the patch modifies the LDRT/STRT and related instructions to
the LDR/STR ones.
The user pages access rights are also modified for kernel read-only
access rather than read/write so that the copy-on-write mechanism still
works. CPU_USE_DOMAINS gets disabled only if the hardware has a TLS register
(CPU_32v6K is defined) since writing the TLS value to the high vectors page
isn't possible.
The user addresses passed to the kernel are checked by the access_ok()
function so that they do not point to the kernel space.
Tested-by: Anton Vorontsov <cbouatmailru@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (215 commits)
ARM: memblock: setup lowmem mappings using memblock
ARM: memblock: move meminfo into find_limits directly
ARM: memblock: convert free_highpages() to use memblock
ARM: move freeing of highmem pages out of mem_init()
ARM: memblock: convert memory detail printing to use memblock
ARM: memblock: use memblock to free memory into arm_bootmem_init()
ARM: memblock: use memblock when initializing memory allocators
ARM: ensure membank array is always sorted
ARM: 6466/1: implement flush_icache_all for the rest of the CPUs
ARM: 6464/2: fix spinlock recursion in adjust_pte()
ARM: fix memblock breakage
ARM: 6465/1: Fix data abort accessing proc_info from __lookup_processor_type
ARM: 6460/1: ixp2000: fix type of ixp2000_timer_interrupt
ARM: 6449/1: Fix for compiler warning of uninitialized variable.
ARM: 6445/1: fixup TCM memory types
ARM: imx: Add wake functionality to GPIO
ARM: mx5: Add gpio-keys to mx51 babbage board
ARM: imx: Add gpio-keys to plat-mxc
mx31_3ds: Fix spi registration
mx31_3ds: Fix the logic for detecting the debug board
...
DBG_MAX_REG_NUM incorrectly had the number of indices in the GDB regs
array rather than the number of registers, leading to an oops when the
"rd" command is used in KDB.
Cc: stable@kernel.org
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
use new 'datap' variable in order to remove unnecessary castings.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix up the arguments to arch_ptrace() to take account of the fact that
@addr and @data are now unsigned long rather than long as of a preceding
patch in this series.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: <linux-arch@vger.kernel.org>
Acked-by: Roland McGrath <roland@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 5085f3ff45 added better support for
CONFIG_HOTPLUG_CPU by keeping proc_info around. However, depending on
the Kconfig options selected, this can make the booting fail mysteriously
early on.
Turns out a data abort can happen in __lookup_processor in ldmia r5 {r3, r4}.
When it happens the address loaded to r5 is not aligned. Fix the problem by
aligning proc_info.
Reported-by: Anand Gadiyar <gadiyar@ti.com>
Tested-by: Anand Gadiyar <gadiyar@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
kexec does not disable the outer cache before disabling the inner
caches in cpu_proc_fin(). So L2 is enabled across the kexec jump. When
the new kernel enables chaches again, it randomly crashes.
Disabling L2 before calling cpu_proc_fin() cures the problem.
Disabling L2 requires the following new functions: flush_all(),
inv_all() and disable(). Add them to outer_cache_fns and call them
from the kexec code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (278 commits)
arm: remove machine_desc.io_pg_offst and .phys_io
arm: use addruart macro to establish debug mappings
arm: return both physical and virtual addresses from addruart
arm/debug: consolidate addruart macros for CONFIG_DEBUG_ICEDCC
ARM: make struct machine_desc definition coherent with its comment
eukrea_mbimxsd-baseboard: Pass the correct GPIO to gpio_free
cpuimx27: fix compile when ULPI is selected
mach-pcm037_eet: fix compile errors
Fixing ethernet driver compilation error for i.MX31 ADS board
cpuimx51: update board support
mx5: add cpuimx51sd module and its baseboard
iomux-mx51: fix GPIO_1_xx 's IOMUX configuration
imx-esdhc: update devices registration
mx51: add resources for SD/MMC on i.MX51
iomux-mx51: fix SD1 and SD2's iomux configuration
clock-mx51: rename CLOCK1 to CLOCK_CCGR for better readability
clock-mx51: factorize clk_set_parent and clk_get_rate
eukrea_mbimxsd: add support for DVI displays
cpuimx25 & cpuimx35: fix OTG port registration in host mode
i.MX31 and i.MX35 : fix errate TLSbo65953 and ENGcm09472
...
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (96 commits)
apic, x86: Use BIOS settings for IBS and MCE threshold interrupt LVT offsets
apic, x86: Check if EILVT APIC registers are available (AMD only)
x86: ioapic: Call free_irte only if interrupt remapping enabled
arm: Use ARCH_IRQ_INIT_FLAGS
genirq, ARM: Fix boot on ARM platforms
genirq: Fix CONFIG_GENIRQ_NO_DEPRECATED=y build
x86: Switch sparse_irq allocations to GFP_KERNEL
genirq: Switch sparse_irq allocator to GFP_KERNEL
genirq: Make sparse_lock a mutex
x86: lguest: Use new irq allocator
genirq: Remove the now unused sparse irq leftovers
genirq: Sanitize dynamic irq handling
genirq: Remove arch_init_chip_data()
x86: xen: Sanitise sparse_irq handling
x86: Use sane enumeration
x86: uv: Clean up the direct access to irq_desc
x86: Make io_apic.c local functions static
genirq: Remove irq_2_iommu
x86: Speed up the irq_remapped check in hot pathes
intr_remap: Simplify the code further
...
Fix up trivial conflicts in arch/x86/Kconfig
Since we're now using addruart to establish the debug mapping, we can
remove the io_pg_offst and phys_io members of struct machine_desc.
The various declarations were removed using the following script:
grep -rl MACHINE_START arch/arm | xargs \
sed -i '/MACHINE_START/,/MACHINE_END/ { /\.\(phys_io\|io_pg_offst\)/d }'
[ Initial patch was from Jeremy Kerr, example script from Russell King ]
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Eric Miao <eric.miao at canonical.com>
Since we can get both physical and virtual addresses from the addruart
macro, we can use this to establish the debug mappings.
In the case of CONFIG_DEBUG_ICEDCC, we don't need any mappings, but
may still need to setup r7 correctly.
Incorporating ASM changes from Nicolas Pitre <npitre@fluxnic.net>.
Signed-off-by: Jeremy Kerr <jeremy.kerr@canonical.com>
Tested-by: Kevin Hilman <khilman@deeprootsystems.com>
Rather than checking the MMU status in every instance of addruart, do it
once in kernel/debug.S, and change the existing addruart macros to
return both physical and virtual addresses. The main debug code can then
select the appropriate address to use.
This will also allow us to retreive the address of a uart for the MMU
state that we're not current in.
Updated with fixes for OMAP from Jason Wang <jason77.wang@gmail.com>
and Tony Lindgren <tony@atomide.com>, and fix for versatile express from
Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>.
Signed-off-by: Jeremy Kerr <jeremy.kerr@canonical.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Jason Wang <jason77.wang@gmail.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Tested-by: Kevin Hilman <khilman@deeprootsystems.com>
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The core code now initializes the requested number of interrupts and
sets the flags in irq_desc.status which are requested by the
architecture via ARCH_IRQ_INIT_FLAGS.
Add ARCH_IRQ_INIT_FLAGS and remove the loop which sets those flags
after the irq descriptors are allocated.
[ This patch should have been in the original irq rework and got
dropped accidentaly ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Linus Walleij <linus.walleij@stericsson.com>
Cc: Anand Gadiyar <gadiyar@ti.com>
Commit b683de2b3 in linux-next as of 20101014 (genirq: Query
arch for number of early descriptors) seems to have broken
bootup on several ARM boards - my beagleboard gives the
following dump with earlyprintk:
NR_IRQS:402
Unable to handle kernel NULL pointer dereference at virtual
address 00000028 pgd = c0004000
[00000028] *pgd=00000000
Internal error: Oops: 5 [#1]
last sysfs file:
Modules linked in:
CPU: 0 Not tainted
(2.6.36-rc7-next-20101014-linux-next-20101012+ #40) PC is at
init_IRQ+0x14/0x48 LR is at start_kernel+0x150/0x2c0
[...]
We seem to be using desc->status without assigning desc to
anything. Fix this by adding back the code that was originally
there.
Signed-off-by: Anand Gadiyar <gadiyar@ti.com>
Tested-by: Linus Walleij <linus.walleij@stericsson.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: linux-arm-kernel@lists.infradead.org
LKML-Reference: <1287077397-21781-1-git-send-email-gadiyar@ti.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Fix this linux-next build failure that Stephen reported:
arch/arm/kernel/perf_event.c: In function 'armpmu_event_init':
arch/arm/kernel/perf_event.c:543: error: request for member 'num_events' in something not a structure or union
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
LKML-Reference: <20101014164925.4fa16b75.sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sparse irq sets up NR_IRQS_LEGACY irq descriptors and archs then go
ahead and allocate more.
Use the unused return value of arch_probe_nr_irqs() to let the
architecture return the number of early allocations. Fix up all users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
The number of counters for the registered pmu is needed in a few places
so provide a helper function that returns this number.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Add some additional documentation on register usage in __enable_mmu
to help complete the overall picture.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move these two functions, both of which are required for secondary
CPU booting, into the cpuinit section. Ensure bad processors call
__error_p for better diagnostics, rather than just __error.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
__enable_mmu is required to be executed in an identity mapped region
to ensure that variances in CPUs do not cause a crash. We currently
achieve this by assuming that it will be co-located with
__create_page_tables. With hotplug CPU support, this assumption
becomes invalid. Implement a better solution which ensures that
it will be appropriately mapped no matter where it is placed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
__error and __error_p may be used by secondary CPUs, so these
need to be in the cpuinit section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move these functions, which are only ever used during boot CPU
initialization, to the init section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When hotplug CPU is enabled, we need to keep the list of supported CPUs,
their setup functions, and __lookup_processor_type in place so that we
can find and initialize secondary CPUs. Move these into the __CPUINIT
section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Make the entire kernel image available for secondary CPUs rather
than just the first MB of memory. This allows the startup code
to appear in the cpuinit sections.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
nommu can jump directly to __mmap_switched without the absolute
address branching which the mmuful kernel does.
Acked-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
In order for CPUidle to work on SMP systems, an implementation of
cpu_idle_wait() is needed.
This patch duplicates the x86 implementation of cpu_idle_wait() for
ARM.
Tested-by: Colin Cross <ccross@android.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The kernel does not compile for my ARM926EJ-S system U300 due to
the isb instruction inserted in generic assember statement from
commit 8925ec4c53, "ARM: 6385/1:
setup: detect aliasing I-cache when D-cache is non-aliasing"
hey the isb is only available when assembling for v7 so let's
use the generic isb() macro from setup.h instead.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Currently, the Kernel assumes that if a CPU has a non-aliasing D-cache
then the I-cache is also non-aliasing. This may not be true on ARM cores
from v6 onwards, which may have aliasing I-caches but non-aliasing
D-caches.
This patch adds a cpu_has_aliasing_icache function, which is called from
cacheid_init and adds CACHEID_VIPT_I_ALIASING to the cacheid when
appropriate. A utility macro, icache_is_vipt_aliasing(), is also
provided.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
No need to send IPI if there's one CPU, especially when booting
systems with CONFIG_SMP_ON_UP that may not even support IPI.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
UP systems do not implement all the instructions that SMP systems have,
so in order to boot a SMP kernel on a UP system, we need to rewrite
parts of the kernel.
Do this using an 'alternatives' scheme, where the kernel code and data
is modified prior to initialization to replace the SMP instructions,
thereby rendering the problematical code ineffectual. We use the linker
to generate a list of 32-bit word locations and their replacement values,
and run through these replacements when we detect a UP system.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This is done so as to be able to make use of the coresight components'
registers in assembler code (like omap sleep code). Also, there shouldn't
be any users of this structure outside the etm driver.
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Alexander Shishkin <virtuoso@slind.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The MOVW instruction moves a 16-bit immediate into the bottom halfword
of the destination register.
This patch ensures that kprobes leaves the 16-bit immediate intact, rather
than assume a 12-bit immediate and mask out the upper 4 bits.
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The kernel makes the high vector page visible to user space. This page
contains (amongst others) small code segments that can be executed in
user space. Make this page visible through ptrace and /proc/<pid>/mem
in order to let gdb perform code parsing needed for proper unwinding.
For example, the ERESTART_RESTARTBLOCK handler actually has a stack
frame -- it returns to a PC value stored on the user's stack. To
unwind after a "sleep" system call was interrupted twice, GDB would
have to recognize this situation and understand that stack frame
layout -- which it currently cannot do.
We could fix this by hard-coding addresses in the vector page range into
GDB, but that isn't really portable as not all of those addresses are
guaranteed to remain stable across kernel releases. And having the gdb
process make an exception for this page and get content from its own
address space for it looks strange, and it is not future proof either.
Being located above PAGE_OFFSET, this vma cannot be deleted by
user space code.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
* master.kernel.org:/home/rmk/linux-2.6-arm: (28 commits)
ARM: 6411/1: vexpress: set RAM latencies to 1 cycle for PL310 on ct-ca9x4 tile
ARM: 6409/1: davinci: map sram using MT_MEMORY_NONCACHED instead of MT_DEVICE
ARM: 6408/1: omap: Map only available sram memory
ARM: 6407/1: mmu: Setup MT_MEMORY and MT_MEMORY_NONCACHED L1 entries
ARM: pxa: remove pr_<level> uses of KERN_<level>
ARM: pxa168fb: clear enable bit when not active
ARM: pxa: fix cpu_is_pxa*() not expanding to zero when not configured
ARM: pxa168: fix corrected reset vector
ARM: pxa: Use PIO for PI2C communication on Palm27x
ARM: pxa: Fix Vpac270 gpio_power for MMC
ARM: 6401/1: plug a race in the alignment trap handler
ARM: 6406/1: at91sam9g45: fix i2c bus speed
leds: leds-ns2: fix locking
ARM: dove: fix __io() definition to use bus based offset
dmaengine: fix interrupt clearing for mv_xor
ARM: kirkwood: Unbreak PCIe I/O port
ARM: Fix build error when using KCONFIG_CONFIG
ARM: 6383/1: Implement phys_mem_access_prot() to avoid attributes aliasing
ARM: 6400/1: at91: fix arch_gettimeoffset fallout
ARM: 6398/1: add proc info for ARM11MPCore/Cortex-A9 from ARM
...
If a signal hits us outside of a syscall and another gets delivered
when we are in sigreturn (e.g. because it had been in sa_mask for
the first one and got sent to us while we'd been in the first handler),
we have a chance of returning from the second handler to location one
insn prior to where we ought to return. If r0 happens to contain -513
(-ERESTARTNOINTR), sigreturn will get confused into doing restart
syscall song and dance.
Incredible joy to debug, since it manifests as random, infrequent and
very hard to reproduce double execution of instructions in userland
code...
The fix is simple - mark it "don't bother with restarts" in wrapper,
i.e. set r8 to 0 in sys_sigreturn and sys_rt_sigreturn wrappers,
suppressing the syscall restart handling on return from these guys.
They can't legitimately return a restart-worthy error anyway.
Testcase:
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/time.h>
#include <errno.h>
void f(int n)
{
__asm__ __volatile__(
"ldr r0, [%0]\n"
"b 1f\n"
"b 2f\n"
"1:b .\n"
"2:\n" : : "r"(&n));
}
void handler1(int sig) { }
void handler2(int sig) { raise(1); }
void handler3(int sig) { exit(0); }
main()
{
struct sigaction s = {.sa_handler = handler2};
struct itimerval t1 = { .it_value = {1} };
struct itimerval t2 = { .it_value = {2} };
signal(1, handler1);
sigemptyset(&s.sa_mask);
sigaddset(&s.sa_mask, 1);
sigaction(SIGALRM, &s, NULL);
signal(SIGVTALRM, handler3);
setitimer(ITIMER_REAL, &t1, NULL);
setitimer(ITIMER_VIRTUAL, &t2, NULL);
f(-513); /* -ERESTARTNOINTR */
write(1, "buggered\n", 9);
return 1;
}
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Al Viro reports that calling "sys_sigsuspend(-ERESTARTNOHAND, 0, 0)"
with two signals coming and being handled in kernel space results
in the syscall restart being done twice.
Avoid this by clearing the 'why' flag when we call the signal handling
code to prevent further syscall restarts after the first.
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Neither the overcommit nor the reservation sysfs parameter were
actually working, remove them as they'll only get in the way.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the current perf_disable() usage is only an optimization,
remove it for now. This eases the removal of the __weak
hw_perf_enable() interface.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simple registration interface for struct pmu, this provides the
infrastructure for removing all the weak functions.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If we're targetting a v6 or v7 core and have at least software perf events
available, then automatically add support for hardware breakpoints.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: S. Karthikeyan <informkarthik@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For debuggers to take advantage of the hw-breakpoint framework in the kernel,
it is necessary to expose the API calls via a ptrace interface.
This patch exposes the hardware breakpoints framework as a collection of
virtual registers, accesible using PTRACE_SETHBPREGS and PTRACE_GETHBPREGS
requests. The breakpoints are stored in the debug_info struct of the running
thread.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: S. Karthikeyan <informkarthik@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The hw-breakpoint framework in the kernel requires architecture-specific
support in order to install, remove, validate and manage hardware
breakpoints.
This patch adds initial support for this framework to the ARM architecture,
but restricts the number of watchpoints to a single resource to get around
the fact that the Data Fault Address Register is unknown when a watchpoint
debug exception is taken.
On cores with v7 debug, the Kernel can handle breakpoint and watchpoint
exceptions occuring from userspace. Older cores require clients to handle
the exception themselves by registering an appropriate overflow handler
or, in the case of ptrace, handling the raised SIGTRAP.
The memory-mapped extended debug interface is unsupported due to its
unreliability in real implementations.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: S. Karthikeyan <informkarthik@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The validate_event function in the ARM perf events backend has the
following problems:
1.) Events that are disabled count towards the cost.
2.) Events associated with other PMUs [for example, software events or
breakpoints] do not count towards the cost, but do fail validation,
causing the group to fail.
This patch changes validate_event so that it ignores events in the
PERF_EVENT_STATE_OFF state or that are scheduled for other PMUs.
Reported-by: Pawel Moll <pawel.moll@arm.com>
Acked-by: Jamie Iles <jamie.iles@picochip.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
With several sections per module, and dozens of modules, the
searches down the linked list of sections would dominate the
lookup time, dwarfing any savings from the binary search
within the section.
A simple move-to-front optimisation exploits the commonality
of the code paths taken, and in simple real-world tests reduces
the number of steps in the search to barely more than 1.
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Without these, exit functions cannot be stack-traced, so to speak.
This implies that module unloads that perform allocations (don't
laugh) will cause noisy warnings on the console when kmemleak is
enabled, as it presumes that all code's call chains are traceable.
Similarly, BUGs and WARN_ONs will give additional console spam.
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The various sections are all dealt with similarly, so factor out
that common behaviour. (Incorporating Peter Huewe's fix.)
Cc: Peter Huewe <peterhuewe@gmx.de>
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Less to read.
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Handle the different nop and call instructions for Thumb-2. Also, we
need to adjust the recorded mcount_loc addresses because they have the
lsb set.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org> [recordmcount.pl change]
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This adds mcount recording and updates dynamic ftrace for ARM to work
with the new ftrace dyamic tracing implementation. It also adds support
for the mcount format used by newer ARM compilers.
With dynamic tracing, mcount() is implemented as a nop. Callsites are
patched on startup with nops, and dynamically patched to call to the
ftrace_caller() routine as needed.
Acked-by: Steven Rostedt <rostedt@goodmis.org> [recordmcount.pl change]
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Fix the mcount routines to build and run on a kernel built with the
Thumb-2 instruction set by correcting the following errors using the
fixes suggested by Catalin Marinas:
- Problem: The following assembler errors appear at the "adr r0,
ftrace_stub" instruction:
entry-common.S: Assembler messages:
entry-common.S:179: Error: invalid immediate for address calculation (value = 0x00000004)
Fix: The errors don't occur with a non-global symbol, so use one.
- Problem: The "mov lr, pc" does not set the lsb when storing the pc in
lr. The called function returns with "bx lr", and the mode changes
to ARM.
Fix: Add a label on the return address and use "adr lr, BSYM(label)".
We don't modify the old mcount because it won't be built when using
Thumb-2.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When building as Thumb-2, the ".type foo, %function" annotation in
ENDPROC seems to be required in order for the assembly routines to be
recognized as Thumb-2 code. If the ENDPROC annotations are not present,
calls to these routines are generated as BLX instead of BL.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
With a new enough GCC, ARM function tracing can be supported without the
need for frame pointers. This is essential for Thumb-2 support, since
frame pointers aren't available then.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The 2.6.36-rc kernel added three new system calls:
fanotify_init, fanotify_mark, and prlimit64. This patch
wires them up on ARM.
The only non-trivial issue here is the u64 argument to
sys_fanotify_mark(), but it is the 3rd argument and thus
passed in r2/r3 in both kernel and user space, so it causes
no problems.
Tested with a 2.6.36-rc2 EABI kernel on an ixp4xx machine.
Tested-by: Anand Gadiyar <gadiyar@ti.com>
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This is purely a cosmetic change to the ARM perf backend because the current
comments about the relationship between NMIs, interrupt context and
perf_event_do_pending are misleading.
This patch updates the comments so that they reflect what the code
actually does (which is in line with other architectures).
Acked-by: Jamie Iles <jamie.iles@picochip.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Noone is using tty argument so let's get rid of it.
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Acked-by: Jason Wessel <jason.wessel@windriver.com>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Store the kernel and user contexts from the generic layer instead
of archs, this gathers some repetitive code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
- Most archs use one callchain buffer per cpu, except x86 that needs
to deal with NMIs. Provide a default perf_callchain_buffer()
implementation that x86 overrides.
- Centralize all the kernel/user regs handling and invoke new arch
handlers from there: perf_callchain_user() / perf_callchain_kernel()
That avoid all the user_mode(), current->mm checks and so...
- Invert some parameters in perf_callchain_*() helpers: entry to the
left, regs to the right, following the traditional (dst, src).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>