266 lines
7.3 KiB
C++
266 lines
7.3 KiB
C++
|
/*
|
||
|
* Copyright (C) 2011 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#define __STDC_LIMIT_MACROS
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <stdint.h>
|
||
|
|
||
|
#include <utils/LinearTransform.h>
|
||
|
|
||
|
namespace android {
|
||
|
|
||
|
template<class T> static inline T ABS(T x) { return (x < 0) ? -x : x; }
|
||
|
|
||
|
// Static math methods involving linear transformations
|
||
|
static bool scale_u64_to_u64(
|
||
|
uint64_t val,
|
||
|
uint32_t N,
|
||
|
uint32_t D,
|
||
|
uint64_t* res,
|
||
|
bool round_up_not_down) {
|
||
|
uint64_t tmp1, tmp2;
|
||
|
uint32_t r;
|
||
|
|
||
|
assert(res);
|
||
|
assert(D);
|
||
|
|
||
|
// Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit
|
||
|
// integer X.
|
||
|
// Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit
|
||
|
// integer X.
|
||
|
// Let X[A, B] with A <= B denote bits A through B of the integer X.
|
||
|
// Let (A | B) denote the concatination of two 32 bit ints, A and B.
|
||
|
// IOW X = (A | B) => U32(X) == A && L32(X) == B
|
||
|
//
|
||
|
// compute M = val * N (a 96 bit int)
|
||
|
// ---------------------------------
|
||
|
// tmp2 = U32(val) * N (a 64 bit int)
|
||
|
// tmp1 = L32(val) * N (a 64 bit int)
|
||
|
// which means
|
||
|
// M = val * N = (tmp2 << 32) + tmp1
|
||
|
tmp2 = (val >> 32) * N;
|
||
|
tmp1 = (val & UINT32_MAX) * N;
|
||
|
|
||
|
// compute M[32, 95]
|
||
|
// tmp2 = tmp2 + U32(tmp1)
|
||
|
// = (U32(val) * N) + U32(L32(val) * N)
|
||
|
// = M[32, 95]
|
||
|
tmp2 += tmp1 >> 32;
|
||
|
|
||
|
// if M[64, 95] >= D, then M/D has bits > 63 set and we have
|
||
|
// an overflow.
|
||
|
if ((tmp2 >> 32) >= D) {
|
||
|
*res = UINT64_MAX;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Divide. Going in we know
|
||
|
// tmp2 = M[32, 95]
|
||
|
// U32(tmp2) < D
|
||
|
r = tmp2 % D;
|
||
|
tmp2 /= D;
|
||
|
|
||
|
// At this point
|
||
|
// tmp1 = L32(val) * N
|
||
|
// tmp2 = M[32, 95] / D
|
||
|
// = (M / D)[32, 95]
|
||
|
// r = M[32, 95] % D
|
||
|
// U32(tmp2) = 0
|
||
|
//
|
||
|
// compute tmp1 = (r | M[0, 31])
|
||
|
tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32);
|
||
|
|
||
|
// Divide again. Keep the remainder around in order to round properly.
|
||
|
r = tmp1 % D;
|
||
|
tmp1 /= D;
|
||
|
|
||
|
// At this point
|
||
|
// tmp2 = (M / D)[32, 95]
|
||
|
// tmp1 = (M / D)[ 0, 31]
|
||
|
// r = M % D
|
||
|
// U32(tmp1) = 0
|
||
|
// U32(tmp2) = 0
|
||
|
|
||
|
// Pack the result and deal with the round-up case (As well as the
|
||
|
// remote possiblility over overflow in such a case).
|
||
|
*res = (tmp2 << 32) | tmp1;
|
||
|
if (r && round_up_not_down) {
|
||
|
++(*res);
|
||
|
if (!(*res)) {
|
||
|
*res = UINT64_MAX;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool linear_transform_s64_to_s64(
|
||
|
int64_t val,
|
||
|
int64_t basis1,
|
||
|
int32_t N,
|
||
|
uint32_t D,
|
||
|
bool invert_frac,
|
||
|
int64_t basis2,
|
||
|
int64_t* out) {
|
||
|
uint64_t scaled, res;
|
||
|
uint64_t abs_val;
|
||
|
bool is_neg;
|
||
|
|
||
|
if (!out)
|
||
|
return false;
|
||
|
|
||
|
// Compute abs(val - basis_64). Keep track of whether or not this delta
|
||
|
// will be negative after the scale opertaion.
|
||
|
if (val < basis1) {
|
||
|
is_neg = true;
|
||
|
abs_val = basis1 - val;
|
||
|
} else {
|
||
|
is_neg = false;
|
||
|
abs_val = val - basis1;
|
||
|
}
|
||
|
|
||
|
if (N < 0)
|
||
|
is_neg = !is_neg;
|
||
|
|
||
|
if (!scale_u64_to_u64(abs_val,
|
||
|
invert_frac ? D : ABS(N),
|
||
|
invert_frac ? ABS(N) : D,
|
||
|
&scaled,
|
||
|
is_neg))
|
||
|
return false; // overflow/undeflow
|
||
|
|
||
|
// if scaled is >= 0x8000<etc>, then we are going to overflow or
|
||
|
// underflow unless ABS(basis2) is large enough to pull us back into the
|
||
|
// non-overflow/underflow region.
|
||
|
if (scaled & INT64_MIN) {
|
||
|
if (is_neg && (basis2 < 0))
|
||
|
return false; // certain underflow
|
||
|
|
||
|
if (!is_neg && (basis2 >= 0))
|
||
|
return false; // certain overflow
|
||
|
|
||
|
if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX))
|
||
|
return false; // not enough
|
||
|
|
||
|
// Looks like we are OK
|
||
|
*out = (is_neg ? (-scaled) : scaled) + basis2;
|
||
|
} else {
|
||
|
// Scaled fits within signed bounds, so we just need to check for
|
||
|
// over/underflow for two signed integers. Basically, if both scaled
|
||
|
// and basis2 have the same sign bit, and the result has a different
|
||
|
// sign bit, then we have under/overflow. An easy way to compute this
|
||
|
// is
|
||
|
// (scaled_signbit XNOR basis_signbit) &&
|
||
|
// (scaled_signbit XOR res_signbit)
|
||
|
// ==
|
||
|
// (scaled_signbit XOR basis_signbit XOR 1) &&
|
||
|
// (scaled_signbit XOR res_signbit)
|
||
|
|
||
|
if (is_neg)
|
||
|
scaled = -scaled;
|
||
|
res = scaled + basis2;
|
||
|
|
||
|
if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN)
|
||
|
return false;
|
||
|
|
||
|
*out = res;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const {
|
||
|
if (0 == a_to_b_denom)
|
||
|
return false;
|
||
|
|
||
|
return linear_transform_s64_to_s64(a_in,
|
||
|
a_zero,
|
||
|
a_to_b_numer,
|
||
|
a_to_b_denom,
|
||
|
false,
|
||
|
b_zero,
|
||
|
b_out);
|
||
|
}
|
||
|
|
||
|
bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const {
|
||
|
if (0 == a_to_b_numer)
|
||
|
return false;
|
||
|
|
||
|
return linear_transform_s64_to_s64(b_in,
|
||
|
b_zero,
|
||
|
a_to_b_numer,
|
||
|
a_to_b_denom,
|
||
|
true,
|
||
|
a_zero,
|
||
|
a_out);
|
||
|
}
|
||
|
|
||
|
template <class T> void LinearTransform::reduce(T* N, T* D) {
|
||
|
T a, b;
|
||
|
if (!N || !D || !(*D)) {
|
||
|
assert(false);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
a = *N;
|
||
|
b = *D;
|
||
|
|
||
|
if (a == 0) {
|
||
|
*D = 1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// This implements Euclid's method to find GCD.
|
||
|
if (a < b) {
|
||
|
T tmp = a;
|
||
|
a = b;
|
||
|
b = tmp;
|
||
|
}
|
||
|
|
||
|
while (1) {
|
||
|
// a is now the greater of the two.
|
||
|
const T remainder = a % b;
|
||
|
if (remainder == 0) {
|
||
|
*N /= b;
|
||
|
*D /= b;
|
||
|
return;
|
||
|
}
|
||
|
// by swapping remainder and b, we are guaranteeing that a is
|
||
|
// still the greater of the two upon entrance to the loop.
|
||
|
a = b;
|
||
|
b = remainder;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D);
|
||
|
template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D);
|
||
|
|
||
|
void LinearTransform::reduce(int32_t* N, uint32_t* D) {
|
||
|
if (N && D && *D) {
|
||
|
if (*N < 0) {
|
||
|
*N = -(*N);
|
||
|
reduce(reinterpret_cast<uint32_t*>(N), D);
|
||
|
*N = -(*N);
|
||
|
} else {
|
||
|
reduce(reinterpret_cast<uint32_t*>(N), D);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace android
|