Elf interface for new unwinder.

This cl includes the code to read arm unwind information from a shared
library.

Bug: 23762183

Test: Passes all unit tests. I can dump the arm unwind information
Test: for an arm shared library.
Change-Id: I43501ea2eab843b81de8bd5128401dd1971af8d3
This commit is contained in:
Christopher Ferris 2017-02-01 15:44:40 -08:00
parent e88882e16e
commit 3958f8060a
29 changed files with 3210 additions and 444 deletions

View File

@ -30,6 +30,15 @@ cc_defaults {
enabled: false,
},
},
multilib: {
lib32: {
suffix: "32",
},
lib64: {
suffix: "64",
},
},
}
cc_defaults {
@ -38,8 +47,12 @@ cc_defaults {
srcs: [
"ArmExidx.cpp",
"Memory.cpp",
"Elf.cpp",
"ElfInterface.cpp",
"ElfInterfaceArm.cpp",
"Log.cpp",
"Regs.cpp",
"Memory.cpp",
],
shared_libs: [
@ -74,6 +87,9 @@ cc_defaults {
srcs: [
"tests/ArmExidxDecodeTest.cpp",
"tests/ArmExidxExtractTest.cpp",
"tests/ElfInterfaceArmTest.cpp",
"tests/ElfInterfaceTest.cpp",
"tests/ElfTest.cpp",
"tests/LogFake.cpp",
"tests/MemoryFake.cpp",
"tests/MemoryFileTest.cpp",
@ -93,15 +109,6 @@ cc_defaults {
"liblog",
],
multilib: {
lib32: {
suffix: "32",
},
lib64: {
suffix: "64",
},
},
target: {
linux: {
host_ldlibs: [
@ -130,3 +137,31 @@ cc_test {
"libunwindstack_debug",
],
}
//-------------------------------------------------------------------------
// Utility Executables
//-------------------------------------------------------------------------
cc_defaults {
name: "libunwindstack_executables",
defaults: ["libunwindstack_flags"],
shared_libs: [
"libunwindstack",
"libbase",
],
static_libs: [
"liblog",
],
compile_multilib: "both",
}
cc_binary {
name: "unwind_info",
defaults: ["libunwindstack_executables"],
srcs: [
"unwind_info.cpp",
],
}

View File

@ -25,6 +25,8 @@
#include "ArmExidx.h"
#include "Log.h"
#include "Machine.h"
#include "Memory.h"
#include "Regs.h"
void ArmExidx::LogRawData() {
std::string log_str("Raw Data:");
@ -216,10 +218,16 @@ inline bool ArmExidx::DecodePrefix_10_00(uint8_t byte) {
cfa_ += 4;
}
}
// If the sp register is modified, change the cfa value.
if (registers & (1 << ARM_REG_SP)) {
cfa_ = (*regs_)[ARM_REG_SP];
}
// Indicate if the pc register was set.
if (registers & (1 << ARM_REG_PC)) {
pc_set_ = true;
}
return true;
}
@ -296,9 +304,6 @@ inline bool ArmExidx::DecodePrefix_10_11_0000() {
return false;
}
}
if (!(*regs_)[ARM_REG_PC]) {
(*regs_)[ARM_REG_PC] = (*regs_)[ARM_REG_LR];
}
status_ = ARM_STATUS_FINISH;
return false;
}
@ -675,6 +680,7 @@ bool ArmExidx::Decode() {
}
bool ArmExidx::Eval() {
pc_set_ = false;
while (Decode());
return status_ == ARM_STATUS_FINISH;
}

View File

@ -21,8 +21,9 @@
#include <deque>
#include "Memory.h"
#include "Regs.h"
// Forward declarations.
class Memory;
class RegsArm;
enum ArmStatus : size_t {
ARM_STATUS_NONE = 0,
@ -43,7 +44,7 @@ enum ArmOp : uint8_t {
class ArmExidx {
public:
ArmExidx(Regs32* regs, Memory* elf_memory, Memory* process_memory)
ArmExidx(RegsArm* regs, Memory* elf_memory, Memory* process_memory)
: regs_(regs), elf_memory_(elf_memory), process_memory_(process_memory) {}
virtual ~ArmExidx() {}
@ -59,11 +60,14 @@ class ArmExidx {
ArmStatus status() { return status_; }
Regs32* regs() { return regs_; }
RegsArm* regs() { return regs_; }
uint32_t cfa() { return cfa_; }
void set_cfa(uint32_t cfa) { cfa_ = cfa; }
bool pc_set() { return pc_set_; }
void set_pc_set(bool pc_set) { pc_set_ = pc_set; }
void set_log(bool log) { log_ = log; }
void set_log_skip_execution(bool skip_execution) { log_skip_execution_ = skip_execution; }
void set_log_indent(uint8_t indent) { log_indent_ = indent; }
@ -87,7 +91,7 @@ class ArmExidx {
bool DecodePrefix_11_010(uint8_t byte);
bool DecodePrefix_11(uint8_t byte);
Regs32* regs_ = nullptr;
RegsArm* regs_ = nullptr;
uint32_t cfa_ = 0;
std::deque<uint8_t> data_;
ArmStatus status_ = ARM_STATUS_NONE;
@ -98,6 +102,7 @@ class ArmExidx {
bool log_ = false;
uint8_t log_indent_ = 0;
bool log_skip_execution_ = false;
bool pc_set_ = false;
};
#endif // _LIBUNWINDSTACK_ARM_EXIDX_H

113
libunwindstack/Elf.cpp Normal file
View File

@ -0,0 +1,113 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <string.h>
#include <memory>
#include <string>
#define LOG_TAG "unwind"
#include <log/log.h>
#include "Elf.h"
#include "ElfInterface.h"
#include "ElfInterfaceArm.h"
#include "Machine.h"
#include "Memory.h"
#include "Regs.h"
bool Elf::Init() {
if (!memory_) {
return false;
}
interface_.reset(CreateInterfaceFromMemory(memory_.get()));
if (!interface_) {
return false;
}
valid_ = interface_->Init();
if (valid_) {
interface_->InitHeaders();
} else {
interface_.reset(nullptr);
}
return valid_;
}
bool Elf::IsValidElf(Memory* memory) {
if (memory == nullptr) {
return false;
}
// Verify that this is a valid elf file.
uint8_t e_ident[SELFMAG + 1];
if (!memory->Read(0, e_ident, SELFMAG)) {
return false;
}
if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) {
return false;
}
return true;
}
ElfInterface* Elf::CreateInterfaceFromMemory(Memory* memory) {
if (!IsValidElf(memory)) {
return nullptr;
}
std::unique_ptr<ElfInterface> interface;
if (!memory->Read(EI_CLASS, &class_type_, 1)) {
return nullptr;
}
if (class_type_ == ELFCLASS32) {
Elf32_Half e_machine;
if (!memory->Read(EI_NIDENT + sizeof(Elf32_Half), &e_machine, sizeof(e_machine))) {
return nullptr;
}
if (e_machine != EM_ARM && e_machine != EM_386) {
// Unsupported.
ALOGI("32 bit elf that is neither arm nor x86: e_machine = %d\n", e_machine);
return nullptr;
}
machine_type_ = e_machine;
if (e_machine == EM_ARM) {
interface.reset(new ElfInterfaceArm(memory));
} else {
interface.reset(new ElfInterface32(memory));
}
} else if (class_type_ == ELFCLASS64) {
Elf64_Half e_machine;
if (!memory->Read(EI_NIDENT + sizeof(Elf64_Half), &e_machine, sizeof(e_machine))) {
return nullptr;
}
if (e_machine != EM_AARCH64 && e_machine != EM_X86_64) {
// Unsupported.
ALOGI("64 bit elf that is neither aarch64 nor x86_64: e_machine = %d\n", e_machine);
return nullptr;
}
machine_type_ = e_machine;
interface.reset(new ElfInterface64(memory));
}
return interface.release();
}

78
libunwindstack/Elf.h Normal file
View File

@ -0,0 +1,78 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _LIBUNWINDSTACK_ELF_H
#define _LIBUNWINDSTACK_ELF_H
#include <stddef.h>
#include <memory>
#include <string>
#include "ElfInterface.h"
#include "Memory.h"
#if !defined(EM_AARCH64)
#define EM_AARCH64 183
#endif
// Forward declaration.
class Regs;
class Elf {
public:
Elf(Memory* memory) : memory_(memory) {}
virtual ~Elf() = default;
bool Init();
void InitGnuDebugdata();
bool GetSoname(std::string* name) {
return valid_ && interface_->GetSoname(name);
}
bool GetFunctionName(uint64_t, std::string*, uint64_t*) {
return false;
}
bool Step(uint64_t rel_pc, Regs* regs, Memory* process_memory) {
return valid_ && interface_->Step(rel_pc, regs, process_memory);
}
ElfInterface* CreateInterfaceFromMemory(Memory* memory);
bool valid() { return valid_; }
uint32_t machine_type() { return machine_type_; }
uint8_t class_type() { return class_type_; }
Memory* memory() { return memory_.get(); }
ElfInterface* interface() { return interface_.get(); }
static bool IsValidElf(Memory* memory);
protected:
bool valid_ = false;
std::unique_ptr<ElfInterface> interface_;
std::unique_ptr<Memory> memory_;
uint32_t machine_type_;
uint8_t class_type_;
};
#endif // _LIBUNWINDSTACK_ELF_H

View File

@ -0,0 +1,223 @@
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include <memory>
#include <string>
#include "ElfInterface.h"
#include "Memory.h"
#include "Regs.h"
template <typename EhdrType, typename PhdrType, typename ShdrType>
bool ElfInterface::ReadAllHeaders() {
EhdrType ehdr;
if (!memory_->Read(0, &ehdr, sizeof(ehdr))) {
return false;
}
if (!ReadProgramHeaders<EhdrType, PhdrType>(ehdr)) {
return false;
}
return ReadSectionHeaders<EhdrType, ShdrType>(ehdr);
}
template <typename EhdrType, typename PhdrType>
bool ElfInterface::ReadProgramHeaders(const EhdrType& ehdr) {
uint64_t offset = ehdr.e_phoff;
for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) {
PhdrType phdr;
if (!memory_->Read(offset, &phdr, &phdr.p_type, sizeof(phdr.p_type))) {
return false;
}
if (HandleType(offset, phdr.p_type)) {
continue;
}
switch (phdr.p_type) {
case PT_LOAD:
{
// Get the flags first, if this isn't an executable header, ignore it.
if (!memory_->Read(offset, &phdr, &phdr.p_flags, sizeof(phdr.p_flags))) {
return false;
}
if ((phdr.p_flags & PF_X) == 0) {
continue;
}
if (!memory_->Read(offset, &phdr, &phdr.p_vaddr, sizeof(phdr.p_vaddr))) {
return false;
}
if (!memory_->Read(offset, &phdr, &phdr.p_offset, sizeof(phdr.p_offset))) {
return false;
}
if (!memory_->Read(offset, &phdr, &phdr.p_memsz, sizeof(phdr.p_memsz))) {
return false;
}
pt_loads_[phdr.p_offset] = LoadInfo{phdr.p_offset, phdr.p_vaddr,
static_cast<size_t>(phdr.p_memsz)};
if (phdr.p_offset == 0) {
load_bias_ = phdr.p_vaddr;
}
break;
}
case PT_GNU_EH_FRAME:
if (!memory_->Read(offset, &phdr, &phdr.p_offset, sizeof(phdr.p_offset))) {
return false;
}
eh_frame_offset_ = phdr.p_offset;
if (!memory_->Read(offset, &phdr, &phdr.p_memsz, sizeof(phdr.p_memsz))) {
return false;
}
eh_frame_size_ = phdr.p_memsz;
break;
case PT_DYNAMIC:
if (!memory_->Read(offset, &phdr, &phdr.p_offset, sizeof(phdr.p_offset))) {
return false;
}
dynamic_offset_ = phdr.p_offset;
if (!memory_->Read(offset, &phdr, &phdr.p_memsz, sizeof(phdr.p_memsz))) {
return false;
}
dynamic_size_ = phdr.p_memsz;
break;
}
}
return true;
}
template <typename EhdrType, typename ShdrType>
bool ElfInterface::ReadSectionHeaders(const EhdrType& ehdr) {
uint64_t offset = ehdr.e_shoff;
uint64_t sec_offset = 0;
uint64_t sec_size = 0;
// Get the location of the section header names.
// If something is malformed in the header table data, we aren't going
// to terminate, we'll simply ignore this part.
ShdrType shdr;
if (ehdr.e_shstrndx < ehdr.e_shnum) {
uint64_t sh_offset = offset + ehdr.e_shstrndx * ehdr.e_shentsize;
if (memory_->Read(sh_offset, &shdr, &shdr.sh_offset, sizeof(shdr.sh_offset))
&& memory_->Read(sh_offset, &shdr, &shdr.sh_size, sizeof(shdr.sh_size))) {
sec_offset = shdr.sh_offset;
sec_size = shdr.sh_size;
}
}
// Skip the first header, it's always going to be NULL.
for (size_t i = 1; i < ehdr.e_shnum; i++, offset += ehdr.e_shentsize) {
if (!memory_->Read(offset, &shdr, &shdr.sh_type, sizeof(shdr.sh_type))) {
return false;
}
if (shdr.sh_type == SHT_PROGBITS) {
// Look for the .debug_frame and .gnu_debugdata.
if (!memory_->Read(offset, &shdr, &shdr.sh_name, sizeof(shdr.sh_name))) {
return false;
}
if (shdr.sh_name < sec_size) {
std::string name;
if (memory_->ReadString(sec_offset + shdr.sh_name, &name)) {
if (name == ".debug_frame") {
if (memory_->Read(offset, &shdr, &shdr.sh_offset, sizeof(shdr.sh_offset))
&& memory_->Read(offset, &shdr, &shdr.sh_size, sizeof(shdr.sh_size))) {
debug_frame_offset_ = shdr.sh_offset;
debug_frame_size_ = shdr.sh_size;
}
} else if (name == ".gnu_debugdata") {
if (memory_->Read(offset, &shdr, &shdr.sh_offset, sizeof(shdr.sh_offset))
&& memory_->Read(offset, &shdr, &shdr.sh_size, sizeof(shdr.sh_size))) {
gnu_debugdata_offset_ = shdr.sh_offset;
gnu_debugdata_size_ = shdr.sh_size;
}
}
}
}
}
}
return true;
}
template <typename DynType>
bool ElfInterface::GetSonameWithTemplate(std::string* soname) {
if (soname_type_ == SONAME_INVALID) {
return false;
}
if (soname_type_ == SONAME_VALID) {
*soname = soname_;
return true;
}
soname_type_ = SONAME_INVALID;
uint64_t soname_offset = 0;
uint64_t strtab_offset = 0;
uint64_t strtab_size = 0;
// Find the soname location from the dynamic headers section.
DynType dyn;
uint64_t offset = dynamic_offset_;
uint64_t max_offset = offset + dynamic_size_;
for (uint64_t offset = dynamic_offset_; offset < max_offset; offset += sizeof(DynType)) {
if (!memory_->Read(offset, &dyn, sizeof(dyn))) {
return false;
}
if (dyn.d_tag == DT_STRTAB) {
strtab_offset = dyn.d_un.d_ptr;
} else if (dyn.d_tag == DT_STRSZ) {
strtab_size = dyn.d_un.d_val;
} else if (dyn.d_tag == DT_SONAME) {
soname_offset = dyn.d_un.d_val;
} else if (dyn.d_tag == DT_NULL) {
break;
}
}
soname_offset += strtab_offset;
if (soname_offset >= strtab_offset + strtab_size) {
return false;
}
if (!memory_->ReadString(soname_offset, &soname_)) {
return false;
}
soname_type_ = SONAME_VALID;
*soname = soname_;
return true;
}
bool ElfInterface::Step(uint64_t, Regs*, Memory*) {
return false;
}
// Instantiate all of the needed template functions.
template bool ElfInterface::ReadAllHeaders<Elf32_Ehdr, Elf32_Phdr, Elf32_Shdr>();
template bool ElfInterface::ReadAllHeaders<Elf64_Ehdr, Elf64_Phdr, Elf64_Shdr>();
template bool ElfInterface::ReadProgramHeaders<Elf32_Ehdr, Elf32_Phdr>(const Elf32_Ehdr&);
template bool ElfInterface::ReadProgramHeaders<Elf64_Ehdr, Elf64_Phdr>(const Elf64_Ehdr&);
template bool ElfInterface::ReadSectionHeaders<Elf32_Ehdr, Elf32_Shdr>(const Elf32_Ehdr&);
template bool ElfInterface::ReadSectionHeaders<Elf64_Ehdr, Elf64_Shdr>(const Elf64_Ehdr&);
template bool ElfInterface::GetSonameWithTemplate<Elf32_Dyn>(std::string*);
template bool ElfInterface::GetSonameWithTemplate<Elf64_Dyn>(std::string*);

View File

@ -0,0 +1,152 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _LIBUNWINDSTACK_ELF_INTERFACE_H
#define _LIBUNWINDSTACK_ELF_INTERFACE_H
#include <elf.h>
#include <stdint.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
// Forward declarations.
class Memory;
class Regs;
struct LoadInfo {
uint64_t offset;
uint64_t table_offset;
size_t table_size;
};
enum : uint8_t {
SONAME_UNKNOWN = 0,
SONAME_VALID,
SONAME_INVALID,
};
class ElfInterface {
public:
ElfInterface(Memory* memory) : memory_(memory) {}
virtual ~ElfInterface() = default;
virtual bool Init() = 0;
virtual void InitHeaders() = 0;
virtual bool GetSoname(std::string* name) = 0;
virtual bool GetFunctionName(uint64_t addr, std::string* name, uint64_t* offset) = 0;
virtual bool Step(uint64_t rel_pc, Regs* regs, Memory* process_memory);
Memory* CreateGnuDebugdataMemory();
Memory* memory() { return memory_; }
const std::unordered_map<uint64_t, LoadInfo>& pt_loads() { return pt_loads_; }
uint64_t load_bias() { return load_bias_; }
void set_load_bias(uint64_t load_bias) { load_bias_ = load_bias; }
uint64_t dynamic_offset() { return dynamic_offset_; }
uint64_t dynamic_size() { return dynamic_size_; }
uint64_t eh_frame_offset() { return eh_frame_offset_; }
uint64_t eh_frame_size() { return eh_frame_size_; }
uint64_t gnu_debugdata_offset() { return gnu_debugdata_offset_; }
uint64_t gnu_debugdata_size() { return gnu_debugdata_size_; }
protected:
template <typename EhdrType, typename PhdrType, typename ShdrType>
bool ReadAllHeaders();
template <typename EhdrType, typename PhdrType>
bool ReadProgramHeaders(const EhdrType& ehdr);
template <typename EhdrType, typename ShdrType>
bool ReadSectionHeaders(const EhdrType& ehdr);
template <typename DynType>
bool GetSonameWithTemplate(std::string* soname);
virtual bool HandleType(uint64_t, uint32_t) { return false; }
Memory* memory_;
std::unordered_map<uint64_t, LoadInfo> pt_loads_;
uint64_t load_bias_ = 0;
// Stored elf data.
uint64_t dynamic_offset_ = 0;
uint64_t dynamic_size_ = 0;
uint64_t eh_frame_offset_ = 0;
uint64_t eh_frame_size_ = 0;
uint64_t debug_frame_offset_ = 0;
uint64_t debug_frame_size_ = 0;
uint64_t gnu_debugdata_offset_ = 0;
uint64_t gnu_debugdata_size_ = 0;
uint8_t soname_type_ = SONAME_UNKNOWN;
std::string soname_;
};
class ElfInterface32 : public ElfInterface {
public:
ElfInterface32(Memory* memory) : ElfInterface(memory) {}
virtual ~ElfInterface32() = default;
bool Init() override {
return ElfInterface::ReadAllHeaders<Elf32_Ehdr, Elf32_Phdr, Elf32_Shdr>();
}
void InitHeaders() override {
}
bool GetSoname(std::string* soname) override {
return ElfInterface::GetSonameWithTemplate<Elf32_Dyn>(soname);
}
bool GetFunctionName(uint64_t, std::string*, uint64_t*) override {
return false;
}
};
class ElfInterface64 : public ElfInterface {
public:
ElfInterface64(Memory* memory) : ElfInterface(memory) {}
virtual ~ElfInterface64() = default;
bool Init() override {
return ElfInterface::ReadAllHeaders<Elf64_Ehdr, Elf64_Phdr, Elf64_Shdr>();
}
void InitHeaders() override {
}
bool GetSoname(std::string* soname) override {
return ElfInterface::GetSonameWithTemplate<Elf64_Dyn>(soname);
}
bool GetFunctionName(uint64_t, std::string*, uint64_t*) override {
return false;
}
};
#endif // _LIBUNWINDSTACK_ELF_INTERFACE_H

View File

@ -0,0 +1,127 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include "ArmExidx.h"
#include "ElfInterface.h"
#include "ElfInterfaceArm.h"
#include "Machine.h"
#include "Memory.h"
#include "Regs.h"
bool ElfInterfaceArm::FindEntry(uint32_t pc, uint64_t* entry_offset) {
if (start_offset_ == 0 || total_entries_ == 0) {
return false;
}
// Need to subtract the load_bias from the pc.
if (pc < load_bias_) {
return false;
}
pc -= load_bias_;
size_t first = 0;
size_t last = total_entries_;
while (first < last) {
size_t current = (first + last) / 2;
uint32_t addr = addrs_[current];
if (addr == 0) {
if (!GetPrel31Addr(start_offset_ + current * 8, &addr)) {
return false;
}
addrs_[current] = addr;
}
if (pc == addr) {
*entry_offset = start_offset_ + current * 8;
return true;
}
if (pc < addr) {
last = current;
} else {
first = current + 1;
}
}
if (last != 0) {
*entry_offset = start_offset_ + (last - 1) * 8;
return true;
}
return false;
}
bool ElfInterfaceArm::GetPrel31Addr(uint32_t offset, uint32_t* addr) {
uint32_t data;
if (!memory_->Read32(offset, &data)) {
return false;
}
// Sign extend the value if necessary.
int32_t value = (static_cast<int32_t>(data) << 1) >> 1;
*addr = offset + value;
return true;
}
#if !defined(PT_ARM_EXIDX)
#define PT_ARM_EXIDX 0x70000001
#endif
bool ElfInterfaceArm::HandleType(uint64_t offset, uint32_t type) {
if (type != PT_ARM_EXIDX) {
return false;
}
Elf32_Phdr phdr;
if (!memory_->Read(offset, &phdr, &phdr.p_vaddr, sizeof(phdr.p_vaddr))) {
return true;
}
if (!memory_->Read(offset, &phdr, &phdr.p_memsz, sizeof(phdr.p_memsz))) {
return true;
}
// The load_bias_ should always be set by this time.
start_offset_ = phdr.p_vaddr - load_bias_;
total_entries_ = phdr.p_memsz / 8;
return true;
}
bool ElfInterfaceArm::Step(uint64_t pc, Regs* regs, Memory* process_memory) {
return StepExidx(pc, regs, process_memory) ||
ElfInterface32::Step(pc, regs, process_memory);
}
bool ElfInterfaceArm::StepExidx(uint64_t pc, Regs* regs, Memory* process_memory) {
RegsArm* regs_arm = reinterpret_cast<RegsArm*>(regs);
// First try arm, then try dwarf.
uint64_t entry_offset;
if (!FindEntry(pc, &entry_offset)) {
return false;
}
ArmExidx arm(regs_arm, memory_, process_memory);
arm.set_cfa(regs_arm->sp());
if (arm.ExtractEntryData(entry_offset) && arm.Eval()) {
// If the pc was not set, then use the LR registers for the PC.
if (!arm.pc_set()) {
regs_arm->set_pc((*regs_arm)[ARM_REG_LR]);
(*regs_arm)[ARM_REG_PC] = regs_arm->pc();
} else {
regs_arm->set_pc((*regs_arm)[ARM_REG_PC]);
}
regs_arm->set_sp(arm.cfa());
(*regs_arm)[ARM_REG_SP] = regs_arm->sp();
return true;
}
return false;
}

View File

@ -0,0 +1,90 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _LIBUNWINDSTACK_ELF_INTERFACE_ARM_H
#define _LIBUNWINDSTACK_ELF_INTERFACE_ARM_H
#include <elf.h>
#include <stdint.h>
#include <iterator>
#include <unordered_map>
#include "ElfInterface.h"
#include "Memory.h"
class ElfInterfaceArm : public ElfInterface32 {
public:
ElfInterfaceArm(Memory* memory) : ElfInterface32(memory) {}
virtual ~ElfInterfaceArm() = default;
class iterator : public std::iterator<std::bidirectional_iterator_tag, uint32_t> {
public:
iterator(ElfInterfaceArm* interface, size_t index) : interface_(interface), index_(index) { }
iterator& operator++() { index_++; return *this; }
iterator& operator++(int increment) { index_ += increment; return *this; }
iterator& operator--() { index_--; return *this; }
iterator& operator--(int decrement) { index_ -= decrement; return *this; }
bool operator==(const iterator& rhs) { return this->index_ == rhs.index_; }
bool operator!=(const iterator& rhs) { return this->index_ != rhs.index_; }
uint32_t operator*() {
uint32_t addr = interface_->addrs_[index_];
if (addr == 0) {
if (!interface_->GetPrel31Addr(interface_->start_offset_ + index_ * 8, &addr)) {
return 0;
}
interface_->addrs_[index_] = addr;
}
return addr;
}
private:
ElfInterfaceArm* interface_ = nullptr;
size_t index_ = 0;
};
iterator begin() { return iterator(this, 0); }
iterator end() { return iterator(this, total_entries_); }
bool GetPrel31Addr(uint32_t offset, uint32_t* addr);
bool FindEntry(uint32_t pc, uint64_t* entry_offset);
bool HandleType(uint64_t offset, uint32_t type) override;
bool Step(uint64_t pc, Regs* regs, Memory* process_memory) override;
bool StepExidx(uint64_t pc, Regs* regs, Memory* process_memory);
uint64_t start_offset() { return start_offset_; }
void set_start_offset(uint64_t start_offset) { start_offset_ = start_offset; }
size_t total_entries() { return total_entries_; }
void set_total_entries(size_t total_entries) { total_entries_ = total_entries; }
private:
uint64_t start_offset_ = 0;
size_t total_entries_ = 0;
std::unordered_map<size_t, uint32_t> addrs_;
};
#endif // _LIBUNWINDSTACK_ELF_INTERFACE_ARM_H

View File

@ -19,8 +19,6 @@
#include <stdint.h>
class Regs;
enum ArmReg : uint16_t {
ARM_REG_R0 = 0,
ARM_REG_R1,

44
libunwindstack/MapInfo.h Normal file
View File

@ -0,0 +1,44 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _LIBUNWINDSTACK_MAP_INFO_H
#define _LIBUNWINDSTACK_MAP_INFO_H
#include <stdint.h>
#include <string>
// Forward declarations.
class Elf;
class Memory;
struct MapInfo {
uint64_t start;
uint64_t end;
uint64_t offset;
uint16_t flags;
std::string name;
Elf* elf = nullptr;
// This value is only non-zero if the offset is non-zero but there is
// no elf signature found at that offset. This indicates that the
// entire file is represented by the Memory object returned by CreateMemory,
// instead of a portion of the file.
uint64_t elf_offset;
Memory* CreateMemory(pid_t pid);
};
#endif // _LIBUNWINDSTACK_MAP_INFO_H

View File

@ -48,14 +48,40 @@ bool Memory::ReadString(uint64_t addr, std::string* string, uint64_t max_read) {
return false;
}
bool MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) {
uint64_t last_read_byte;
if (__builtin_add_overflow(size, addr, &last_read_byte)) {
return false;
}
if (last_read_byte > raw_.size()) {
return false;
}
memcpy(dst, &raw_[addr], size);
return true;
}
uint8_t* MemoryBuffer::GetPtr(size_t offset) {
if (offset < raw_.size()) {
return &raw_[offset];
}
return nullptr;
}
MemoryFileAtOffset::~MemoryFileAtOffset() {
Clear();
}
void MemoryFileAtOffset::Clear() {
if (data_) {
munmap(&data_[-offset_], size_ + offset_);
data_ = nullptr;
}
}
bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset) {
bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset, uint64_t size) {
// Clear out any previous data if it exists.
Clear();
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC)));
if (fd == -1) {
return false;
@ -71,6 +97,10 @@ bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset) {
offset_ = offset & (getpagesize() - 1);
uint64_t aligned_offset = offset & ~(getpagesize() - 1);
size_ = buf.st_size - aligned_offset;
if (size < (UINT64_MAX - offset_) && size + offset_ < size_) {
// Truncate the mapped size.
size_ = size + offset_;
}
void* map = mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd, aligned_offset);
if (map == MAP_FAILED) {
return false;
@ -91,6 +121,12 @@ bool MemoryFileAtOffset::Read(uint64_t addr, void* dst, size_t size) {
}
static bool PtraceRead(pid_t pid, uint64_t addr, long* value) {
#if !defined(__LP64__)
// Cannot read an address greater than 32 bits.
if (addr > UINT32_MAX) {
return false;
}
#endif
// ptrace() returns -1 and sets errno when the operation fails.
// To disambiguate -1 from a valid result, we clear errno beforehand.
errno = 0;

View File

@ -22,10 +22,7 @@
#include <unistd.h>
#include <string>
#include <android-base/unique_fd.h>
constexpr bool kMemoryStatsEnabled = true;
#include <vector>
class Memory {
public:
@ -50,15 +47,34 @@ class Memory {
}
};
class MemoryBuffer : public Memory {
public:
MemoryBuffer() = default;
virtual ~MemoryBuffer() = default;
bool Read(uint64_t addr, void* dst, size_t size) override;
uint8_t* GetPtr(size_t offset);
void Resize(size_t size) { raw_.resize(size); }
uint64_t Size() { return raw_.size(); }
private:
std::vector<uint8_t> raw_;
};
class MemoryFileAtOffset : public Memory {
public:
MemoryFileAtOffset() = default;
virtual ~MemoryFileAtOffset();
bool Init(const std::string& file, uint64_t offset);
bool Init(const std::string& file, uint64_t offset, uint64_t size = UINT64_MAX);
bool Read(uint64_t addr, void* dst, size_t size) override;
void Clear();
protected:
size_t size_ = 0;
size_t offset_ = 0;

237
libunwindstack/Regs.cpp Normal file
View File

@ -0,0 +1,237 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <elf.h>
#include <stdint.h>
#include <sys/ptrace.h>
#include <sys/uio.h>
#include <vector>
#include "Elf.h"
#include "ElfInterface.h"
#include "Machine.h"
#include "MapInfo.h"
#include "Regs.h"
#include "User.h"
template <typename AddressType>
uint64_t RegsTmpl<AddressType>::GetRelPc(Elf* elf, const MapInfo* map_info) {
uint64_t load_bias = 0;
if (elf->valid()) {
load_bias = elf->interface()->load_bias();
}
return pc_ - map_info->start + load_bias + map_info->elf_offset;
}
template <typename AddressType>
bool RegsTmpl<AddressType>::GetReturnAddressFromDefault(Memory* memory, uint64_t* value) {
switch (return_loc_.type) {
case LOCATION_REGISTER:
assert(return_loc_.value < total_regs_);
*value = regs_[return_loc_.value];
return true;
case LOCATION_SP_OFFSET:
AddressType return_value;
if (!memory->Read(sp_ + return_loc_.value, &return_value, sizeof(return_value))) {
return false;
}
*value = return_value;
return true;
case LOCATION_UNKNOWN:
default:
return false;
}
}
RegsArm::RegsArm() : RegsTmpl<uint32_t>(ARM_REG_LAST, ARM_REG_SP,
Location(LOCATION_REGISTER, ARM_REG_LR)) {
}
uint64_t RegsArm::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
uint64_t load_bias = elf->interface()->load_bias();
if (rel_pc < load_bias) {
return rel_pc;
}
uint64_t adjusted_rel_pc = rel_pc - load_bias;
if (adjusted_rel_pc < 5) {
return rel_pc;
}
if (adjusted_rel_pc & 1) {
// This is a thumb instruction, it could be 2 or 4 bytes.
uint32_t value;
if (rel_pc < 5 || !elf->memory()->Read(adjusted_rel_pc - 5, &value, sizeof(value)) ||
(value & 0xe000f000) != 0xe000f000) {
return rel_pc - 2;
}
}
return rel_pc - 4;
}
RegsArm64::RegsArm64() : RegsTmpl<uint64_t>(ARM64_REG_LAST, ARM64_REG_SP,
Location(LOCATION_REGISTER, ARM64_REG_LR)) {
}
uint64_t RegsArm64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
if (rel_pc < 4) {
return rel_pc;
}
return rel_pc - 4;
}
RegsX86::RegsX86() : RegsTmpl<uint32_t>(X86_REG_LAST, X86_REG_SP,
Location(LOCATION_SP_OFFSET, -4)) {
}
uint64_t RegsX86::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
if (rel_pc == 0) {
return 0;
}
return rel_pc - 1;
}
RegsX86_64::RegsX86_64() : RegsTmpl<uint64_t>(X86_64_REG_LAST, X86_64_REG_SP,
Location(LOCATION_SP_OFFSET, -8)) {
}
uint64_t RegsX86_64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
if (rel_pc == 0) {
return 0;
}
return rel_pc - 1;
}
static Regs* ReadArm(void* remote_data) {
arm_user_regs* user = reinterpret_cast<arm_user_regs*>(remote_data);
RegsArm* regs = new RegsArm();
memcpy(regs->RawData(), &user->regs[0], ARM_REG_LAST * sizeof(uint32_t));
regs->set_pc(user->regs[ARM_REG_PC]);
regs->set_sp(user->regs[ARM_REG_SP]);
return regs;
}
static Regs* ReadArm64(void* remote_data) {
arm64_user_regs* user = reinterpret_cast<arm64_user_regs*>(remote_data);
RegsArm64* regs = new RegsArm64();
memcpy(regs->RawData(), &user->regs[0], (ARM64_REG_R31 + 1) * sizeof(uint64_t));
regs->set_pc(user->pc);
regs->set_sp(user->sp);
return regs;
}
static Regs* ReadX86(void* remote_data) {
x86_user_regs* user = reinterpret_cast<x86_user_regs*>(remote_data);
RegsX86* regs = new RegsX86();
(*regs)[X86_REG_EAX] = user->eax;
(*regs)[X86_REG_EBX] = user->ebx;
(*regs)[X86_REG_ECX] = user->ecx;
(*regs)[X86_REG_EDX] = user->edx;
(*regs)[X86_REG_EBP] = user->ebp;
(*regs)[X86_REG_EDI] = user->edi;
(*regs)[X86_REG_ESI] = user->esi;
(*regs)[X86_REG_ESP] = user->esp;
(*regs)[X86_REG_EIP] = user->eip;
regs->set_pc(user->eip);
regs->set_sp(user->esp);
return regs;
}
static Regs* ReadX86_64(void* remote_data) {
x86_64_user_regs* user = reinterpret_cast<x86_64_user_regs*>(remote_data);
RegsX86_64* regs = new RegsX86_64();
(*regs)[X86_64_REG_RAX] = user->rax;
(*regs)[X86_64_REG_RBX] = user->rbx;
(*regs)[X86_64_REG_RCX] = user->rcx;
(*regs)[X86_64_REG_RDX] = user->rdx;
(*regs)[X86_64_REG_R8] = user->r8;
(*regs)[X86_64_REG_R9] = user->r9;
(*regs)[X86_64_REG_R10] = user->r10;
(*regs)[X86_64_REG_R11] = user->r11;
(*regs)[X86_64_REG_R12] = user->r12;
(*regs)[X86_64_REG_R13] = user->r13;
(*regs)[X86_64_REG_R14] = user->r14;
(*regs)[X86_64_REG_R15] = user->r15;
(*regs)[X86_64_REG_RDI] = user->rdi;
(*regs)[X86_64_REG_RSI] = user->rsi;
(*regs)[X86_64_REG_RBP] = user->rbp;
(*regs)[X86_64_REG_RSP] = user->rsp;
(*regs)[X86_64_REG_RIP] = user->rip;
regs->set_pc(user->rip);
regs->set_sp(user->rsp);
return regs;
}
// This function assumes that reg_data is already aligned to a 64 bit value.
// If not this could crash with an unaligned access.
Regs* Regs::RemoteGet(pid_t pid, uint32_t* machine_type) {
// Make the buffer large enough to contain the largest registers type.
std::vector<uint64_t> buffer(MAX_USER_REGS_SIZE / sizeof(uint64_t));
struct iovec io;
io.iov_base = buffer.data();
io.iov_len = buffer.size() * sizeof(uint64_t);
if (ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, reinterpret_cast<void*>(&io)) == -1) {
return nullptr;
}
switch (io.iov_len) {
case sizeof(x86_user_regs):
*machine_type = EM_386;
return ReadX86(buffer.data());
case sizeof(x86_64_user_regs):
*machine_type = EM_X86_64;
return ReadX86_64(buffer.data());
case sizeof(arm_user_regs):
*machine_type = EM_ARM;
return ReadArm(buffer.data());
case sizeof(arm64_user_regs):
*machine_type = EM_AARCH64;
return ReadArm64(buffer.data());
}
return nullptr;
}

View File

@ -21,57 +21,107 @@
#include <vector>
// Forward declarations.
class Elf;
struct MapInfo;
class Regs {
public:
Regs(uint16_t pc_reg, uint16_t sp_reg, uint16_t total_regs)
: pc_reg_(pc_reg), sp_reg_(sp_reg), total_regs_(total_regs) {
}
enum LocationEnum : uint8_t {
LOCATION_UNKNOWN = 0,
LOCATION_REGISTER,
LOCATION_SP_OFFSET,
};
struct Location {
Location(LocationEnum type, int16_t value) : type(type), value(value) {}
LocationEnum type;
int16_t value;
};
Regs(uint16_t total_regs, uint16_t sp_reg, const Location& return_loc)
: total_regs_(total_regs), sp_reg_(sp_reg), return_loc_(return_loc) {}
virtual ~Regs() = default;
uint16_t pc_reg() { return pc_reg_; }
uint16_t sp_reg() { return sp_reg_; }
uint16_t total_regs() { return total_regs_; }
virtual void* raw_data() = 0;
virtual void* RawData() = 0;
virtual uint64_t pc() = 0;
virtual uint64_t sp() = 0;
virtual bool GetReturnAddressFromDefault(Memory* memory, uint64_t* value) = 0;
virtual uint64_t GetRelPc(Elf* elf, const MapInfo* map_info) = 0;
virtual uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) = 0;
uint16_t sp_reg() { return sp_reg_; }
uint16_t total_regs() { return total_regs_; }
static Regs* RemoteGet(pid_t pid, uint32_t* machine_type);
protected:
uint16_t pc_reg_;
uint16_t sp_reg_;
uint16_t total_regs_;
uint16_t sp_reg_;
Location return_loc_;
};
template <typename AddressType>
class RegsTmpl : public Regs {
public:
RegsTmpl(uint16_t pc_reg, uint16_t sp_reg, uint16_t total_regs)
: Regs(pc_reg, sp_reg, total_regs), regs_(total_regs) {}
RegsTmpl(uint16_t total_regs, uint16_t sp_reg, Location return_loc)
: Regs(total_regs, sp_reg, return_loc), regs_(total_regs) {}
virtual ~RegsTmpl() = default;
uint64_t pc() override { return regs_[pc_reg_]; }
uint64_t sp() override { return regs_[sp_reg_]; }
uint64_t GetRelPc(Elf* elf, const MapInfo* map_info) override;
bool GetReturnAddressFromDefault(Memory* memory, uint64_t* value) override;
uint64_t pc() override { return pc_; }
uint64_t sp() override { return sp_; }
void set_pc(AddressType pc) { pc_ = pc; }
void set_sp(AddressType sp) { sp_ = sp; }
inline AddressType& operator[](size_t reg) { return regs_[reg]; }
void* raw_data() override { return regs_.data(); }
void* RawData() override { return regs_.data(); }
private:
protected:
AddressType pc_;
AddressType sp_;
std::vector<AddressType> regs_;
};
class Regs32 : public RegsTmpl<uint32_t> {
class RegsArm : public RegsTmpl<uint32_t> {
public:
Regs32(uint16_t pc_reg, uint16_t sp_reg, uint16_t total_regs)
: RegsTmpl(pc_reg, sp_reg, total_regs) {}
virtual ~Regs32() = default;
RegsArm();
virtual ~RegsArm() = default;
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
};
class Regs64 : public RegsTmpl<uint64_t> {
class RegsArm64 : public RegsTmpl<uint64_t> {
public:
Regs64(uint16_t pc_reg, uint16_t sp_reg, uint16_t total_regs)
: RegsTmpl(pc_reg, sp_reg, total_regs) {}
virtual ~Regs64() = default;
RegsArm64();
virtual ~RegsArm64() = default;
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
};
class RegsX86 : public RegsTmpl<uint32_t> {
public:
RegsX86();
virtual ~RegsX86() = default;
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
};
class RegsX86_64 : public RegsTmpl<uint64_t> {
public:
RegsX86_64();
virtual ~RegsX86_64() = default;
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
};
#endif // _LIBUNWINDSTACK_REGS_H

96
libunwindstack/User.h Normal file
View File

@ -0,0 +1,96 @@
/*
* Copyright (C) 2016 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _LIBUNWINDSTACK_USER_H
#define _LIBUNWINDSTACK_USER_H
struct x86_user_regs {
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;
uint32_t ebp;
uint32_t eax;
uint32_t xds;
uint32_t xes;
uint32_t xfs;
uint32_t xgs;
uint32_t orig_eax;
uint32_t eip;
uint32_t xcs;
uint32_t eflags;
uint32_t esp;
uint32_t xss;
};
struct x86_64_user_regs {
uint64_t r15;
uint64_t r14;
uint64_t r13;
uint64_t r12;
uint64_t rbp;
uint64_t rbx;
uint64_t r11;
uint64_t r10;
uint64_t r9;
uint64_t r8;
uint64_t rax;
uint64_t rcx;
uint64_t rdx;
uint64_t rsi;
uint64_t rdi;
uint64_t orig_rax;
uint64_t rip;
uint64_t cs;
uint64_t eflags;
uint64_t rsp;
uint64_t ss;
uint64_t fs_base;
uint64_t gs_base;
uint64_t ds;
uint64_t es;
uint64_t fs;
uint64_t gs;
};
struct arm_user_regs {
uint32_t regs[18];
};
struct arm64_user_regs {
uint64_t regs[31];
uint64_t sp;
uint64_t pc;
uint64_t pstate;
};
// The largest user structure.
constexpr size_t MAX_USER_REGS_SIZE = sizeof(arm64_user_regs) + 10;
#endif // _LIBUNWINDSTACK_USER_H

View File

@ -24,6 +24,7 @@
#include <gtest/gtest.h>
#include "ArmExidx.h"
#include "Regs.h"
#include "Log.h"
#include "LogFake.h"
@ -38,12 +39,14 @@ class ArmExidxDecodeTest : public ::testing::TestWithParam<std::string> {
process_memory = &process_memory_;
}
regs32_.reset(new Regs32(0, 1, 32));
for (size_t i = 0; i < 32; i++) {
(*regs32_)[i] = 0;
regs_arm_.reset(new RegsArm());
for (size_t i = 0; i < regs_arm_->total_regs(); i++) {
(*regs_arm_)[i] = 0;
}
regs_arm_->set_pc(0);
regs_arm_->set_sp(0);
exidx_.reset(new ArmExidx(regs32_.get(), &elf_memory_, process_memory));
exidx_.reset(new ArmExidx(regs_arm_.get(), &elf_memory_, process_memory));
if (log_) {
exidx_->set_log(true);
exidx_->set_log_indent(0);
@ -66,7 +69,7 @@ class ArmExidxDecodeTest : public ::testing::TestWithParam<std::string> {
}
std::unique_ptr<ArmExidx> exidx_;
std::unique_ptr<Regs32> regs32_;
std::unique_ptr<RegsArm> regs_arm_;
std::deque<uint8_t>* data_;
MemoryFake elf_memory_;
@ -78,6 +81,7 @@ TEST_P(ArmExidxDecodeTest, vsp_incr) {
// 00xxxxxx: vsp = vsp + (xxxxxx << 2) + 4
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 4\n", GetFakeLogPrint());
@ -90,6 +94,7 @@ TEST_P(ArmExidxDecodeTest, vsp_incr) {
data_->clear();
data_->push_back(0x01);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 8\n", GetFakeLogPrint());
@ -102,6 +107,7 @@ TEST_P(ArmExidxDecodeTest, vsp_incr) {
data_->clear();
data_->push_back(0x3f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 256\n", GetFakeLogPrint());
@ -115,6 +121,7 @@ TEST_P(ArmExidxDecodeTest, vsp_decr) {
// 01xxxxxx: vsp = vsp - (xxxxxx << 2) + 4
data_->push_back(0x40);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp - 4\n", GetFakeLogPrint());
@ -127,6 +134,7 @@ TEST_P(ArmExidxDecodeTest, vsp_decr) {
data_->clear();
data_->push_back(0x41);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp - 8\n", GetFakeLogPrint());
@ -139,6 +147,7 @@ TEST_P(ArmExidxDecodeTest, vsp_decr) {
data_->clear();
data_->push_back(0x7f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp - 256\n", GetFakeLogPrint());
@ -164,26 +173,29 @@ TEST_P(ArmExidxDecodeTest, refuse_unwind) {
TEST_P(ArmExidxDecodeTest, pop_up_to_12) {
// 1000iiii iiiiiiii: Pop up to 12 integer registers
data_->push_back(0x80);
data_->push_back(0x01);
process_memory_.SetData(0x10000, 0x10);
data_->push_back(0x88);
data_->push_back(0x00);
process_memory_.SetData32(0x10000, 0x10);
ASSERT_TRUE(exidx_->Decode());
ASSERT_TRUE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4}\n", GetFakeLogPrint());
ASSERT_EQ("4 unwind pop {r15}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10004U, exidx_->cfa());
ASSERT_EQ(0x10U, (*exidx_->regs())[4]);
ASSERT_EQ(0x10U, (*exidx_->regs())[15]);
ResetLogs();
data_->push_back(0x8f);
data_->push_back(0xff);
for (size_t i = 0; i < 12; i++) {
process_memory_.SetData(0x10004 + i * 4, i + 0x20);
process_memory_.SetData32(0x10004 + i * 4, i + 0x20);
}
exidx_->set_pc_set(false);
ASSERT_TRUE(exidx_->Decode());
ASSERT_TRUE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}\n",
@ -211,10 +223,12 @@ TEST_P(ArmExidxDecodeTest, pop_up_to_12) {
exidx_->set_cfa(0x10034);
data_->push_back(0x81);
data_->push_back(0x28);
process_memory_.SetData(0x10034, 0x11);
process_memory_.SetData(0x10038, 0x22);
process_memory_.SetData(0x1003c, 0x33);
process_memory_.SetData32(0x10034, 0x11);
process_memory_.SetData32(0x10038, 0x22);
process_memory_.SetData32(0x1003c, 0x33);
exidx_->set_pc_set(false);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r7, r9, r12}\n", GetFakeLogPrint());
@ -231,11 +245,12 @@ TEST_P(ArmExidxDecodeTest, set_vsp_from_register) {
// 1001nnnn: Set vsp = r[nnnn] (nnnn != 13, 15)
exidx_->set_cfa(0x100);
for (size_t i = 0; i < 15; i++) {
(*regs32_)[i] = i + 1;
(*regs_arm_)[i] = i + 1;
}
data_->push_back(0x90);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = r0\n", GetFakeLogPrint());
@ -247,6 +262,7 @@ TEST_P(ArmExidxDecodeTest, set_vsp_from_register) {
ResetLogs();
data_->push_back(0x93);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = r3\n", GetFakeLogPrint());
@ -258,6 +274,7 @@ TEST_P(ArmExidxDecodeTest, set_vsp_from_register) {
ResetLogs();
data_->push_back(0x9e);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = r14\n", GetFakeLogPrint());
@ -295,8 +312,9 @@ TEST_P(ArmExidxDecodeTest, reserved_prefix) {
TEST_P(ArmExidxDecodeTest, pop_registers) {
// 10100nnn: Pop r4-r[4+nnn]
data_->push_back(0xa0);
process_memory_.SetData(0x10000, 0x14);
process_memory_.SetData32(0x10000, 0x14);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4}\n", GetFakeLogPrint());
@ -308,11 +326,12 @@ TEST_P(ArmExidxDecodeTest, pop_registers) {
ResetLogs();
data_->push_back(0xa3);
process_memory_.SetData(0x10004, 0x20);
process_memory_.SetData(0x10008, 0x30);
process_memory_.SetData(0x1000c, 0x40);
process_memory_.SetData(0x10010, 0x50);
process_memory_.SetData32(0x10004, 0x20);
process_memory_.SetData32(0x10008, 0x30);
process_memory_.SetData32(0x1000c, 0x40);
process_memory_.SetData32(0x10010, 0x50);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r7}\n", GetFakeLogPrint());
@ -327,15 +346,16 @@ TEST_P(ArmExidxDecodeTest, pop_registers) {
ResetLogs();
data_->push_back(0xa7);
process_memory_.SetData(0x10014, 0x41);
process_memory_.SetData(0x10018, 0x51);
process_memory_.SetData(0x1001c, 0x61);
process_memory_.SetData(0x10020, 0x71);
process_memory_.SetData(0x10024, 0x81);
process_memory_.SetData(0x10028, 0x91);
process_memory_.SetData(0x1002c, 0xa1);
process_memory_.SetData(0x10030, 0xb1);
process_memory_.SetData32(0x10014, 0x41);
process_memory_.SetData32(0x10018, 0x51);
process_memory_.SetData32(0x1001c, 0x61);
process_memory_.SetData32(0x10020, 0x71);
process_memory_.SetData32(0x10024, 0x81);
process_memory_.SetData32(0x10028, 0x91);
process_memory_.SetData32(0x1002c, 0xa1);
process_memory_.SetData32(0x10030, 0xb1);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r11}\n", GetFakeLogPrint());
@ -356,9 +376,10 @@ TEST_P(ArmExidxDecodeTest, pop_registers) {
TEST_P(ArmExidxDecodeTest, pop_registers_with_r14) {
// 10101nnn: Pop r4-r[4+nnn], r14
data_->push_back(0xa8);
process_memory_.SetData(0x10000, 0x12);
process_memory_.SetData(0x10004, 0x22);
process_memory_.SetData32(0x10000, 0x12);
process_memory_.SetData32(0x10004, 0x22);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4, r14}\n", GetFakeLogPrint());
@ -371,12 +392,13 @@ TEST_P(ArmExidxDecodeTest, pop_registers_with_r14) {
ResetLogs();
data_->push_back(0xab);
process_memory_.SetData(0x10008, 0x1);
process_memory_.SetData(0x1000c, 0x2);
process_memory_.SetData(0x10010, 0x3);
process_memory_.SetData(0x10014, 0x4);
process_memory_.SetData(0x10018, 0x5);
process_memory_.SetData32(0x10008, 0x1);
process_memory_.SetData32(0x1000c, 0x2);
process_memory_.SetData32(0x10010, 0x3);
process_memory_.SetData32(0x10014, 0x4);
process_memory_.SetData32(0x10018, 0x5);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r7, r14}\n", GetFakeLogPrint());
@ -392,16 +414,17 @@ TEST_P(ArmExidxDecodeTest, pop_registers_with_r14) {
ResetLogs();
data_->push_back(0xaf);
process_memory_.SetData(0x1001c, 0x1a);
process_memory_.SetData(0x10020, 0x2a);
process_memory_.SetData(0x10024, 0x3a);
process_memory_.SetData(0x10028, 0x4a);
process_memory_.SetData(0x1002c, 0x5a);
process_memory_.SetData(0x10030, 0x6a);
process_memory_.SetData(0x10034, 0x7a);
process_memory_.SetData(0x10038, 0x8a);
process_memory_.SetData(0x1003c, 0x9a);
process_memory_.SetData32(0x1001c, 0x1a);
process_memory_.SetData32(0x10020, 0x2a);
process_memory_.SetData32(0x10024, 0x3a);
process_memory_.SetData32(0x10028, 0x4a);
process_memory_.SetData32(0x1002c, 0x5a);
process_memory_.SetData32(0x10030, 0x6a);
process_memory_.SetData32(0x10034, 0x7a);
process_memory_.SetData32(0x10038, 0x8a);
process_memory_.SetData32(0x1003c, 0x9a);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r11, r14}\n", GetFakeLogPrint());
@ -550,8 +573,9 @@ TEST_P(ArmExidxDecodeTest, pop_registers_under_mask) {
// 10110001 0000iiii: Pop integer registers {r0, r1, r2, r3}
data_->push_back(0xb1);
data_->push_back(0x01);
process_memory_.SetData(0x10000, 0x45);
process_memory_.SetData32(0x10000, 0x45);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r0}\n", GetFakeLogPrint());
@ -564,9 +588,10 @@ TEST_P(ArmExidxDecodeTest, pop_registers_under_mask) {
ResetLogs();
data_->push_back(0xb1);
data_->push_back(0x0a);
process_memory_.SetData(0x10004, 0x23);
process_memory_.SetData(0x10008, 0x24);
process_memory_.SetData32(0x10004, 0x23);
process_memory_.SetData32(0x10008, 0x24);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r1, r3}\n", GetFakeLogPrint());
@ -580,11 +605,12 @@ TEST_P(ArmExidxDecodeTest, pop_registers_under_mask) {
ResetLogs();
data_->push_back(0xb1);
data_->push_back(0x0f);
process_memory_.SetData(0x1000c, 0x65);
process_memory_.SetData(0x10010, 0x54);
process_memory_.SetData(0x10014, 0x43);
process_memory_.SetData(0x10018, 0x32);
process_memory_.SetData32(0x1000c, 0x65);
process_memory_.SetData32(0x10010, 0x54);
process_memory_.SetData32(0x10014, 0x43);
process_memory_.SetData32(0x10018, 0x32);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r0, r1, r2, r3}\n", GetFakeLogPrint());
@ -603,6 +629,7 @@ TEST_P(ArmExidxDecodeTest, vsp_large_incr) {
data_->push_back(0xb2);
data_->push_back(0x7f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 1024\n", GetFakeLogPrint());
@ -616,6 +643,7 @@ TEST_P(ArmExidxDecodeTest, vsp_large_incr) {
data_->push_back(0xff);
data_->push_back(0x02);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 2048\n", GetFakeLogPrint());
@ -630,6 +658,7 @@ TEST_P(ArmExidxDecodeTest, vsp_large_incr) {
data_->push_back(0x82);
data_->push_back(0x30);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 3147776\n", GetFakeLogPrint());
@ -644,6 +673,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp_fstmfdx) {
data_->push_back(0xb3);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d0}\n", GetFakeLogPrint());
@ -656,6 +686,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp_fstmfdx) {
data_->push_back(0xb3);
data_->push_back(0x48);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d4-d12}\n", GetFakeLogPrint());
@ -669,6 +700,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp8_fstmfdx) {
// 10111nnn: Pop VFP double precision registers D[8]-D[8+nnn] by FSTMFDX
data_->push_back(0xb8);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8}\n", GetFakeLogPrint());
@ -680,6 +712,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp8_fstmfdx) {
ResetLogs();
data_->push_back(0xbb);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d11}\n", GetFakeLogPrint());
@ -691,6 +724,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp8_fstmfdx) {
ResetLogs();
data_->push_back(0xbf);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d15}\n", GetFakeLogPrint());
@ -704,6 +738,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wr10) {
// 11000nnn: Intel Wireless MMX pop wR[10]-wR[10+nnn] (nnn != 6, 7)
data_->push_back(0xc0);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR10}\n", GetFakeLogPrint());
@ -715,6 +750,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wr10) {
ResetLogs();
data_->push_back(0xc2);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR10-wR12}\n", GetFakeLogPrint());
@ -726,6 +762,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wr10) {
ResetLogs();
data_->push_back(0xc5);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR10-wR15}\n", GetFakeLogPrint());
@ -740,6 +777,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wr) {
data_->push_back(0xc6);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR0}\n", GetFakeLogPrint());
@ -752,6 +790,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wr) {
data_->push_back(0xc6);
data_->push_back(0x25);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR2-wR7}\n", GetFakeLogPrint());
@ -764,6 +803,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wr) {
data_->push_back(0xc6);
data_->push_back(0xff);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR15-wR30}\n", GetFakeLogPrint());
@ -778,6 +818,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wcgr) {
data_->push_back(0xc7);
data_->push_back(0x01);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wCGR0}\n", GetFakeLogPrint());
@ -790,6 +831,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wcgr) {
data_->push_back(0xc7);
data_->push_back(0x0a);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wCGR1, wCGR3}\n", GetFakeLogPrint());
@ -802,6 +844,7 @@ TEST_P(ArmExidxDecodeTest, pop_mmx_wcgr) {
data_->push_back(0xc7);
data_->push_back(0x0f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wCGR0, wCGR1, wCGR2, wCGR3}\n", GetFakeLogPrint());
@ -816,6 +859,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp16_vpush) {
data_->push_back(0xc8);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d16}\n", GetFakeLogPrint());
@ -828,6 +872,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp16_vpush) {
data_->push_back(0xc8);
data_->push_back(0x14);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d17-d21}\n", GetFakeLogPrint());
@ -840,6 +885,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp16_vpush) {
data_->push_back(0xc8);
data_->push_back(0xff);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d31-d46}\n", GetFakeLogPrint());
@ -854,6 +900,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp_vpush) {
data_->push_back(0xc9);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d0}\n", GetFakeLogPrint());
@ -866,6 +913,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp_vpush) {
data_->push_back(0xc9);
data_->push_back(0x23);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d2-d5}\n", GetFakeLogPrint());
@ -878,6 +926,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp_vpush) {
data_->push_back(0xc9);
data_->push_back(0xff);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d15-d30}\n", GetFakeLogPrint());
@ -891,6 +940,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp8_vpush) {
// 11010nnn: Pop VFP double precision registers D[8]-D[8+nnn] by VPUSH
data_->push_back(0xd0);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8}\n", GetFakeLogPrint());
@ -902,6 +952,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp8_vpush) {
ResetLogs();
data_->push_back(0xd2);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d10}\n", GetFakeLogPrint());
@ -913,6 +964,7 @@ TEST_P(ArmExidxDecodeTest, pop_vfp8_vpush) {
ResetLogs();
data_->push_back(0xd7);
ASSERT_TRUE(exidx_->Decode());
ASSERT_FALSE(exidx_->pc_set());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d15}\n", GetFakeLogPrint());
@ -989,4 +1041,54 @@ TEST_P(ArmExidxDecodeTest, verify_no_truncated) {
}
}
TEST_P(ArmExidxDecodeTest, eval_multiple_decodes) {
// vsp = vsp + 4
data_->push_back(0x00);
// vsp = vsp + 8
data_->push_back(0x02);
// Finish
data_->push_back(0xb0);
ASSERT_TRUE(exidx_->Eval());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 4\n"
"4 unwind vsp = vsp + 12\n"
"4 unwind finish\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10010U, exidx_->cfa());
ASSERT_FALSE(exidx_->pc_set());
}
TEST_P(ArmExidxDecodeTest, eval_pc_set) {
// vsp = vsp + 4
data_->push_back(0x00);
// vsp = vsp + 8
data_->push_back(0x02);
// Pop {r15}
data_->push_back(0x88);
data_->push_back(0x00);
// vsp = vsp + 8
data_->push_back(0x02);
// Finish
data_->push_back(0xb0);
process_memory_.SetData32(0x10010, 0x10);
ASSERT_TRUE(exidx_->Eval());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 4\n"
"4 unwind vsp = vsp + 12\n"
"4 unwind pop {r15}\n"
"4 unwind vsp = vsp + 12\n"
"4 unwind finish\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10020U, exidx_->cfa());
ASSERT_TRUE(exidx_->pc_set());
ASSERT_EQ(0x10U, (*exidx_->regs())[15]);
}
INSTANTIATE_TEST_CASE_P(, ArmExidxDecodeTest, ::testing::Values("logging", "no_logging"));

View File

@ -53,16 +53,16 @@ TEST_F(ArmExidxExtractTest, bad_alignment) {
}
TEST_F(ArmExidxExtractTest, cant_unwind) {
elf_memory_.SetData(0x1000, 0x7fff2340);
elf_memory_.SetData(0x1004, 1);
elf_memory_.SetData32(0x1000, 0x7fff2340);
elf_memory_.SetData32(0x1004, 1);
ASSERT_FALSE(exidx_->ExtractEntryData(0x1000));
ASSERT_EQ(ARM_STATUS_NO_UNWIND, exidx_->status());
ASSERT_TRUE(data_->empty());
}
TEST_F(ArmExidxExtractTest, compact) {
elf_memory_.SetData(0x4000, 0x7ffa3000);
elf_memory_.SetData(0x4004, 0x80a8b0b0);
elf_memory_.SetData32(0x4000, 0x7ffa3000);
elf_memory_.SetData32(0x4004, 0x80a8b0b0);
ASSERT_TRUE(exidx_->ExtractEntryData(0x4000));
ASSERT_EQ(3U, data_->size());
ASSERT_EQ(0xa8, data_->at(0));
@ -71,8 +71,8 @@ TEST_F(ArmExidxExtractTest, compact) {
// Missing finish gets added.
elf_memory_.Clear();
elf_memory_.SetData(0x534, 0x7ffa3000);
elf_memory_.SetData(0x538, 0x80a1a2a3);
elf_memory_.SetData32(0x534, 0x7ffa3000);
elf_memory_.SetData32(0x538, 0x80a1a2a3);
ASSERT_TRUE(exidx_->ExtractEntryData(0x534));
ASSERT_EQ(4U, data_->size());
ASSERT_EQ(0xa1, data_->at(0));
@ -82,29 +82,29 @@ TEST_F(ArmExidxExtractTest, compact) {
}
TEST_F(ArmExidxExtractTest, compact_non_zero_personality) {
elf_memory_.SetData(0x4000, 0x7ffa3000);
elf_memory_.SetData32(0x4000, 0x7ffa3000);
uint32_t compact_value = 0x80a8b0b0;
for (size_t i = 1; i < 16; i++) {
elf_memory_.SetData(0x4004, compact_value | (i << 24));
elf_memory_.SetData32(0x4004, compact_value | (i << 24));
ASSERT_FALSE(exidx_->ExtractEntryData(0x4000));
ASSERT_EQ(ARM_STATUS_INVALID_PERSONALITY, exidx_->status());
}
}
TEST_F(ArmExidxExtractTest, second_read_compact_personality_1_2) {
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x8100f3b0);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x8100f3b0);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(2U, data_->size());
ASSERT_EQ(0xf3, data_->at(0));
ASSERT_EQ(0xb0, data_->at(1));
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x8200f3f4);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x8200f3f4);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(3U, data_->size());
ASSERT_EQ(0xf3, data_->at(0));
@ -112,10 +112,10 @@ TEST_F(ArmExidxExtractTest, second_read_compact_personality_1_2) {
ASSERT_EQ(0xb0, data_->at(2));
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x8201f3f4);
elf_memory_.SetData(0x6238, 0x102030b0);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x8201f3f4);
elf_memory_.SetData32(0x6238, 0x102030b0);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(6U, data_->size());
ASSERT_EQ(0xf3, data_->at(0));
@ -126,12 +126,12 @@ TEST_F(ArmExidxExtractTest, second_read_compact_personality_1_2) {
ASSERT_EQ(0xb0, data_->at(5));
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x8103f3f4);
elf_memory_.SetData(0x6238, 0x10203040);
elf_memory_.SetData(0x623c, 0x50607080);
elf_memory_.SetData(0x6240, 0x90a0c0d0);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x8103f3f4);
elf_memory_.SetData32(0x6238, 0x10203040);
elf_memory_.SetData32(0x623c, 0x50607080);
elf_memory_.SetData32(0x6240, 0x90a0c0d0);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(15U, data_->size());
ASSERT_EQ(0xf3, data_->at(0));
@ -152,33 +152,33 @@ TEST_F(ArmExidxExtractTest, second_read_compact_personality_1_2) {
}
TEST_F(ArmExidxExtractTest, second_read_compact_personality_illegal) {
elf_memory_.SetData(0x5000, 0x7ffa1e48);
elf_memory_.SetData(0x5004, 0x1230);
elf_memory_.SetData(0x6234, 0x832132b0);
elf_memory_.SetData32(0x5000, 0x7ffa1e48);
elf_memory_.SetData32(0x5004, 0x1230);
elf_memory_.SetData32(0x6234, 0x832132b0);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_INVALID_PERSONALITY, exidx_->status());
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x7ffa1e48);
elf_memory_.SetData(0x5004, 0x1230);
elf_memory_.SetData(0x6234, 0x842132b0);
elf_memory_.SetData32(0x5000, 0x7ffa1e48);
elf_memory_.SetData32(0x5004, 0x1230);
elf_memory_.SetData32(0x6234, 0x842132b0);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_INVALID_PERSONALITY, exidx_->status());
}
TEST_F(ArmExidxExtractTest, second_read_offset_is_negative) {
elf_memory_.SetData(0x5000, 0x7ffa1e48);
elf_memory_.SetData(0x5004, 0x7fffb1e0);
elf_memory_.SetData(0x1e4, 0x842132b0);
elf_memory_.SetData32(0x5000, 0x7ffa1e48);
elf_memory_.SetData32(0x5004, 0x7fffb1e0);
elf_memory_.SetData32(0x1e4, 0x842132b0);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_INVALID_PERSONALITY, exidx_->status());
}
TEST_F(ArmExidxExtractTest, second_read_not_compact) {
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x1);
elf_memory_.SetData(0x6238, 0x001122b0);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x1);
elf_memory_.SetData32(0x6238, 0x001122b0);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(3U, data_->size());
ASSERT_EQ(0x11, data_->at(0));
@ -186,10 +186,10 @@ TEST_F(ArmExidxExtractTest, second_read_not_compact) {
ASSERT_EQ(0xb0, data_->at(2));
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x2);
elf_memory_.SetData(0x6238, 0x00112233);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x2);
elf_memory_.SetData32(0x6238, 0x00112233);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(4U, data_->size());
ASSERT_EQ(0x11, data_->at(0));
@ -198,11 +198,11 @@ TEST_F(ArmExidxExtractTest, second_read_not_compact) {
ASSERT_EQ(0xb0, data_->at(3));
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x3);
elf_memory_.SetData(0x6238, 0x01112233);
elf_memory_.SetData(0x623c, 0x445566b0);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x3);
elf_memory_.SetData32(0x6238, 0x01112233);
elf_memory_.SetData32(0x623c, 0x445566b0);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(7U, data_->size());
ASSERT_EQ(0x11, data_->at(0));
@ -214,15 +214,15 @@ TEST_F(ArmExidxExtractTest, second_read_not_compact) {
ASSERT_EQ(0xb0, data_->at(6));
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x3);
elf_memory_.SetData(0x6238, 0x05112233);
elf_memory_.SetData(0x623c, 0x01020304);
elf_memory_.SetData(0x6240, 0x05060708);
elf_memory_.SetData(0x6244, 0x090a0b0c);
elf_memory_.SetData(0x6248, 0x0d0e0f10);
elf_memory_.SetData(0x624c, 0x11121314);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x3);
elf_memory_.SetData32(0x6238, 0x05112233);
elf_memory_.SetData32(0x623c, 0x01020304);
elf_memory_.SetData32(0x6240, 0x05060708);
elf_memory_.SetData32(0x6244, 0x090a0b0c);
elf_memory_.SetData32(0x6248, 0x0d0e0f10);
elf_memory_.SetData32(0x624c, 0x11121314);
ASSERT_TRUE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(24U, data_->size());
ASSERT_EQ(0x11, data_->at(0));
@ -255,43 +255,43 @@ TEST_F(ArmExidxExtractTest, read_failures) {
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_READ_FAILED, exidx_->status());
elf_memory_.SetData(0x5000, 0x100);
elf_memory_.SetData32(0x5000, 0x100);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_READ_FAILED, exidx_->status());
elf_memory_.SetData(0x5004, 0x100);
elf_memory_.SetData32(0x5004, 0x100);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_READ_FAILED, exidx_->status());
elf_memory_.SetData(0x5104, 0x1);
elf_memory_.SetData32(0x5104, 0x1);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_READ_FAILED, exidx_->status());
elf_memory_.SetData(0x5108, 0x01010203);
elf_memory_.SetData32(0x5108, 0x01010203);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_READ_FAILED, exidx_->status());
}
TEST_F(ArmExidxExtractTest, malformed) {
elf_memory_.SetData(0x5000, 0x100);
elf_memory_.SetData(0x5004, 0x100);
elf_memory_.SetData(0x5104, 0x1);
elf_memory_.SetData(0x5108, 0x06010203);
elf_memory_.SetData32(0x5000, 0x100);
elf_memory_.SetData32(0x5004, 0x100);
elf_memory_.SetData32(0x5104, 0x1);
elf_memory_.SetData32(0x5108, 0x06010203);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_MALFORMED, exidx_->status());
elf_memory_.Clear();
elf_memory_.SetData(0x5000, 0x100);
elf_memory_.SetData(0x5004, 0x100);
elf_memory_.SetData(0x5104, 0x1);
elf_memory_.SetData(0x5108, 0x81060203);
elf_memory_.SetData32(0x5000, 0x100);
elf_memory_.SetData32(0x5004, 0x100);
elf_memory_.SetData32(0x5104, 0x1);
elf_memory_.SetData32(0x5108, 0x81060203);
ASSERT_FALSE(exidx_->ExtractEntryData(0x5000));
ASSERT_EQ(ARM_STATUS_MALFORMED, exidx_->status());
}
TEST_F(ArmExidxExtractTest, cant_unwind_log) {
elf_memory_.SetData(0x1000, 0x7fff2340);
elf_memory_.SetData(0x1004, 1);
elf_memory_.SetData32(0x1000, 0x7fff2340);
elf_memory_.SetData32(0x1004, 1);
exidx_->set_log(true);
exidx_->set_log_indent(0);
@ -305,8 +305,8 @@ TEST_F(ArmExidxExtractTest, cant_unwind_log) {
}
TEST_F(ArmExidxExtractTest, raw_data_compact) {
elf_memory_.SetData(0x4000, 0x7ffa3000);
elf_memory_.SetData(0x4004, 0x80a8b0b0);
elf_memory_.SetData32(0x4000, 0x7ffa3000);
elf_memory_.SetData32(0x4004, 0x80a8b0b0);
exidx_->set_log(true);
exidx_->set_log_indent(0);
@ -317,10 +317,10 @@ TEST_F(ArmExidxExtractTest, raw_data_compact) {
}
TEST_F(ArmExidxExtractTest, raw_data_non_compact) {
elf_memory_.SetData(0x5000, 0x1234);
elf_memory_.SetData(0x5004, 0x00001230);
elf_memory_.SetData(0x6234, 0x2);
elf_memory_.SetData(0x6238, 0x00112233);
elf_memory_.SetData32(0x5000, 0x1234);
elf_memory_.SetData32(0x5004, 0x00001230);
elf_memory_.SetData32(0x6234, 0x2);
elf_memory_.SetData32(0x6238, 0x00112233);
exidx_->set_log(true);
exidx_->set_log_indent(0);

View File

@ -0,0 +1,372 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <gtest/gtest.h>
#include <vector>
#include "ElfInterfaceArm.h"
#include "Machine.h"
#include "Regs.h"
#include "MemoryFake.h"
class ElfInterfaceArmTest : public ::testing::Test {
protected:
void SetUp() override {
memory_.Clear();
process_memory_.Clear();
}
MemoryFake memory_;
MemoryFake process_memory_;
};
TEST_F(ElfInterfaceArmTest, GetPrel32Addr) {
ElfInterfaceArm interface(&memory_);
memory_.SetData32(0x1000, 0x230000);
uint32_t value;
ASSERT_TRUE(interface.GetPrel31Addr(0x1000, &value));
ASSERT_EQ(0x231000U, value);
memory_.SetData32(0x1000, 0x80001000);
ASSERT_TRUE(interface.GetPrel31Addr(0x1000, &value));
ASSERT_EQ(0x2000U, value);
memory_.SetData32(0x1000, 0x70001000);
ASSERT_TRUE(interface.GetPrel31Addr(0x1000, &value));
ASSERT_EQ(0xf0002000U, value);
}
TEST_F(ElfInterfaceArmTest, FindEntry_start_zero) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0);
interface.set_total_entries(10);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_no_entries) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x100);
interface.set_total_entries(0);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_no_valid_memory) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x100);
interface.set_total_entries(2);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_ip_before_first) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(1);
memory_.SetData32(0x1000, 0x6000);
uint64_t entry_offset;
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
}
TEST_F(ElfInterfaceArmTest, FindEntry_single_entry_negative_value) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x8000);
interface.set_total_entries(1);
memory_.SetData32(0x8000, 0x7fffff00);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x7ff0, &entry_offset));
ASSERT_EQ(0x8000U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_two_entries) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x7000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x7000, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_last_check_single_entry) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(1);
memory_.SetData32(0x1000, 0x6000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x7000, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x8000);
ASSERT_TRUE(interface.FindEntry(0x7004, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_last_check_multiple_entries) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x8000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x9008, &entry_offset));
ASSERT_EQ(0x1008U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x16000);
memory_.SetData32(0x1008, 0x18000);
ASSERT_TRUE(interface.FindEntry(0x9100, &entry_offset));
ASSERT_EQ(0x1008U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_multiple_entries_even) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(4);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x7000);
memory_.SetData32(0x1010, 0x8000);
memory_.SetData32(0x1018, 0x9000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x9100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x16000);
memory_.SetData32(0x1008, 0x17000);
memory_.SetData32(0x1010, 0x18000);
memory_.SetData32(0x1018, 0x19000);
ASSERT_TRUE(interface.FindEntry(0x9100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, FindEntry_multiple_entries_odd) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(5);
memory_.SetData32(0x1000, 0x5000);
memory_.SetData32(0x1008, 0x6000);
memory_.SetData32(0x1010, 0x7000);
memory_.SetData32(0x1018, 0x8000);
memory_.SetData32(0x1020, 0x9000);
uint64_t entry_offset;
ASSERT_TRUE(interface.FindEntry(0x8100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
// To guarantee that we are using the cache on the second run,
// set the memory to a different value.
memory_.SetData32(0x1000, 0x15000);
memory_.SetData32(0x1008, 0x16000);
memory_.SetData32(0x1010, 0x17000);
memory_.SetData32(0x1018, 0x18000);
memory_.SetData32(0x1020, 0x19000);
ASSERT_TRUE(interface.FindEntry(0x8100, &entry_offset));
ASSERT_EQ(0x1010U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, iterate) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(5);
memory_.SetData32(0x1000, 0x5000);
memory_.SetData32(0x1008, 0x6000);
memory_.SetData32(0x1010, 0x7000);
memory_.SetData32(0x1018, 0x8000);
memory_.SetData32(0x1020, 0x9000);
std::vector<uint32_t> entries;
for (auto addr : interface) {
entries.push_back(addr);
}
ASSERT_EQ(5U, entries.size());
ASSERT_EQ(0x6000U, entries[0]);
ASSERT_EQ(0x7008U, entries[1]);
ASSERT_EQ(0x8010U, entries[2]);
ASSERT_EQ(0x9018U, entries[3]);
ASSERT_EQ(0xa020U, entries[4]);
// Make sure the iterate cached the entries.
memory_.SetData32(0x1000, 0x11000);
memory_.SetData32(0x1008, 0x12000);
memory_.SetData32(0x1010, 0x13000);
memory_.SetData32(0x1018, 0x14000);
memory_.SetData32(0x1020, 0x15000);
entries.clear();
for (auto addr : interface) {
entries.push_back(addr);
}
ASSERT_EQ(5U, entries.size());
ASSERT_EQ(0x6000U, entries[0]);
ASSERT_EQ(0x7008U, entries[1]);
ASSERT_EQ(0x8010U, entries[2]);
ASSERT_EQ(0x9018U, entries[3]);
ASSERT_EQ(0xa020U, entries[4]);
}
TEST_F(ElfInterfaceArmTest, FindEntry_load_bias) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x8000);
uint64_t entry_offset;
interface.set_load_bias(0x2000);
ASSERT_FALSE(interface.FindEntry(0x1000, &entry_offset));
ASSERT_FALSE(interface.FindEntry(0x8000, &entry_offset));
ASSERT_FALSE(interface.FindEntry(0x8fff, &entry_offset));
ASSERT_TRUE(interface.FindEntry(0x9000, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
ASSERT_TRUE(interface.FindEntry(0xb007, &entry_offset));
ASSERT_EQ(0x1000U, entry_offset);
ASSERT_TRUE(interface.FindEntry(0xb008, &entry_offset));
ASSERT_EQ(0x1008U, entry_offset);
}
TEST_F(ElfInterfaceArmTest, HandleType_not_arm_exidx) {
ElfInterfaceArm interface(&memory_);
ASSERT_FALSE(interface.HandleType(0x1000, PT_NULL));
ASSERT_FALSE(interface.HandleType(0x1000, PT_LOAD));
ASSERT_FALSE(interface.HandleType(0x1000, PT_DYNAMIC));
ASSERT_FALSE(interface.HandleType(0x1000, PT_INTERP));
ASSERT_FALSE(interface.HandleType(0x1000, PT_NOTE));
ASSERT_FALSE(interface.HandleType(0x1000, PT_SHLIB));
ASSERT_FALSE(interface.HandleType(0x1000, PT_PHDR));
ASSERT_FALSE(interface.HandleType(0x1000, PT_TLS));
ASSERT_FALSE(interface.HandleType(0x1000, PT_LOOS));
ASSERT_FALSE(interface.HandleType(0x1000, PT_HIOS));
ASSERT_FALSE(interface.HandleType(0x1000, PT_LOPROC));
ASSERT_FALSE(interface.HandleType(0x1000, PT_HIPROC));
ASSERT_FALSE(interface.HandleType(0x1000, PT_GNU_EH_FRAME));
ASSERT_FALSE(interface.HandleType(0x1000, PT_GNU_STACK));
}
TEST_F(ElfInterfaceArmTest, HandleType_arm_exidx) {
ElfInterfaceArm interface(&memory_);
Elf32_Phdr phdr;
interface.set_start_offset(0x1000);
interface.set_total_entries(100);
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 0xa00;
// Verify that if reads fail, we don't set the values but still get true.
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001));
ASSERT_EQ(0x1000U, interface.start_offset());
ASSERT_EQ(100U, interface.total_entries());
// Verify that if the second read fails, we still don't set the values.
memory_.SetData32(
0x1000 + reinterpret_cast<uint64_t>(&phdr.p_vaddr) - reinterpret_cast<uint64_t>(&phdr),
phdr.p_vaddr);
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001));
ASSERT_EQ(0x1000U, interface.start_offset());
ASSERT_EQ(100U, interface.total_entries());
// Everything is correct and present.
memory_.SetData32(
0x1000 + reinterpret_cast<uint64_t>(&phdr.p_memsz) - reinterpret_cast<uint64_t>(&phdr),
phdr.p_memsz);
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001));
ASSERT_EQ(0x2000U, interface.start_offset());
ASSERT_EQ(320U, interface.total_entries());
// Non-zero load bias.
interface.set_load_bias(0x1000);
ASSERT_TRUE(interface.HandleType(0x1000, 0x70000001));
ASSERT_EQ(0x1000U, interface.start_offset());
ASSERT_EQ(320U, interface.total_entries());
}
TEST_F(ElfInterfaceArmTest, StepExidx) {
ElfInterfaceArm interface(&memory_);
// FindEntry fails.
ASSERT_FALSE(interface.StepExidx(0x7000, nullptr, nullptr));
// ExtractEntry should fail.
interface.set_start_offset(0x1000);
interface.set_total_entries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1008, 0x8000);
RegsArm regs;
regs[ARM_REG_SP] = 0x1000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
ASSERT_FALSE(interface.StepExidx(0x7000, &regs, &process_memory_));
// Eval should fail.
memory_.SetData32(0x1004, 0x81000000);
ASSERT_FALSE(interface.StepExidx(0x7000, &regs, &process_memory_));
// Everything should pass.
memory_.SetData32(0x1004, 0x80b0b0b0);
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_));
ASSERT_EQ(0x1000U, regs.sp());
ASSERT_EQ(0x1000U, regs[ARM_REG_SP]);
ASSERT_EQ(0x20000U, regs.pc());
ASSERT_EQ(0x20000U, regs[ARM_REG_PC]);
}
TEST_F(ElfInterfaceArmTest, StepExidx_pc_set) {
ElfInterfaceArm interface(&memory_);
interface.set_start_offset(0x1000);
interface.set_total_entries(2);
memory_.SetData32(0x1000, 0x6000);
memory_.SetData32(0x1004, 0x808800b0);
memory_.SetData32(0x1008, 0x8000);
process_memory_.SetData32(0x10000, 0x10);
RegsArm regs;
regs[ARM_REG_SP] = 0x10000;
regs[ARM_REG_LR] = 0x20000;
regs.set_sp(regs[ARM_REG_SP]);
regs.set_pc(0x1234);
// Everything should pass.
ASSERT_TRUE(interface.StepExidx(0x7000, &regs, &process_memory_));
ASSERT_EQ(0x10004U, regs.sp());
ASSERT_EQ(0x10004U, regs[ARM_REG_SP]);
ASSERT_EQ(0x10U, regs.pc());
ASSERT_EQ(0x10U, regs[ARM_REG_PC]);
}

View File

@ -0,0 +1,573 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <memory>
#include <gtest/gtest.h>
#include "ElfInterface.h"
#include "ElfInterfaceArm.h"
#include "MemoryFake.h"
#if !defined(PT_ARM_EXIDX)
#define PT_ARM_EXIDX 0x70000001
#endif
#if !defined(EM_AARCH64)
#define EM_AARCH64 183
#endif
class ElfInterfaceTest : public ::testing::Test {
protected:
void SetUp() override {
memory_.Clear();
}
void SetStringMemory(uint64_t offset, const char* string) {
memory_.SetMemory(offset, string, strlen(string) + 1);
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void SinglePtLoad();
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void MultipleExecutablePtLoads();
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void MultipleExecutablePtLoadsIncrementsNotSizeOfPhdr();
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void NonExecutablePtLoads();
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ManyPhdrs();
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void Soname();
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void SonameAfterDtNull();
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void SonameSize();
MemoryFake memory_;
};
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::SinglePtLoad() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 1;
ehdr.e_phentsize = sizeof(Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 0x10000;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1000;
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
ASSERT_TRUE(elf->Init());
const std::unordered_map<uint64_t, LoadInfo>& pt_loads = elf->pt_loads();
ASSERT_EQ(1U, pt_loads.size());
LoadInfo load_data = pt_loads.at(0);
ASSERT_EQ(0U, load_data.offset);
ASSERT_EQ(0x2000U, load_data.table_offset);
ASSERT_EQ(0x10000U, load_data.table_size);
}
TEST_F(ElfInterfaceTest, elf32_single_pt_load) {
SinglePtLoad<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn, ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_single_pt_load) {
SinglePtLoad<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn, ElfInterface64>();
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::MultipleExecutablePtLoads() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 3;
ehdr.e_phentsize = sizeof(Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 0x10000;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1000;
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0x1000;
phdr.p_vaddr = 0x2001;
phdr.p_memsz = 0x10001;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1001;
memory_.SetMemory(0x100 + sizeof(phdr), &phdr, sizeof(phdr));
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0x2000;
phdr.p_vaddr = 0x2002;
phdr.p_memsz = 0x10002;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1002;
memory_.SetMemory(0x100 + 2 * sizeof(phdr), &phdr, sizeof(phdr));
ASSERT_TRUE(elf->Init());
const std::unordered_map<uint64_t, LoadInfo>& pt_loads = elf->pt_loads();
ASSERT_EQ(3U, pt_loads.size());
LoadInfo load_data = pt_loads.at(0);
ASSERT_EQ(0U, load_data.offset);
ASSERT_EQ(0x2000U, load_data.table_offset);
ASSERT_EQ(0x10000U, load_data.table_size);
load_data = pt_loads.at(0x1000);
ASSERT_EQ(0x1000U, load_data.offset);
ASSERT_EQ(0x2001U, load_data.table_offset);
ASSERT_EQ(0x10001U, load_data.table_size);
load_data = pt_loads.at(0x2000);
ASSERT_EQ(0x2000U, load_data.offset);
ASSERT_EQ(0x2002U, load_data.table_offset);
ASSERT_EQ(0x10002U, load_data.table_size);
}
TEST_F(ElfInterfaceTest, elf32_multiple_executable_pt_loads) {
MultipleExecutablePtLoads<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn, ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_multiple_executable_pt_loads) {
MultipleExecutablePtLoads<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn, ElfInterface64>();
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::MultipleExecutablePtLoadsIncrementsNotSizeOfPhdr() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 3;
ehdr.e_phentsize = sizeof(Phdr) + 100;
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 0x10000;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1000;
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0x1000;
phdr.p_vaddr = 0x2001;
phdr.p_memsz = 0x10001;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1001;
memory_.SetMemory(0x100 + sizeof(phdr) + 100, &phdr, sizeof(phdr));
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0x2000;
phdr.p_vaddr = 0x2002;
phdr.p_memsz = 0x10002;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1002;
memory_.SetMemory(0x100 + 2 * (sizeof(phdr) + 100), &phdr, sizeof(phdr));
ASSERT_TRUE(elf->Init());
const std::unordered_map<uint64_t, LoadInfo>& pt_loads = elf->pt_loads();
ASSERT_EQ(3U, pt_loads.size());
LoadInfo load_data = pt_loads.at(0);
ASSERT_EQ(0U, load_data.offset);
ASSERT_EQ(0x2000U, load_data.table_offset);
ASSERT_EQ(0x10000U, load_data.table_size);
load_data = pt_loads.at(0x1000);
ASSERT_EQ(0x1000U, load_data.offset);
ASSERT_EQ(0x2001U, load_data.table_offset);
ASSERT_EQ(0x10001U, load_data.table_size);
load_data = pt_loads.at(0x2000);
ASSERT_EQ(0x2000U, load_data.offset);
ASSERT_EQ(0x2002U, load_data.table_offset);
ASSERT_EQ(0x10002U, load_data.table_size);
}
TEST_F(ElfInterfaceTest, elf32_multiple_executable_pt_loads_increments_not_size_of_phdr) {
MultipleExecutablePtLoadsIncrementsNotSizeOfPhdr<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn,
ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_multiple_executable_pt_loads_increments_not_size_of_phdr) {
MultipleExecutablePtLoadsIncrementsNotSizeOfPhdr<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn,
ElfInterface64>();
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::NonExecutablePtLoads() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 3;
ehdr.e_phentsize = sizeof(Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 0x10000;
phdr.p_flags = PF_R;
phdr.p_align = 0x1000;
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0x1000;
phdr.p_vaddr = 0x2001;
phdr.p_memsz = 0x10001;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1001;
memory_.SetMemory(0x100 + sizeof(phdr), &phdr, sizeof(phdr));
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0x2000;
phdr.p_vaddr = 0x2002;
phdr.p_memsz = 0x10002;
phdr.p_flags = PF_R;
phdr.p_align = 0x1002;
memory_.SetMemory(0x100 + 2 * sizeof(phdr), &phdr, sizeof(phdr));
ASSERT_TRUE(elf->Init());
const std::unordered_map<uint64_t, LoadInfo>& pt_loads = elf->pt_loads();
ASSERT_EQ(1U, pt_loads.size());
LoadInfo load_data = pt_loads.at(0x1000);
ASSERT_EQ(0x1000U, load_data.offset);
ASSERT_EQ(0x2001U, load_data.table_offset);
ASSERT_EQ(0x10001U, load_data.table_size);
}
TEST_F(ElfInterfaceTest, elf32_non_executable_pt_loads) {
NonExecutablePtLoads<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn, ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_non_executable_pt_loads) {
NonExecutablePtLoads<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn, ElfInterface64>();
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::ManyPhdrs() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 7;
ehdr.e_phentsize = sizeof(Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
uint64_t phdr_offset = 0x100;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 0x10000;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1000;
memory_.SetMemory(phdr_offset, &phdr, sizeof(phdr));
phdr_offset += sizeof(phdr);
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_GNU_EH_FRAME;
memory_.SetMemory(phdr_offset, &phdr, sizeof(phdr));
phdr_offset += sizeof(phdr);
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_DYNAMIC;
memory_.SetMemory(phdr_offset, &phdr, sizeof(phdr));
phdr_offset += sizeof(phdr);
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_INTERP;
memory_.SetMemory(phdr_offset, &phdr, sizeof(phdr));
phdr_offset += sizeof(phdr);
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_NOTE;
memory_.SetMemory(phdr_offset, &phdr, sizeof(phdr));
phdr_offset += sizeof(phdr);
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_SHLIB;
memory_.SetMemory(phdr_offset, &phdr, sizeof(phdr));
phdr_offset += sizeof(phdr);
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_GNU_EH_FRAME;
memory_.SetMemory(phdr_offset, &phdr, sizeof(phdr));
phdr_offset += sizeof(phdr);
ASSERT_TRUE(elf->Init());
const std::unordered_map<uint64_t, LoadInfo>& pt_loads = elf->pt_loads();
ASSERT_EQ(1U, pt_loads.size());
LoadInfo load_data = pt_loads.at(0);
ASSERT_EQ(0U, load_data.offset);
ASSERT_EQ(0x2000U, load_data.table_offset);
ASSERT_EQ(0x10000U, load_data.table_size);
}
TEST_F(ElfInterfaceTest, elf32_many_phdrs) {
ElfInterfaceTest::ManyPhdrs<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn, ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_many_phdrs) {
ElfInterfaceTest::ManyPhdrs<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn, ElfInterface64>();
}
TEST_F(ElfInterfaceTest, elf32_arm) {
ElfInterfaceArm elf_arm(&memory_);
Elf32_Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 1;
ehdr.e_phentsize = sizeof(Elf32_Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Elf32_Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_ARM_EXIDX;
phdr.p_vaddr = 0x2000;
phdr.p_memsz = 16;
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
// Add arm exidx entries.
memory_.SetData32(0x2000, 0x1000);
memory_.SetData32(0x2008, 0x1000);
ASSERT_TRUE(elf_arm.Init());
std::vector<uint32_t> entries;
for (auto addr : elf_arm) {
entries.push_back(addr);
}
ASSERT_EQ(2U, entries.size());
ASSERT_EQ(0x3000U, entries[0]);
ASSERT_EQ(0x3008U, entries[1]);
ASSERT_EQ(0x2000U, elf_arm.start_offset());
ASSERT_EQ(2U, elf_arm.total_entries());
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::Soname() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 1;
ehdr.e_phentsize = sizeof(Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_DYNAMIC;
phdr.p_offset = 0x2000;
phdr.p_memsz = sizeof(Dyn) * 3;
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
uint64_t offset = 0x2000;
Dyn dyn;
dyn.d_tag = DT_STRTAB;
dyn.d_un.d_ptr = 0x10000;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_STRSZ;
dyn.d_un.d_val = 0x1000;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_SONAME;
dyn.d_un.d_val = 0x10;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_NULL;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
SetStringMemory(0x10010, "fake_soname.so");
ASSERT_TRUE(elf->Init());
std::string name;
ASSERT_TRUE(elf->GetSoname(&name));
ASSERT_STREQ("fake_soname.so", name.c_str());
}
TEST_F(ElfInterfaceTest, elf32_soname) {
Soname<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn, ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_soname) {
Soname<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn, ElfInterface64>();
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::SonameAfterDtNull() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 1;
ehdr.e_phentsize = sizeof(Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_DYNAMIC;
phdr.p_offset = 0x2000;
phdr.p_memsz = sizeof(Dyn) * 3;
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
Dyn dyn;
uint64_t offset = 0x2000;
dyn.d_tag = DT_STRTAB;
dyn.d_un.d_ptr = 0x10000;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_STRSZ;
dyn.d_un.d_val = 0x1000;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_NULL;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_SONAME;
dyn.d_un.d_val = 0x10;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
SetStringMemory(0x10010, "fake_soname.so");
ASSERT_TRUE(elf->Init());
std::string name;
ASSERT_FALSE(elf->GetSoname(&name));
}
TEST_F(ElfInterfaceTest, elf32_soname_after_dt_null) {
SonameAfterDtNull<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn, ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_soname_after_dt_null) {
SonameAfterDtNull<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn, ElfInterface64>();
}
template <typename Ehdr, typename Phdr, typename Dyn, typename ElfInterfaceType>
void ElfInterfaceTest::SonameSize() {
std::unique_ptr<ElfInterface> elf(new ElfInterfaceType(&memory_));
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
ehdr.e_phoff = 0x100;
ehdr.e_phnum = 1;
ehdr.e_phentsize = sizeof(Phdr);
memory_.SetMemory(0, &ehdr, sizeof(ehdr));
Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_DYNAMIC;
phdr.p_offset = 0x2000;
phdr.p_memsz = sizeof(Dyn);
memory_.SetMemory(0x100, &phdr, sizeof(phdr));
Dyn dyn;
uint64_t offset = 0x2000;
dyn.d_tag = DT_STRTAB;
dyn.d_un.d_ptr = 0x10000;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_STRSZ;
dyn.d_un.d_val = 0x10;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_SONAME;
dyn.d_un.d_val = 0x10;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
offset += sizeof(dyn);
dyn.d_tag = DT_NULL;
memory_.SetMemory(offset, &dyn, sizeof(dyn));
SetStringMemory(0x10010, "fake_soname.so");
ASSERT_TRUE(elf->Init());
std::string name;
ASSERT_FALSE(elf->GetSoname(&name));
}
TEST_F(ElfInterfaceTest, elf32_soname_size) {
SonameSize<Elf32_Ehdr, Elf32_Phdr, Elf32_Dyn, ElfInterface32>();
}
TEST_F(ElfInterfaceTest, elf64_soname_size) {
SonameSize<Elf64_Ehdr, Elf64_Phdr, Elf64_Dyn, ElfInterface64>();
}

View File

@ -0,0 +1,210 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <gtest/gtest.h>
#include "Elf.h"
#include "MemoryFake.h"
#if !defined(PT_ARM_EXIDX)
#define PT_ARM_EXIDX 0x70000001
#endif
#if !defined(EM_AARCH64)
#define EM_AARCH64 183
#endif
class ElfTest : public ::testing::Test {
protected:
void SetUp() override {
memory_ = new MemoryFake;
}
template <typename Ehdr>
void InitEhdr(Ehdr* ehdr) {
memset(ehdr, 0, sizeof(Ehdr));
memcpy(&ehdr->e_ident[0], ELFMAG, SELFMAG);
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELFOSABI_SYSV;
}
void InitElf32(uint32_t type) {
Elf32_Ehdr ehdr;
InitEhdr<Elf32_Ehdr>(&ehdr);
ehdr.e_ident[EI_CLASS] = ELFCLASS32;
ehdr.e_type = ET_DYN;
ehdr.e_machine = type;
ehdr.e_version = EV_CURRENT;
ehdr.e_entry = 0;
ehdr.e_phoff = 0x100;
ehdr.e_shoff = 0;
ehdr.e_flags = 0;
ehdr.e_ehsize = sizeof(ehdr);
ehdr.e_phentsize = sizeof(Elf32_Phdr);
ehdr.e_phnum = 1;
ehdr.e_shentsize = sizeof(Elf32_Shdr);
ehdr.e_shnum = 0;
ehdr.e_shstrndx = 0;
if (type == EM_ARM) {
ehdr.e_flags = 0x5000200;
ehdr.e_phnum = 2;
}
memory_->SetMemory(0, &ehdr, sizeof(ehdr));
Elf32_Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0;
phdr.p_vaddr = 0;
phdr.p_paddr = 0;
phdr.p_filesz = 0x10000;
phdr.p_memsz = 0x10000;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1000;
memory_->SetMemory(0x100, &phdr, sizeof(phdr));
if (type == EM_ARM) {
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_ARM_EXIDX;
phdr.p_offset = 0x30000;
phdr.p_vaddr = 0x30000;
phdr.p_paddr = 0x30000;
phdr.p_filesz = 16;
phdr.p_memsz = 16;
phdr.p_flags = PF_R;
phdr.p_align = 0x4;
memory_->SetMemory(0x100 + sizeof(phdr), &phdr, sizeof(phdr));
}
}
void InitElf64(uint32_t type) {
Elf64_Ehdr ehdr;
InitEhdr<Elf64_Ehdr>(&ehdr);
ehdr.e_ident[EI_CLASS] = ELFCLASS64;
ehdr.e_type = ET_DYN;
ehdr.e_machine = type;
ehdr.e_version = EV_CURRENT;
ehdr.e_entry = 0;
ehdr.e_phoff = 0x100;
ehdr.e_shoff = 0;
ehdr.e_flags = 0x5000200;
ehdr.e_ehsize = sizeof(ehdr);
ehdr.e_phentsize = sizeof(Elf64_Phdr);
ehdr.e_phnum = 1;
ehdr.e_shentsize = sizeof(Elf64_Shdr);
ehdr.e_shnum = 0;
ehdr.e_shstrndx = 0;
memory_->SetMemory(0, &ehdr, sizeof(ehdr));
Elf64_Phdr phdr;
memset(&phdr, 0, sizeof(phdr));
phdr.p_type = PT_LOAD;
phdr.p_offset = 0;
phdr.p_vaddr = 0;
phdr.p_paddr = 0;
phdr.p_filesz = 0x10000;
phdr.p_memsz = 0x10000;
phdr.p_flags = PF_R | PF_X;
phdr.p_align = 0x1000;
memory_->SetMemory(0x100, &phdr, sizeof(phdr));
}
MemoryFake* memory_;
};
TEST_F(ElfTest, invalid_memory) {
Elf elf(memory_);
ASSERT_FALSE(elf.Init());
ASSERT_FALSE(elf.valid());
}
TEST_F(ElfTest, elf_invalid) {
Elf elf(memory_);
InitElf32(EM_386);
// Corrupt the ELF signature.
memory_->SetData32(0, 0x7f000000);
ASSERT_FALSE(elf.Init());
ASSERT_FALSE(elf.valid());
ASSERT_TRUE(elf.interface() == nullptr);
std::string name;
ASSERT_FALSE(elf.GetSoname(&name));
uint64_t func_offset;
ASSERT_FALSE(elf.GetFunctionName(0, &name, &func_offset));
ASSERT_FALSE(elf.Step(0, nullptr, nullptr));
}
TEST_F(ElfTest, elf_arm) {
Elf elf(memory_);
InitElf32(EM_ARM);
ASSERT_TRUE(elf.Init());
ASSERT_TRUE(elf.valid());
ASSERT_EQ(static_cast<uint32_t>(EM_ARM), elf.machine_type());
ASSERT_EQ(ELFCLASS32, elf.class_type());
ASSERT_TRUE(elf.interface() != nullptr);
}
TEST_F(ElfTest, elf_x86) {
Elf elf(memory_);
InitElf32(EM_386);
ASSERT_TRUE(elf.Init());
ASSERT_TRUE(elf.valid());
ASSERT_EQ(static_cast<uint32_t>(EM_386), elf.machine_type());
ASSERT_EQ(ELFCLASS32, elf.class_type());
ASSERT_TRUE(elf.interface() != nullptr);
}
TEST_F(ElfTest, elf_arm64) {
Elf elf(memory_);
InitElf64(EM_AARCH64);
ASSERT_TRUE(elf.Init());
ASSERT_TRUE(elf.valid());
ASSERT_EQ(static_cast<uint32_t>(EM_AARCH64), elf.machine_type());
ASSERT_EQ(ELFCLASS64, elf.class_type());
ASSERT_TRUE(elf.interface() != nullptr);
}
TEST_F(ElfTest, elf_x86_64) {
Elf elf(memory_);
InitElf64(EM_X86_64);
ASSERT_TRUE(elf.Init());
ASSERT_TRUE(elf.valid());
ASSERT_EQ(static_cast<uint32_t>(EM_X86_64), elf.machine_type());
ASSERT_EQ(ELFCLASS64, elf.class_type());
ASSERT_TRUE(elf.interface() != nullptr);
}

View File

@ -1,219 +0,0 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/mman.h>
#include <android-base/file.h>
#include <android-base/test_utils.h>
#include <gtest/gtest.h>
#include "Maps.h"
#include "LogFake.h"
class MapsTest : public ::testing::Test {
protected:
void SetUp() override {
ResetLogs();
}
};
TEST_F(MapsTest, parse_permissions) {
MapsBuffer maps("1000-2000 ---- 00000000 00:00 0\n"
"2000-3000 r--- 00000000 00:00 0\n"
"3000-4000 -w-- 00000000 00:00 0\n"
"4000-5000 --x- 00000000 00:00 0\n"
"5000-6000 rwx- 00000000 00:00 0\n");
ASSERT_TRUE(maps.Parse());
ASSERT_EQ(5U, maps.Total());
auto it = maps.begin();
ASSERT_EQ(PROT_NONE, it->flags);
ASSERT_EQ(0x1000U, it->start);
ASSERT_EQ(0x2000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ("", it->name);
++it;
ASSERT_EQ(PROT_READ, it->flags);
ASSERT_EQ(0x2000U, it->start);
ASSERT_EQ(0x3000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ("", it->name);
++it;
ASSERT_EQ(PROT_WRITE, it->flags);
ASSERT_EQ(0x3000U, it->start);
ASSERT_EQ(0x4000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ("", it->name);
++it;
ASSERT_EQ(PROT_EXEC, it->flags);
ASSERT_EQ(0x4000U, it->start);
ASSERT_EQ(0x5000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ("", it->name);
++it;
ASSERT_EQ(PROT_READ | PROT_WRITE | PROT_EXEC, it->flags);
ASSERT_EQ(0x5000U, it->start);
ASSERT_EQ(0x6000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ("", it->name);
++it;
ASSERT_EQ(it, maps.end());
}
TEST_F(MapsTest, parse_name) {
MapsBuffer maps("720b29b000-720b29e000 rw-p 00000000 00:00 0\n"
"720b29e000-720b29f000 rw-p 00000000 00:00 0 /system/lib/fake.so\n"
"720b29f000-720b2a0000 rw-p 00000000 00:00 0");
ASSERT_TRUE(maps.Parse());
ASSERT_EQ(3U, maps.Total());
auto it = maps.begin();
ASSERT_EQ("", it->name);
ASSERT_EQ(0x720b29b000U, it->start);
ASSERT_EQ(0x720b29e000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ(PROT_READ | PROT_WRITE, it->flags);
++it;
ASSERT_EQ("/system/lib/fake.so", it->name);
ASSERT_EQ(0x720b29e000U, it->start);
ASSERT_EQ(0x720b29f000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ(PROT_READ | PROT_WRITE, it->flags);
++it;
ASSERT_EQ("", it->name);
ASSERT_EQ(0x720b29f000U, it->start);
ASSERT_EQ(0x720b2a0000U, it->end);
ASSERT_EQ(0U, it->offset);
ASSERT_EQ(PROT_READ | PROT_WRITE, it->flags);
++it;
ASSERT_EQ(it, maps.end());
}
TEST_F(MapsTest, parse_offset) {
MapsBuffer maps("a000-e000 rw-p 00000000 00:00 0 /system/lib/fake.so\n"
"e000-f000 rw-p 00a12345 00:00 0 /system/lib/fake.so\n");
ASSERT_TRUE(maps.Parse());
ASSERT_EQ(2U, maps.Total());
auto it = maps.begin();
ASSERT_EQ(0U, it->offset);
ASSERT_EQ(0xa000U, it->start);
ASSERT_EQ(0xe000U, it->end);
ASSERT_EQ(PROT_READ | PROT_WRITE, it->flags);
ASSERT_EQ("/system/lib/fake.so", it->name);
++it;
ASSERT_EQ(0xa12345U, it->offset);
ASSERT_EQ(0xe000U, it->start);
ASSERT_EQ(0xf000U, it->end);
ASSERT_EQ(PROT_READ | PROT_WRITE, it->flags);
ASSERT_EQ("/system/lib/fake.so", it->name);
++it;
ASSERT_EQ(maps.end(), it);
}
TEST_F(MapsTest, file_smoke) {
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(android::base::WriteStringToFile(
"720b29b000-720b29e000 r-xp a0000000 00:00 0 /fake.so\n"
"720b2b0000-720b2e0000 r-xp b0000000 00:00 0 /fake2.so\n"
"720b2e0000-720b2f0000 r-xp c0000000 00:00 0 /fake3.so\n",
tf.path, 0660, getuid(), getgid()));
MapsFile maps(tf.path);
ASSERT_TRUE(maps.Parse());
ASSERT_EQ(3U, maps.Total());
auto it = maps.begin();
ASSERT_EQ(0x720b29b000U, it->start);
ASSERT_EQ(0x720b29e000U, it->end);
ASSERT_EQ(0xa0000000U, it->offset);
ASSERT_EQ(PROT_READ | PROT_EXEC, it->flags);
ASSERT_EQ("/fake.so", it->name);
++it;
ASSERT_EQ(0x720b2b0000U, it->start);
ASSERT_EQ(0x720b2e0000U, it->end);
ASSERT_EQ(0xb0000000U, it->offset);
ASSERT_EQ(PROT_READ | PROT_EXEC, it->flags);
ASSERT_EQ("/fake2.so", it->name);
++it;
ASSERT_EQ(0x720b2e0000U, it->start);
ASSERT_EQ(0x720b2f0000U, it->end);
ASSERT_EQ(0xc0000000U, it->offset);
ASSERT_EQ(PROT_READ | PROT_EXEC, it->flags);
ASSERT_EQ("/fake3.so", it->name);
++it;
ASSERT_EQ(it, maps.end());
}
TEST_F(MapsTest, find) {
MapsBuffer maps("1000-2000 r--p 00000010 00:00 0 /system/lib/fake1.so\n"
"3000-4000 -w-p 00000020 00:00 0 /system/lib/fake2.so\n"
"6000-8000 --xp 00000030 00:00 0 /system/lib/fake3.so\n"
"a000-b000 rw-p 00000040 00:00 0 /system/lib/fake4.so\n"
"e000-f000 rwxp 00000050 00:00 0 /system/lib/fake5.so\n");
ASSERT_TRUE(maps.Parse());
ASSERT_EQ(5U, maps.Total());
ASSERT_TRUE(maps.Find(0x500) == nullptr);
ASSERT_TRUE(maps.Find(0x2000) == nullptr);
ASSERT_TRUE(maps.Find(0x5010) == nullptr);
ASSERT_TRUE(maps.Find(0x9a00) == nullptr);
ASSERT_TRUE(maps.Find(0xf000) == nullptr);
ASSERT_TRUE(maps.Find(0xf010) == nullptr);
MapInfo* info = maps.Find(0x1000);
ASSERT_TRUE(info != nullptr);
ASSERT_EQ(0x1000U, info->start);
ASSERT_EQ(0x2000U, info->end);
ASSERT_EQ(0x10U, info->offset);
ASSERT_EQ(PROT_READ, info->flags);
ASSERT_EQ("/system/lib/fake1.so", info->name);
info = maps.Find(0x3020);
ASSERT_TRUE(info != nullptr);
ASSERT_EQ(0x3000U, info->start);
ASSERT_EQ(0x4000U, info->end);
ASSERT_EQ(0x20U, info->offset);
ASSERT_EQ(PROT_WRITE, info->flags);
ASSERT_EQ("/system/lib/fake2.so", info->name);
info = maps.Find(0x6020);
ASSERT_TRUE(info != nullptr);
ASSERT_EQ(0x6000U, info->start);
ASSERT_EQ(0x8000U, info->end);
ASSERT_EQ(0x30U, info->offset);
ASSERT_EQ(PROT_EXEC, info->flags);
ASSERT_EQ("/system/lib/fake3.so", info->name);
info = maps.Find(0xafff);
ASSERT_TRUE(info != nullptr);
ASSERT_EQ(0xa000U, info->start);
ASSERT_EQ(0xb000U, info->end);
ASSERT_EQ(0x40U, info->offset);
ASSERT_EQ(PROT_READ | PROT_WRITE, info->flags);
ASSERT_EQ("/system/lib/fake4.so", info->name);
info = maps.Find(0xe500);
ASSERT_TRUE(info != nullptr);
ASSERT_EQ(0xe000U, info->start);
ASSERT_EQ(0xf000U, info->end);
ASSERT_EQ(0x50U, info->offset);
ASSERT_EQ(PROT_READ | PROT_WRITE | PROT_EXEC, info->flags);
ASSERT_EQ("/system/lib/fake5.so", info->name);
}

View File

@ -34,7 +34,19 @@ class MemoryFake : public Memory {
void SetMemory(uint64_t addr, const void* memory, size_t length);
void SetData(uint64_t addr, uint32_t value) {
void SetData8(uint64_t addr, uint8_t value) {
SetMemory(addr, &value, sizeof(value));
}
void SetData16(uint64_t addr, uint16_t value) {
SetMemory(addr, &value, sizeof(value));
}
void SetData32(uint64_t addr, uint32_t value) {
SetMemory(addr, &value, sizeof(value));
}
void SetData64(uint64_t addr, uint64_t value) {
SetMemory(addr, &value, sizeof(value));
}

View File

@ -20,12 +20,9 @@
#include "Memory.h"
#include "LogFake.h"
class MemoryFileTest : public ::testing::Test {
protected:
void SetUp() override {
ResetLogs();
tf_ = new TemporaryFile;
}
@ -86,6 +83,7 @@ TEST_F(MemoryFileTest, offset_pagesize_aligned) {
data += static_cast<char>((i % 10) + '0');
}
ASSERT_TRUE(android::base::WriteStringToFd(data, tf_->fd));
ASSERT_TRUE(memory_.Init(tf_->path, 2 * pagesize));
std::vector<char> buffer(11);
ASSERT_TRUE(memory_.Read(0, buffer.data(), 10));
@ -106,6 +104,7 @@ TEST_F(MemoryFileTest, offset_pagesize_aligned_plus_extra) {
data += static_cast<char>((i % 10) + '0');
}
ASSERT_TRUE(android::base::WriteStringToFd(data, tf_->fd));
ASSERT_TRUE(memory_.Init(tf_->path, 2 * pagesize + 10));
std::vector<char> buffer(11);
ASSERT_TRUE(memory_.Read(0, buffer.data(), 10));
@ -165,3 +164,111 @@ TEST_F(MemoryFileTest, read_string_error) {
// This should fail because there is no terminating \0
ASSERT_FALSE(memory_.ReadString(0, &name));
}
TEST_F(MemoryFileTest, read_past_file_within_mapping) {
size_t pagesize = getpagesize();
ASSERT_TRUE(pagesize > 100);
std::vector<uint8_t> buffer(pagesize - 100);
for (size_t i = 0; i < pagesize - 100; i++) {
buffer[i] = static_cast<uint8_t>((i % 0x5e) + 0x20);
}
ASSERT_TRUE(android::base::WriteFully(tf_->fd, buffer.data(), buffer.size()));
ASSERT_TRUE(memory_.Init(tf_->path, 0));
for (size_t i = 0; i < 100; i++) {
uint8_t value;
ASSERT_FALSE(memory_.Read(buffer.size() + i, &value, 1)) << "Should have failed at value " << i;
}
}
TEST_F(MemoryFileTest, map_partial_offset_aligned) {
size_t pagesize = getpagesize();
std::vector<uint8_t> buffer(pagesize * 10);
for (size_t i = 0; i < pagesize * 10; i++) {
buffer[i] = i / pagesize + 1;
}
ASSERT_TRUE(android::base::WriteFully(tf_->fd, buffer.data(), buffer.size()));
// Map in only two pages of the data, and after the first page.
ASSERT_TRUE(memory_.Init(tf_->path, pagesize, pagesize * 2));
std::vector<uint8_t> read_buffer(pagesize * 2);
// Make sure that reading after mapped data is a failure.
ASSERT_FALSE(memory_.Read(pagesize * 2, read_buffer.data(), 1));
ASSERT_TRUE(memory_.Read(0, read_buffer.data(), pagesize * 2));
for (size_t i = 0; i < pagesize; i++) {
ASSERT_EQ(2, read_buffer[i]) << "Failed at byte " << i;
}
for (size_t i = pagesize; i < pagesize * 2; i++) {
ASSERT_EQ(3, read_buffer[i]) << "Failed at byte " << i;
}
}
TEST_F(MemoryFileTest, map_partial_offset_unaligned) {
size_t pagesize = getpagesize();
ASSERT_TRUE(pagesize > 0x100);
std::vector<uint8_t> buffer(pagesize * 10);
for (size_t i = 0; i < buffer.size(); i++) {
buffer[i] = i / pagesize + 1;
}
ASSERT_TRUE(android::base::WriteFully(tf_->fd, buffer.data(), buffer.size()));
// Map in only two pages of the data, and after the first page.
ASSERT_TRUE(memory_.Init(tf_->path, pagesize + 0x100, pagesize * 2));
std::vector<uint8_t> read_buffer(pagesize * 2);
// Make sure that reading after mapped data is a failure.
ASSERT_FALSE(memory_.Read(pagesize * 2, read_buffer.data(), 1));
ASSERT_TRUE(memory_.Read(0, read_buffer.data(), pagesize * 2));
for (size_t i = 0; i < pagesize - 0x100; i++) {
ASSERT_EQ(2, read_buffer[i]) << "Failed at byte " << i;
}
for (size_t i = pagesize - 0x100; i < 2 * pagesize - 0x100; i++) {
ASSERT_EQ(3, read_buffer[i]) << "Failed at byte " << i;
}
for (size_t i = 2 * pagesize - 0x100; i < pagesize * 2; i++) {
ASSERT_EQ(4, read_buffer[i]) << "Failed at byte " << i;
}
}
TEST_F(MemoryFileTest, map_overflow) {
size_t pagesize = getpagesize();
ASSERT_TRUE(pagesize > 0x100);
std::vector<uint8_t> buffer(pagesize * 10);
for (size_t i = 0; i < buffer.size(); i++) {
buffer[i] = i / pagesize + 1;
}
ASSERT_TRUE(android::base::WriteFully(tf_->fd, buffer.data(), buffer.size()));
// Map in only two pages of the data, and after the first page.
ASSERT_TRUE(memory_.Init(tf_->path, pagesize + 0x100, UINT64_MAX));
std::vector<uint8_t> read_buffer(pagesize * 10);
ASSERT_FALSE(memory_.Read(pagesize * 9 - 0x100 + 1, read_buffer.data(), 1));
ASSERT_TRUE(memory_.Read(0, read_buffer.data(), pagesize * 9 - 0x100));
}
TEST_F(MemoryFileTest, init_reinit) {
size_t pagesize = getpagesize();
std::vector<uint8_t> buffer(pagesize * 2);
for (size_t i = 0; i < buffer.size(); i++) {
buffer[i] = i / pagesize + 1;
}
ASSERT_TRUE(android::base::WriteFully(tf_->fd, buffer.data(), buffer.size()));
ASSERT_TRUE(memory_.Init(tf_->path, 0));
std::vector<uint8_t> read_buffer(buffer.size());
ASSERT_TRUE(memory_.Read(0, read_buffer.data(), pagesize));
for (size_t i = 0; i < pagesize; i++) {
ASSERT_EQ(1, read_buffer[i]) << "Failed at byte " << i;
}
// Now reinit.
ASSERT_TRUE(memory_.Init(tf_->path, pagesize));
ASSERT_TRUE(memory_.Read(0, read_buffer.data(), pagesize));
for (size_t i = 0; i < pagesize; i++) {
ASSERT_EQ(2, read_buffer[i]) << "Failed at byte " << i;
}
}

View File

@ -23,16 +23,7 @@
#include "Memory.h"
#include "LogFake.h"
class MemoryLocalTest : public ::testing::Test {
protected:
void SetUp() override {
ResetLogs();
}
};
TEST_F(MemoryLocalTest, read) {
TEST(MemoryLocalTest, read) {
std::vector<uint8_t> src(1024);
memset(src.data(), 0x4c, 1024);
@ -56,7 +47,7 @@ TEST_F(MemoryLocalTest, read) {
}
}
TEST_F(MemoryLocalTest, read_string) {
TEST(MemoryLocalTest, read_string) {
std::string name("string_in_memory");
MemoryLocal local;
@ -75,7 +66,7 @@ TEST_F(MemoryLocalTest, read_string) {
ASSERT_FALSE(local.ReadString(reinterpret_cast<uint64_t>(&name[7]), &dst_name, 9));
}
TEST_F(MemoryLocalTest, read_illegal) {
TEST(MemoryLocalTest, read_illegal) {
MemoryLocal local;
std::vector<uint8_t> dst(100);

View File

@ -23,13 +23,11 @@
#include "Memory.h"
#include "LogFake.h"
#include "MemoryFake.h"
class MemoryRangeTest : public ::testing::Test {
protected:
void SetUp() override {
ResetLogs();
memory_ = new MemoryFake;
}

View File

@ -33,14 +33,8 @@
#include "Memory.h"
#include "LogFake.h"
class MemoryRemoteTest : public ::testing::Test {
protected:
void SetUp() override {
ResetLogs();
}
static uint64_t NanoTime() {
struct timespec t = { 0, 0 };
clock_gettime(CLOCK_MONOTONIC, &t);

View File

@ -18,50 +18,249 @@
#include <gtest/gtest.h>
#include "Elf.h"
#include "ElfInterface.h"
#include "MapInfo.h"
#include "Regs.h"
class RegsTest : public ::testing::Test {};
#include "MemoryFake.h"
TEST_F(RegsTest, regs32) {
Regs32 regs32(10, 20, 30);
class ElfFake : public Elf {
public:
ElfFake(Memory* memory) : Elf(memory) { valid_ = true; }
virtual ~ElfFake() = default;
ASSERT_EQ(10U, regs32.pc_reg());
ASSERT_EQ(20U, regs32.sp_reg());
ASSERT_EQ(30U, regs32.total_regs());
void set_elf_interface(ElfInterface* interface) { interface_.reset(interface); }
};
uint32_t* raw = reinterpret_cast<uint32_t*>(regs32.raw_data());
for (size_t i = 0; i < 30; i++) {
raw[i] = 0xf0000000 + i;
class ElfInterfaceFake : public ElfInterface {
public:
ElfInterfaceFake(Memory* memory) : ElfInterface(memory) {}
virtual ~ElfInterfaceFake() = default;
void set_load_bias(uint64_t load_bias) { load_bias_ = load_bias; }
bool Init() override { return false; }
void InitHeaders() override {}
bool GetSoname(std::string*) override { return false; }
bool GetFunctionName(uint64_t, std::string*, uint64_t*) override { return false; }
bool Step(uint64_t, Regs*, Memory*) override { return false; }
};
template <typename TypeParam>
class RegsTestTmpl : public RegsTmpl<TypeParam> {
public:
RegsTestTmpl(uint16_t total_regs, uint16_t regs_sp)
: RegsTmpl<TypeParam>(total_regs, regs_sp, Regs::Location(Regs::LOCATION_UNKNOWN, 0)) {}
RegsTestTmpl(uint16_t total_regs, uint16_t regs_sp, Regs::Location return_loc)
: RegsTmpl<TypeParam>(total_regs, regs_sp, return_loc) {}
virtual ~RegsTestTmpl() = default;
uint64_t GetAdjustedPc(uint64_t, Elf*) { return 0; }
};
class RegsTest : public ::testing::Test {
protected:
void SetUp() override {
memory_ = new MemoryFake;
elf_.reset(new ElfFake(memory_));
elf_interface_ = new ElfInterfaceFake(elf_->memory());
elf_->set_elf_interface(elf_interface_);
}
ASSERT_EQ(0xf000000aU, regs32.pc());
ASSERT_EQ(0xf0000014U, regs32.sp());
template <typename AddressType>
void regs_rel_pc();
ASSERT_EQ(0xf0000001U, regs32[1]);
regs32[1] = 10;
ASSERT_EQ(10U, regs32[1]);
template <typename AddressType>
void regs_return_address_register();
ASSERT_EQ(0xf000001dU, regs32[29]);
ElfInterfaceFake* elf_interface_;
MemoryFake* memory_;
std::unique_ptr<ElfFake> elf_;
};
TEST_F(RegsTest, regs32) {
RegsTestTmpl<uint32_t> regs32(50, 10);
ASSERT_EQ(50U, regs32.total_regs());
ASSERT_EQ(10U, regs32.sp_reg());
uint32_t* raw = reinterpret_cast<uint32_t*>(regs32.RawData());
for (size_t i = 0; i < 50; i++) {
raw[i] = 0xf0000000 + i;
}
regs32.set_pc(0xf0120340);
regs32.set_sp(0xa0ab0cd0);
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0xf0000000U + i, regs32[i]) << "Failed comparing register " << i;
}
ASSERT_EQ(0xf0120340U, regs32.pc());
ASSERT_EQ(0xa0ab0cd0U, regs32.sp());
regs32[32] = 10;
ASSERT_EQ(10U, regs32[32]);
}
TEST_F(RegsTest, regs64) {
Regs64 regs64(10, 20, 30);
ASSERT_EQ(10U, regs64.pc_reg());
ASSERT_EQ(20U, regs64.sp_reg());
RegsTestTmpl<uint64_t> regs64(30, 12);
ASSERT_EQ(30U, regs64.total_regs());
ASSERT_EQ(12U, regs64.sp_reg());
uint64_t* raw = reinterpret_cast<uint64_t*>(regs64.raw_data());
uint64_t* raw = reinterpret_cast<uint64_t*>(regs64.RawData());
for (size_t i = 0; i < 30; i++) {
raw[i] = 0xf123456780000000UL + i;
}
regs64.set_pc(0xf123456780102030UL);
regs64.set_sp(0xa123456780a0b0c0UL);
ASSERT_EQ(0xf12345678000000aUL, regs64.pc());
ASSERT_EQ(0xf123456780000014UL, regs64.sp());
for (size_t i = 0; i < 30; i++) {
ASSERT_EQ(0xf123456780000000U + i, regs64[i]) << "Failed reading register " << i;
}
ASSERT_EQ(0xf123456780102030UL, regs64.pc());
ASSERT_EQ(0xa123456780a0b0c0UL, regs64.sp());
ASSERT_EQ(0xf123456780000008U, regs64[8]);
regs64[8] = 10;
ASSERT_EQ(10U, regs64[8]);
ASSERT_EQ(0xf12345678000001dU, regs64[29]);
}
template <typename AddressType>
void RegsTest::regs_rel_pc() {
RegsTestTmpl<AddressType> regs(30, 12);
elf_interface_->set_load_bias(0);
MapInfo map_info{.start = 0x1000, .end = 0x2000};
regs.set_pc(0x1101);
ASSERT_EQ(0x101U, regs.GetRelPc(elf_.get(), &map_info));
elf_interface_->set_load_bias(0x3000);
ASSERT_EQ(0x3101U, regs.GetRelPc(elf_.get(), &map_info));
}
TEST_F(RegsTest, regs32_rel_pc) {
regs_rel_pc<uint32_t>();
}
TEST_F(RegsTest, regs64_rel_pc) {
regs_rel_pc<uint64_t>();
}
template <typename AddressType>
void RegsTest::regs_return_address_register() {
RegsTestTmpl<AddressType> regs(20, 10, Regs::Location(Regs::LOCATION_REGISTER, 5));
regs[5] = 0x12345;
uint64_t value;
ASSERT_TRUE(regs.GetReturnAddressFromDefault(memory_, &value));
ASSERT_EQ(0x12345U, value);
}
TEST_F(RegsTest, regs32_return_address_register) {
regs_return_address_register<uint32_t>();
}
TEST_F(RegsTest, regs64_return_address_register) {
regs_return_address_register<uint64_t>();
}
TEST_F(RegsTest, regs32_return_address_sp_offset) {
RegsTestTmpl<uint32_t> regs(20, 10, Regs::Location(Regs::LOCATION_SP_OFFSET, -2));
regs.set_sp(0x2002);
memory_->SetData32(0x2000, 0x12345678);
uint64_t value;
ASSERT_TRUE(regs.GetReturnAddressFromDefault(memory_, &value));
ASSERT_EQ(0x12345678U, value);
}
TEST_F(RegsTest, regs64_return_address_sp_offset) {
RegsTestTmpl<uint64_t> regs(20, 10, Regs::Location(Regs::LOCATION_SP_OFFSET, -8));
regs.set_sp(0x2008);
memory_->SetData64(0x2000, 0x12345678aabbccddULL);
uint64_t value;
ASSERT_TRUE(regs.GetReturnAddressFromDefault(memory_, &value));
ASSERT_EQ(0x12345678aabbccddULL, value);
}
TEST_F(RegsTest, rel_pc) {
RegsArm64 arm64;
ASSERT_EQ(0xcU, arm64.GetAdjustedPc(0x10, elf_.get()));
ASSERT_EQ(0x0U, arm64.GetAdjustedPc(0x4, elf_.get()));
ASSERT_EQ(0x3U, arm64.GetAdjustedPc(0x3, elf_.get()));
ASSERT_EQ(0x2U, arm64.GetAdjustedPc(0x2, elf_.get()));
ASSERT_EQ(0x1U, arm64.GetAdjustedPc(0x1, elf_.get()));
ASSERT_EQ(0x0U, arm64.GetAdjustedPc(0x0, elf_.get()));
RegsX86 x86;
ASSERT_EQ(0xffU, x86.GetAdjustedPc(0x100, elf_.get()));
ASSERT_EQ(0x1U, x86.GetAdjustedPc(0x2, elf_.get()));
ASSERT_EQ(0x0U, x86.GetAdjustedPc(0x1, elf_.get()));
ASSERT_EQ(0x0U, x86.GetAdjustedPc(0x0, elf_.get()));
RegsX86_64 x86_64;
ASSERT_EQ(0xffU, x86_64.GetAdjustedPc(0x100, elf_.get()));
ASSERT_EQ(0x1U, x86_64.GetAdjustedPc(0x2, elf_.get()));
ASSERT_EQ(0x0U, x86_64.GetAdjustedPc(0x1, elf_.get()));
ASSERT_EQ(0x0U, x86_64.GetAdjustedPc(0x0, elf_.get()));
}
TEST_F(RegsTest, rel_pc_arm) {
RegsArm arm;
// Check fence posts.
elf_interface_->set_load_bias(0);
ASSERT_EQ(3U, arm.GetAdjustedPc(0x5, elf_.get()));
ASSERT_EQ(4U, arm.GetAdjustedPc(0x4, elf_.get()));
ASSERT_EQ(3U, arm.GetAdjustedPc(0x3, elf_.get()));
ASSERT_EQ(2U, arm.GetAdjustedPc(0x2, elf_.get()));
ASSERT_EQ(1U, arm.GetAdjustedPc(0x1, elf_.get()));
ASSERT_EQ(0U, arm.GetAdjustedPc(0x0, elf_.get()));
elf_interface_->set_load_bias(0x100);
ASSERT_EQ(0xffU, arm.GetAdjustedPc(0xff, elf_.get()));
ASSERT_EQ(0x103U, arm.GetAdjustedPc(0x105, elf_.get()));
ASSERT_EQ(0x104U, arm.GetAdjustedPc(0x104, elf_.get()));
ASSERT_EQ(0x103U, arm.GetAdjustedPc(0x103, elf_.get()));
ASSERT_EQ(0x102U, arm.GetAdjustedPc(0x102, elf_.get()));
ASSERT_EQ(0x101U, arm.GetAdjustedPc(0x101, elf_.get()));
ASSERT_EQ(0x100U, arm.GetAdjustedPc(0x100, elf_.get()));
// Check thumb instructions handling.
elf_interface_->set_load_bias(0);
memory_->SetData32(0x2000, 0);
ASSERT_EQ(0x2003U, arm.GetAdjustedPc(0x2005, elf_.get()));
memory_->SetData32(0x2000, 0xe000f000);
ASSERT_EQ(0x2001U, arm.GetAdjustedPc(0x2005, elf_.get()));
elf_interface_->set_load_bias(0x400);
memory_->SetData32(0x2100, 0);
ASSERT_EQ(0x2503U, arm.GetAdjustedPc(0x2505, elf_.get()));
memory_->SetData32(0x2100, 0xf111f111);
ASSERT_EQ(0x2501U, arm.GetAdjustedPc(0x2505, elf_.get()));
}
TEST_F(RegsTest, elf_invalid) {
Elf invalid_elf(new MemoryFake);
RegsArm regs_arm;
RegsArm64 regs_arm64;
RegsX86 regs_x86;
RegsX86_64 regs_x86_64;
MapInfo map_info{.start = 0x1000, .end = 0x2000};
regs_arm.set_pc(0x1500);
ASSERT_EQ(0x500U, regs_arm.GetRelPc(&invalid_elf, &map_info));
ASSERT_EQ(0x500U, regs_arm.GetAdjustedPc(0x500U, &invalid_elf));
regs_arm64.set_pc(0x1600);
ASSERT_EQ(0x600U, regs_arm64.GetRelPc(&invalid_elf, &map_info));
ASSERT_EQ(0x600U, regs_arm64.GetAdjustedPc(0x600U, &invalid_elf));
regs_x86.set_pc(0x1700);
ASSERT_EQ(0x700U, regs_x86.GetRelPc(&invalid_elf, &map_info));
ASSERT_EQ(0x700U, regs_x86.GetAdjustedPc(0x700U, &invalid_elf));
regs_x86_64.set_pc(0x1800);
ASSERT_EQ(0x800U, regs_x86_64.GetRelPc(&invalid_elf, &map_info));
ASSERT_EQ(0x800U, regs_x86_64.GetAdjustedPc(0x800U, &invalid_elf));
}

View File

@ -0,0 +1,121 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "ArmExidx.h"
#include "Elf.h"
#include "ElfInterface.h"
#include "ElfInterfaceArm.h"
#include "Log.h"
void DumpArm(ElfInterfaceArm* interface) {
if (interface == nullptr) {
printf("No ARM Unwind Information.\n\n");
return;
}
printf("ARM Unwind Information:\n");
for (const auto& entry : interface->pt_loads()) {
uint64_t load_bias = entry.second.table_offset;
printf(" PC Range 0x%" PRIx64 " - 0x%" PRIx64 "\n", entry.second.offset + load_bias,
entry.second.table_size + load_bias);
for (auto addr : *interface) {
std::string name;
printf(" PC 0x%" PRIx64, addr + load_bias);
uint64_t func_offset;
if (interface->GetFunctionName(addr + load_bias + 1, &name, &func_offset) && !name.empty()) {
printf(" <%s>", name.c_str());
}
printf("\n");
uint64_t entry;
if (!interface->FindEntry(addr + load_bias, &entry)) {
printf(" Cannot find entry for address.\n");
continue;
}
ArmExidx arm(nullptr, interface->memory(), nullptr);
arm.set_log(true);
arm.set_log_skip_execution(true);
arm.set_log_indent(2);
if (!arm.ExtractEntryData(entry)) {
if (arm.status() != ARM_STATUS_NO_UNWIND) {
printf(" Error trying to extract data.\n");
}
continue;
}
if (arm.data()->size() > 0) {
if (!arm.Eval() && arm.status() != ARM_STATUS_NO_UNWIND) {
printf(" Error trying to evaluate dwarf data.\n");
}
}
}
}
printf("\n");
}
int main(int argc, char** argv) {
if (argc != 2) {
printf("Need to pass the name of an elf file to the program.\n");
return 1;
}
struct stat st;
if (stat(argv[1], &st) == -1) {
printf("Cannot stat %s: %s\n", argv[1], strerror(errno));
return 1;
}
if (!S_ISREG(st.st_mode)) {
printf("%s is not a regular file.\n", argv[1]);
return 1;
}
if (S_ISDIR(st.st_mode)) {
printf("%s is a directory.\n", argv[1]);
return 1;
}
// Send all log messages to stdout.
log_to_stdout(true);
MemoryFileAtOffset* memory = new MemoryFileAtOffset;
if (!memory->Init(argv[1], 0)) {
// Initializatation failed.
printf("Failed to init\n");
return 1;
}
Elf elf(memory);
if (!elf.Init() || !elf.valid()) {
printf("%s is not a valid elf file.\n", argv[1]);
return 1;
}
ElfInterface* interface = elf.interface();
if (elf.machine_type() == EM_ARM) {
DumpArm(reinterpret_cast<ElfInterfaceArm*>(interface));
printf("\n");
}
return 0;
}