Merge "Add gtest conformance tests for libsync."
This commit is contained in:
commit
3bcd569490
|
@ -0,0 +1,31 @@
|
|||
#
|
||||
# Copyright 2014 The Android Open Source Project
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
LOCAL_PATH:= $(call my-dir)
|
||||
|
||||
include $(CLEAR_VARS)
|
||||
include external/libcxx/libcxx.mk
|
||||
LOCAL_CLANG := true
|
||||
LOCAL_MODULE := sync-unit-tests
|
||||
LOCAL_ADDITIONAL_DEPENDENCIES := $(LOCAL_PATH)/Android.mk
|
||||
LOCAL_CFLAGS += -g -Wall -Werror -std=gnu++11 -Wno-missing-field-initializers -Wno-sign-compare
|
||||
LOCAL_SHARED_LIBRARIES += libsync
|
||||
LOCAL_STATIC_LIBRARIES += libgtest_main
|
||||
LOCAL_C_INCLUDES += $(LOCAL_PATH)/../include
|
||||
LOCAL_C_INCLUDES += $(LOCAL_PATH)/..
|
||||
LOCAL_SRC_FILES := \
|
||||
sync_test.cpp
|
||||
include $(BUILD_NATIVE_TEST)
|
|
@ -0,0 +1,615 @@
|
|||
#include <gtest/gtest.h>
|
||||
#include <sync/sync.h>
|
||||
#include <sw_sync.h>
|
||||
#include <fcntl.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <unistd.h>
|
||||
#include <thread>
|
||||
#include <poll.h>
|
||||
#include <mutex>
|
||||
#include <algorithm>
|
||||
#include <tuple>
|
||||
#include <random>
|
||||
#include <unordered_map>
|
||||
|
||||
// TODO: better stress tests?
|
||||
// Handle more than 64 fd's simultaneously, i.e. fix sync_fence_info's 4k limit.
|
||||
// Handle wraparound in timelines like nvidia.
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace {
|
||||
|
||||
// C++ wrapper class for sync timeline.
|
||||
class SyncTimeline {
|
||||
int m_fd = -1;
|
||||
bool m_fdInitialized = false;
|
||||
public:
|
||||
SyncTimeline(const SyncTimeline &) = delete;
|
||||
SyncTimeline& operator=(SyncTimeline&) = delete;
|
||||
SyncTimeline() noexcept {
|
||||
int fd = sw_sync_timeline_create();
|
||||
if (fd == -1)
|
||||
return;
|
||||
m_fdInitialized = true;
|
||||
m_fd = fd;
|
||||
}
|
||||
void destroy() {
|
||||
if (m_fdInitialized) {
|
||||
close(m_fd);
|
||||
m_fd = -1;
|
||||
m_fdInitialized = false;
|
||||
}
|
||||
}
|
||||
~SyncTimeline() {
|
||||
destroy();
|
||||
}
|
||||
bool isValid() const {
|
||||
if (m_fdInitialized) {
|
||||
int status = fcntl(m_fd, F_GETFD, 0);
|
||||
if (status == 0)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
int getFd() const {
|
||||
return m_fd;
|
||||
}
|
||||
int inc(int val = 1) {
|
||||
return sw_sync_timeline_inc(m_fd, val);
|
||||
}
|
||||
};
|
||||
|
||||
struct SyncPointInfo {
|
||||
std::string driverName;
|
||||
std::string objectName;
|
||||
uint64_t timeStampNs;
|
||||
int status; // 1 sig, 0 active, neg is err
|
||||
};
|
||||
|
||||
// Wrapper class for sync fence.
|
||||
class SyncFence {
|
||||
int m_fd = -1;
|
||||
bool m_fdInitialized = false;
|
||||
static int s_fenceCount;
|
||||
|
||||
void setFd(int fd) {
|
||||
m_fd = fd;
|
||||
m_fdInitialized = true;
|
||||
}
|
||||
void clearFd() {
|
||||
m_fd = -1;
|
||||
m_fdInitialized = false;
|
||||
}
|
||||
public:
|
||||
bool isValid() const {
|
||||
if (m_fdInitialized) {
|
||||
int status = fcntl(m_fd, F_GETFD, 0);
|
||||
if (status == 0)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
SyncFence& operator=(SyncFence &&rhs) noexcept {
|
||||
destroy();
|
||||
if (rhs.isValid()) {
|
||||
setFd(rhs.getFd());
|
||||
rhs.clearFd();
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
SyncFence(SyncFence &&fence) noexcept {
|
||||
if (fence.isValid()) {
|
||||
setFd(fence.getFd());
|
||||
fence.clearFd();
|
||||
}
|
||||
}
|
||||
SyncFence(const SyncFence &fence) noexcept {
|
||||
// This is ok, as sync fences are immutable after construction, so a dup
|
||||
// is basically the same thing as a copy.
|
||||
if (fence.isValid()) {
|
||||
int fd = dup(fence.getFd());
|
||||
if (fd == -1)
|
||||
return;
|
||||
setFd(fd);
|
||||
}
|
||||
}
|
||||
SyncFence(const SyncTimeline &timeline,
|
||||
int value,
|
||||
const char *name = nullptr) noexcept {
|
||||
std::string autoName = "allocFence";
|
||||
autoName += s_fenceCount;
|
||||
s_fenceCount++;
|
||||
int fd = sw_sync_fence_create(timeline.getFd(), name ? name : autoName.c_str(), value);
|
||||
if (fd == -1)
|
||||
return;
|
||||
setFd(fd);
|
||||
}
|
||||
SyncFence(const SyncFence &a, const SyncFence &b, const char *name = nullptr) noexcept {
|
||||
std::string autoName = "mergeFence";
|
||||
autoName += s_fenceCount;
|
||||
s_fenceCount++;
|
||||
int fd = sync_merge(name ? name : autoName.c_str(), a.getFd(), b.getFd());
|
||||
if (fd == -1)
|
||||
return;
|
||||
setFd(fd);
|
||||
}
|
||||
SyncFence(const vector<SyncFence> &sources) noexcept {
|
||||
assert(sources.size());
|
||||
SyncFence temp(*begin(sources));
|
||||
for (auto itr = ++begin(sources); itr != end(sources); ++itr) {
|
||||
temp = SyncFence(*itr, temp);
|
||||
}
|
||||
if (temp.isValid()) {
|
||||
setFd(temp.getFd());
|
||||
temp.clearFd();
|
||||
}
|
||||
}
|
||||
void destroy() {
|
||||
if (isValid()) {
|
||||
close(m_fd);
|
||||
clearFd();
|
||||
}
|
||||
}
|
||||
~SyncFence() {
|
||||
destroy();
|
||||
}
|
||||
int getFd() const {
|
||||
return m_fd;
|
||||
}
|
||||
int wait(int timeout = -1) {
|
||||
return sync_wait(m_fd, timeout);
|
||||
}
|
||||
vector<SyncPointInfo> getInfo() const {
|
||||
struct sync_pt_info *pointInfo = nullptr;
|
||||
vector<SyncPointInfo> fenceInfo;
|
||||
sync_fence_info_data *info = sync_fence_info(getFd());
|
||||
if (!info) {
|
||||
return fenceInfo;
|
||||
}
|
||||
while ((pointInfo = sync_pt_info(info, pointInfo))) {
|
||||
fenceInfo.push_back(SyncPointInfo{
|
||||
pointInfo->driver_name,
|
||||
pointInfo->obj_name,
|
||||
pointInfo->timestamp_ns,
|
||||
pointInfo->status});
|
||||
}
|
||||
sync_fence_info_free(info);
|
||||
return fenceInfo;
|
||||
}
|
||||
int getSize() const {
|
||||
return getInfo().size();
|
||||
}
|
||||
int getSignaledCount() const {
|
||||
return countWithStatus(1);
|
||||
}
|
||||
int getActiveCount() const {
|
||||
return countWithStatus(0);
|
||||
}
|
||||
int getErrorCount() const {
|
||||
return countWithStatus(-1);
|
||||
}
|
||||
private:
|
||||
int countWithStatus(int status) const {
|
||||
int count = 0;
|
||||
for (auto &info : getInfo()) {
|
||||
if (info.status == status) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
};
|
||||
|
||||
int SyncFence::s_fenceCount = 0;
|
||||
|
||||
TEST(AllocTest, Timeline) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
}
|
||||
|
||||
TEST(AllocTest, Fence) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
SyncFence fence(timeline, 1);
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
}
|
||||
|
||||
TEST(AllocTest, FenceNegative) {
|
||||
int timeline = sw_sync_timeline_create();
|
||||
ASSERT_GT(timeline, 0);
|
||||
|
||||
// bad fd.
|
||||
ASSERT_LT(sw_sync_fence_create(-1, "fence", 1), 0);
|
||||
|
||||
// No name - segfaults in user space.
|
||||
// Maybe we should be friendlier here?
|
||||
/*
|
||||
ASSERT_LT(sw_sync_fence_create(timeline, nullptr, 1), 0);
|
||||
*/
|
||||
close(timeline);
|
||||
}
|
||||
|
||||
TEST(FenceTest, OneTimelineWait) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
SyncFence fence(timeline, 5);
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
|
||||
// Wait on fence until timeout.
|
||||
ASSERT_EQ(fence.wait(0), -1);
|
||||
ASSERT_EQ(errno, ETIME);
|
||||
|
||||
// Advance timeline from 0 -> 1
|
||||
ASSERT_EQ(timeline.inc(1), 0);
|
||||
|
||||
// Wait on fence until timeout.
|
||||
ASSERT_EQ(fence.wait(0), -1);
|
||||
ASSERT_EQ(errno, ETIME);
|
||||
|
||||
// Signal the fence.
|
||||
ASSERT_EQ(timeline.inc(4), 0);
|
||||
|
||||
// Wait successfully.
|
||||
ASSERT_EQ(fence.wait(0), 0);
|
||||
|
||||
// Go even futher, and confirm wait still succeeds.
|
||||
ASSERT_EQ(timeline.inc(10), 0);
|
||||
ASSERT_EQ(fence.wait(0), 0);
|
||||
}
|
||||
|
||||
TEST(FenceTest, OneTimelinePoll) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
SyncFence fence(timeline, 100);
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
|
||||
fd_set set;
|
||||
FD_ZERO(&set);
|
||||
FD_SET(fence.getFd(), &set);
|
||||
|
||||
// Poll the fence, and wait till timeout.
|
||||
timeval time = {0};
|
||||
ASSERT_EQ(select(fence.getFd() + 1, &set, nullptr, nullptr, &time), 0);
|
||||
|
||||
// Advance the timeline.
|
||||
timeline.inc(100);
|
||||
timeline.inc(100);
|
||||
|
||||
// Select should return that the fd is read for reading.
|
||||
FD_ZERO(&set);
|
||||
FD_SET(fence.getFd(), &set);
|
||||
|
||||
ASSERT_EQ(select(fence.getFd() + 1, &set, nullptr, nullptr, &time), 1);
|
||||
ASSERT_TRUE(FD_ISSET(fence.getFd(), &set));
|
||||
}
|
||||
|
||||
TEST(FenceTest, OneTimelineMerge) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
// create fence a,b,c and then merge them all into fence d.
|
||||
SyncFence a(timeline, 1), b(timeline, 2), c(timeline, 3);
|
||||
ASSERT_TRUE(a.isValid());
|
||||
ASSERT_TRUE(b.isValid());
|
||||
ASSERT_TRUE(c.isValid());
|
||||
|
||||
SyncFence d({a,b,c});
|
||||
ASSERT_TRUE(d.isValid());
|
||||
|
||||
// confirm all fences have one active point (even d).
|
||||
ASSERT_EQ(a.getActiveCount(), 1);
|
||||
ASSERT_EQ(b.getActiveCount(), 1);
|
||||
ASSERT_EQ(c.getActiveCount(), 1);
|
||||
ASSERT_EQ(d.getActiveCount(), 1);
|
||||
|
||||
// confirm that d is not signaled until the max of a,b,c
|
||||
timeline.inc(1);
|
||||
ASSERT_EQ(a.getSignaledCount(), 1);
|
||||
ASSERT_EQ(d.getActiveCount(), 1);
|
||||
|
||||
timeline.inc(1);
|
||||
ASSERT_EQ(b.getSignaledCount(), 1);
|
||||
ASSERT_EQ(d.getActiveCount(), 1);
|
||||
|
||||
timeline.inc(1);
|
||||
ASSERT_EQ(c.getSignaledCount(), 1);
|
||||
ASSERT_EQ(d.getActiveCount(), 0);
|
||||
ASSERT_EQ(d.getSignaledCount(), 1);
|
||||
}
|
||||
|
||||
TEST(FenceTest, MergeSameFence) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
SyncFence fence(timeline, 5);
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
|
||||
SyncFence selfMergeFence(fence, fence);
|
||||
ASSERT_TRUE(selfMergeFence.isValid());
|
||||
|
||||
ASSERT_EQ(selfMergeFence.getSignaledCount(), 0);
|
||||
|
||||
timeline.inc(5);
|
||||
ASSERT_EQ(selfMergeFence.getSignaledCount(), 1);
|
||||
}
|
||||
|
||||
TEST(FenceTest, WaitOnDestroyedTimeline) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
SyncFence fenceSig(timeline, 100);
|
||||
SyncFence fenceKill(timeline, 200);
|
||||
|
||||
// Spawn a thread to wait on a fence when the timeline is killed.
|
||||
thread waitThread{
|
||||
[&]() {
|
||||
ASSERT_EQ(timeline.inc(100), 0);
|
||||
|
||||
ASSERT_EQ(fenceKill.wait(-1), -1);
|
||||
ASSERT_EQ(errno, ENOENT);
|
||||
}
|
||||
};
|
||||
|
||||
// Wait for the thread to spool up.
|
||||
fenceSig.wait();
|
||||
|
||||
// Kill the timeline.
|
||||
timeline.destroy();
|
||||
|
||||
// wait for the thread to clean up.
|
||||
waitThread.join();
|
||||
}
|
||||
|
||||
TEST(FenceTest, PollOnDestroyedTimeline) {
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
SyncFence fenceSig(timeline, 100);
|
||||
SyncFence fenceKill(timeline, 200);
|
||||
|
||||
// Spawn a thread to wait on a fence when the timeline is killed.
|
||||
thread waitThread{
|
||||
[&]() {
|
||||
ASSERT_EQ(timeline.inc(100), 0);
|
||||
|
||||
// Wait on the fd.
|
||||
struct pollfd fds;
|
||||
fds.fd = fenceKill.getFd();
|
||||
fds.events = POLLIN | POLLERR;
|
||||
ASSERT_EQ(poll(&fds, 1, -1), 1);
|
||||
ASSERT_TRUE(fds.revents & POLLERR);
|
||||
}
|
||||
};
|
||||
|
||||
// Wait for the thread to spool up.
|
||||
fenceSig.wait();
|
||||
|
||||
// Kill the timeline.
|
||||
timeline.destroy();
|
||||
|
||||
// wait for the thread to clean up.
|
||||
waitThread.join();
|
||||
}
|
||||
|
||||
TEST(FenceTest, MultiTimelineWait) {
|
||||
SyncTimeline timelineA, timelineB, timelineC;
|
||||
|
||||
SyncFence fenceA(timelineA, 5);
|
||||
SyncFence fenceB(timelineB, 5);
|
||||
SyncFence fenceC(timelineC, 5);
|
||||
|
||||
// Make a larger fence using 3 other fences from different timelines.
|
||||
SyncFence mergedFence({fenceA, fenceB, fenceC});
|
||||
ASSERT_TRUE(mergedFence.isValid());
|
||||
|
||||
// Confirm fence isn't signaled
|
||||
ASSERT_EQ(mergedFence.getActiveCount(), 3);
|
||||
ASSERT_EQ(mergedFence.wait(0), -1);
|
||||
ASSERT_EQ(errno, ETIME);
|
||||
|
||||
timelineA.inc(5);
|
||||
ASSERT_EQ(mergedFence.getActiveCount(), 2);
|
||||
ASSERT_EQ(mergedFence.getSignaledCount(), 1);
|
||||
|
||||
timelineB.inc(5);
|
||||
ASSERT_EQ(mergedFence.getActiveCount(), 1);
|
||||
ASSERT_EQ(mergedFence.getSignaledCount(), 2);
|
||||
|
||||
timelineC.inc(5);
|
||||
ASSERT_EQ(mergedFence.getActiveCount(), 0);
|
||||
ASSERT_EQ(mergedFence.getSignaledCount(), 3);
|
||||
|
||||
// confirm you can successfully wait.
|
||||
ASSERT_EQ(mergedFence.wait(100), 0);
|
||||
}
|
||||
|
||||
TEST(StressTest, TwoThreadsSharedTimeline) {
|
||||
const int iterations = 1 << 16;
|
||||
int counter = 0;
|
||||
SyncTimeline timeline;
|
||||
ASSERT_TRUE(timeline.isValid());
|
||||
|
||||
// Use a single timeline to synchronize two threads
|
||||
// hammmering on the same counter.
|
||||
auto threadMain = [&](int threadId) {
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
SyncFence fence(timeline, i * 2 + threadId);
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
|
||||
// Wait on the prior thread to complete.
|
||||
ASSERT_EQ(fence.wait(), 0);
|
||||
|
||||
// Confirm the previous thread's writes are visible and then inc.
|
||||
ASSERT_EQ(counter, i * 2 + threadId);
|
||||
counter++;
|
||||
|
||||
// Kick off the other thread.
|
||||
ASSERT_EQ(timeline.inc(), 0);
|
||||
}
|
||||
};
|
||||
|
||||
thread a{threadMain, 0};
|
||||
thread b{threadMain, 1};
|
||||
a.join();
|
||||
b.join();
|
||||
|
||||
// make sure the threads did not trample on one another.
|
||||
ASSERT_EQ(counter, iterations * 2);
|
||||
}
|
||||
|
||||
class ConsumerStressTest : public ::testing::TestWithParam<int> {};
|
||||
|
||||
TEST_P(ConsumerStressTest, MultiProducerSingleConsumer) {
|
||||
mutex lock;
|
||||
int counter = 0;
|
||||
int iterations = 1 << 12;
|
||||
|
||||
vector<SyncTimeline> producerTimelines(GetParam());
|
||||
vector<thread> threads;
|
||||
SyncTimeline consumerTimeline;
|
||||
|
||||
// Producer threads run this lambda.
|
||||
auto threadMain = [&](int threadId) {
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
SyncFence fence(consumerTimeline, i);
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
|
||||
// Wait for the consumer to finish. Use alternate
|
||||
// means of waiting on the fence.
|
||||
if ((iterations + threadId) % 8 != 0) {
|
||||
ASSERT_EQ(fence.wait(), 0);
|
||||
}
|
||||
else {
|
||||
while (fence.getSignaledCount() != 1) {
|
||||
ASSERT_EQ(fence.getErrorCount(), 0);
|
||||
}
|
||||
}
|
||||
|
||||
// Every producer increments the counter, the consumer checks + erases it.
|
||||
lock.lock();
|
||||
counter++;
|
||||
lock.unlock();
|
||||
|
||||
ASSERT_EQ(producerTimelines[threadId].inc(), 0);
|
||||
}
|
||||
};
|
||||
|
||||
for (int i = 0; i < GetParam(); i++) {
|
||||
threads.push_back(thread{threadMain, i});
|
||||
}
|
||||
|
||||
// Consumer thread runs this loop.
|
||||
for (int i = 1; i <= iterations; i++) {
|
||||
// Create a fence representing all producers final timelines.
|
||||
vector<SyncFence> fences;
|
||||
for (auto& timeline : producerTimelines) {
|
||||
fences.push_back(SyncFence(timeline, i));
|
||||
}
|
||||
SyncFence mergeFence(fences);
|
||||
ASSERT_TRUE(mergeFence.isValid());
|
||||
|
||||
// Make sure we see an increment from every producer thread. Vary
|
||||
// the means by which we wait.
|
||||
if (iterations % 8 != 0) {
|
||||
ASSERT_EQ(mergeFence.wait(), 0);
|
||||
}
|
||||
else {
|
||||
while (mergeFence.getSignaledCount() != mergeFence.getSize()) {
|
||||
ASSERT_EQ(mergeFence.getErrorCount(), 0);
|
||||
}
|
||||
}
|
||||
ASSERT_EQ(counter, GetParam()*i);
|
||||
|
||||
// Release the producer threads.
|
||||
ASSERT_EQ(consumerTimeline.inc(), 0);
|
||||
}
|
||||
|
||||
for_each(begin(threads), end(threads), [](thread& thread) { thread.join(); });
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(
|
||||
ParameterizedStressTest,
|
||||
ConsumerStressTest,
|
||||
::testing::Values(2,4,16));
|
||||
|
||||
class MergeStressTest : public ::testing::TestWithParam<tuple<int, int>> {};
|
||||
|
||||
template <typename K, typename V> using dict = unordered_map<K,V>;
|
||||
|
||||
TEST_P(MergeStressTest, RandomMerge) {
|
||||
int timelineCount = get<0>(GetParam());
|
||||
int mergeCount = get<1>(GetParam());
|
||||
|
||||
vector<SyncTimeline> timelines(timelineCount);
|
||||
|
||||
default_random_engine generator;
|
||||
uniform_int_distribution<int> timelineDist(0, timelines.size()-1);
|
||||
uniform_int_distribution<int> syncPointDist(0, numeric_limits<int>::max());
|
||||
|
||||
SyncFence fence(timelines[0], 0);
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
|
||||
unordered_map<int, int> fenceMap;
|
||||
fenceMap.insert(make_tuple(0, 0));
|
||||
|
||||
// Randomly create syncpoints out of a fixed set of timelines, and merge them together.
|
||||
for (int i = 0; i < mergeCount; i++) {
|
||||
|
||||
// Generate syncpoint.
|
||||
int timelineOffset = timelineDist(generator);
|
||||
const SyncTimeline& timeline = timelines[timelineOffset];
|
||||
int syncPoint = syncPointDist(generator);
|
||||
|
||||
// Keep track of the latest syncpoint in each timeline.
|
||||
auto itr = fenceMap.find(timelineOffset);
|
||||
if (itr == end(fenceMap)) {
|
||||
fenceMap.insert(tie(timelineOffset, syncPoint));
|
||||
}
|
||||
else {
|
||||
int oldSyncPoint = itr->second;
|
||||
fenceMap.erase(itr);
|
||||
fenceMap.insert(tie(timelineOffset, max(syncPoint, oldSyncPoint)));
|
||||
}
|
||||
|
||||
// Merge.
|
||||
fence = SyncFence(fence, SyncFence(timeline, syncPoint));
|
||||
ASSERT_TRUE(fence.isValid());
|
||||
}
|
||||
|
||||
// Confirm our map matches the fence.
|
||||
ASSERT_EQ(fence.getSize(), fenceMap.size());
|
||||
|
||||
// Trigger the merged fence.
|
||||
for (auto& item: fenceMap) {
|
||||
ASSERT_EQ(fence.wait(0), -1);
|
||||
ASSERT_EQ(errno, ETIME);
|
||||
|
||||
// Increment the timeline to the last syncpoint.
|
||||
timelines[item.first].inc(item.second);
|
||||
}
|
||||
|
||||
// Check that the fence is triggered.
|
||||
ASSERT_EQ(fence.wait(0), 0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(
|
||||
ParameterizedMergeStressTest,
|
||||
MergeStressTest,
|
||||
::testing::Combine(::testing::Values(16,32), ::testing::Values(32, 1024, 1024*32)));
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue