Merge changes I09b11db0,I774b1a44

* changes:
  libcutils: add file permission for storaged
  storaged: add storaged native daemon
This commit is contained in:
TreeHugger Robot 2016-12-16 05:13:39 +00:00 committed by Android (Google) Code Review
commit 4769dab866
13 changed files with 2328 additions and 0 deletions

View File

@ -149,6 +149,10 @@ static const struct fs_path_config android_files[] = {
"system/bin/run-as" },
{ 00700, AID_SYSTEM, AID_SHELL, CAP_MASK_LONG(CAP_BLOCK_SUSPEND),
"system/bin/inputflinger" },
{ 00750, AID_SYSTEM, AID_SHELL, CAP_MASK_LONG(CAP_SETUID) |
CAP_MASK_LONG(CAP_SETGID) |
CAP_MASK_LONG(CAP_SYS_PTRACE),
"system/bin/storaged" },
/* Support FIFO scheduling mode in SurfaceFlinger. */
{ 00755, AID_SYSTEM, AID_GRAPHICS, CAP_MASK_LONG(CAP_SYS_NICE),

34
storaged/Android.mk Normal file
View File

@ -0,0 +1,34 @@
# Copyright 2016 The Android Open Source Project
LOCAL_PATH := $(call my-dir)
LIBSTORAGED_SHARED_LIBRARIES := libbinder libbase libutils libcutils liblog libsysutils libcap
include $(CLEAR_VARS)
LOCAL_SRC_FILES := storaged.cpp \
storaged_service.cpp \
storaged_utils.cpp \
EventLogTags.logtags
LOCAL_MODULE := libstoraged
LOCAL_CFLAGS := -Werror
LOCAL_C_INCLUDES := $(LOCAL_PATH)/include external/googletest/googletest/include
LOCAL_EXPORT_C_INCLUDE_DIRS := $(LOCAL_PATH)/include
LOCAL_SHARED_LIBRARIES := $(LIBSTORAGED_SHARED_LIBRARIES)
include $(BUILD_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := storaged
LOCAL_INIT_RC := storaged.rc
LOCAL_SRC_FILES := main.cpp
# libstoraged is an internal static library, only main.cpp and storaged_test.cpp should be using it
LOCAL_STATIC_LIBRARIES := libstoraged
LOCAL_SHARED_LIBRARIES := $(LIBSTORAGED_SHARED_LIBRARIES)
LOCAL_CFLAGS := -Wall -Werror -Wno-unused-parameter
LOCAL_C_INCLUDES := external/googletest/googletest/include
include $(BUILD_EXECUTABLE)
include $(call first-makefiles-under,$(LOCAL_PATH))

View File

@ -0,0 +1,39 @@
# The entries in this file map a sparse set of log tag numbers to tag names.
# This is installed on the device, in /system/etc, and parsed by logcat.
#
# Tag numbers are decimal integers, from 0 to 2^31. (Let's leave the
# negative values alone for now.)
#
# Tag names are one or more ASCII letters and numbers or underscores, i.e.
# "[A-Z][a-z][0-9]_". Do not include spaces or punctuation (the former
# impacts log readability, the latter makes regex searches more annoying).
#
# Tag numbers and names are separated by whitespace. Blank lines and lines
# starting with '#' are ignored.
#
# Optionally, after the tag names can be put a description for the value(s)
# of the tag. Description are in the format
# (<name>|data type[|data unit])
# Multiple values are separated by commas.
#
# The data type is a number from the following values:
# 1: int
# 2: long
# 3: string
# 4: list
# 5: float
#
# The data unit is a number taken from the following list:
# 1: Number of objects
# 2: Number of bytes
# 3: Number of milliseconds
# 4: Number of allocations
# 5: Id
# 6: Percent
# Default value for data of type int/long is 2 (bytes).
#
# TODO: generate ".java" and ".h" files with integer constants from this file.
2732 storaged_disk_stats (type|3),(start_time|2|3),(end_time|2|3),(read_ios|2|1),(read_merges|2|1),(read_sectors|2|1),(read_ticks|2|3),(write_ios|2|1),(write_merges|2|1),(write_sectors|2|1),(write_ticks|2|3),(o_in_flight|2|1),(io_ticks|2|3),(io_in_queue|2|1)
2733 storaged_emmc_info (mmc_ver|3),(eol|1),(lifetime_a|1),(lifetime_b|1)

340
storaged/include/storaged.h Normal file
View File

@ -0,0 +1,340 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _STORAGED_H_
#define _STORAGED_H_
#define DEBUG
#include <queue>
#include <semaphore.h>
#include <stdint.h>
#include <string>
#include <syslog.h>
#include <unordered_map>
#include <vector>
#define FRIEND_TEST(test_case_name, test_name) \
friend class test_case_name##_##test_name##_Test
/* For debug */
#ifdef DEBUG
#define debuginfo(fmt, ...) \
do {printf("%s():\t" fmt "\t[%s:%d]\n", __FUNCTION__, ##__VA_ARGS__, __FILE__, __LINE__);} \
while(0)
#else
#define debuginfo(...)
#endif
#define KMSG_PRIORITY(PRI) \
'<', \
'0' + LOG_MAKEPRI(LOG_DAEMON, LOG_PRI(PRI)) / 10, \
'0' + LOG_MAKEPRI(LOG_DAEMON, LOG_PRI(PRI)) % 10, \
'>'
static char kmsg_error_prefix[] = { KMSG_PRIORITY(LOG_ERR),
's', 't', 'o', 'r', 'a', 'g', 'e', 'd', ':', '\0' };
static char kmsg_info_prefix[] = { KMSG_PRIORITY(LOG_INFO),
's', 't', 'o', 'r', 'a', 'g', 'e', 'd', ':', '\0' };
static char kmsg_warning_prefix[] = { KMSG_PRIORITY(LOG_WARNING),
's', 't', 'o', 'r', 'a', 'g', 'e', 'd', ':', '\0' };
// number of attributes diskstats has
#define DISK_STATS_SIZE ( 11 )
// maximum size limit of a stats file
#define DISK_STATS_FILE_MAX_SIZE ( 256 )
#define DISK_STATS_IO_IN_FLIGHT_IDX ( 8 )
struct disk_stats {
/* It will be extremely unlikely for any of the following entries to overflow.
* For read_bytes(which will be greater than any of the following entries), it
* will take 27 years to overflow uint64_t at the reading rate of 20GB/s, which
* is the peak memory transfer rate for current memory.
* The diskstats entries (first 11) need to be at top in this structure _after_
* compiler's optimization.
*/
uint64_t read_ios; // number of read I/Os processed
uint64_t read_merges; // number of read I/Os merged with in-queue I/Os
uint64_t read_sectors; // number of sectors read
uint64_t read_ticks; // total wait time for read requests
uint64_t write_ios; // number of write I/Os processed
uint64_t write_merges; // number of write I/Os merged with in-queue I/Os
uint64_t write_sectors; // number of sectors written
uint64_t write_ticks; // total wait time for write requests
uint64_t io_in_flight; // number of I/Os currently in flight
uint64_t io_ticks; // total time this block device has been active
uint64_t io_in_queue; // total wait time for all requests
uint64_t start_time; // monotonic time accounting starts
uint64_t end_time; // monotonic time accounting ends
uint32_t counter; // private counter for accumulate calculations
double io_avg; // average io_in_flight for accumulate calculations
};
#define MMC_VER_STR_LEN ( 8 ) // maximum length of the MMC version string
// minimum size of a ext_csd file
#define EXT_CSD_FILE_MIN_SIZE ( 1024 )
struct emmc_info {
int eol; // pre-eol (end of life) information
int lifetime_a; // device life time estimation (type A)
int lifetime_b; // device life time estimation (type B)
char mmc_ver[MMC_VER_STR_LEN]; // device version string
};
struct disk_perf {
uint32_t read_perf; // read speed (kbytes/s)
uint32_t read_ios; // read I/Os per second
uint32_t write_perf; // write speed (kbytes/s)
uint32_t write_ios; // write I/Os per second
uint32_t queue; // I/Os in queue
};
#define CMD_MAX_LEN ( 64 )
struct task_info {
uint32_t pid; // task id
uint64_t rchar; // characters read
uint64_t wchar; // characters written
uint64_t syscr; // read syscalls
uint64_t syscw; // write syscalls
uint64_t read_bytes; // bytes read (from storage layer)
uint64_t write_bytes; // bytes written (to storage layer)
uint64_t cancelled_write_bytes; // cancelled write byte by truncate
uint64_t starttime; // start time of task
char cmd[CMD_MAX_LEN]; // filename of the executable
};
class lock_t {
sem_t* mSem;
public:
lock_t(sem_t* sem) {
mSem = sem;
sem_wait(mSem);
}
~lock_t() {
sem_post(mSem);
}
};
class tasks_t {
private:
FRIEND_TEST(storaged_test, tasks_t);
sem_t mSem;
// hashmap for all running tasks w/ pid as key
std::unordered_map<uint32_t, struct task_info> mRunning;
// hashmap for all tasks that have been killed (categorized by cmd) w/ cmd as key
std::unordered_map<std::string, struct task_info> mOld;
std::unordered_map<std::uint32_t, struct task_info> get_running_tasks();
public:
tasks_t() {
sem_init(&mSem, 0, 1); // TODO: constructor don't have a return value, what if sem_init fails
}
~tasks_t() {
sem_destroy(&mSem);
}
void update_running_tasks(void);
std::vector<struct task_info> get_tasks(void);
};
class stream_stats {
private:
double mSum;
double mSquareSum;
uint32_t mCnt;
public:
stream_stats() : mSum(0), mSquareSum(0), mCnt(0) {};
~stream_stats() {};
double get_mean() {
return mSum / mCnt;
}
double get_std() {
return sqrt(mSquareSum / mCnt - mSum * mSum / (mCnt * mCnt));
}
void add(uint32_t num) {
mSum += (double)num;
mSquareSum += (double)num * (double)num;
mCnt++;
}
void evict(uint32_t num) {
if (mSum < num || mSquareSum < (double)num * (double)num) return;
mSum -= (double)num;
mSquareSum -= (double)num * (double)num;
mCnt--;
}
};
#define MMC_DISK_STATS_PATH "/sys/block/mmcblk0/stat"
#define SDA_DISK_STATS_PATH "/sys/block/sda/stat"
#define EMMC_ECSD_PATH "/d/mmc0/mmc0:0001/ext_csd"
class disk_stats_monitor {
private:
FRIEND_TEST(storaged_test, disk_stats_monitor);
const char* DISK_STATS_PATH;
struct disk_stats mPrevious;
struct disk_stats mAccumulate;
bool mStall;
std::queue<struct disk_perf> mBuffer;
struct {
stream_stats read_perf; // read speed (bytes/s)
stream_stats read_ios; // read I/Os per second
stream_stats write_perf; // write speed (bytes/s)
stream_stats write_ios; // write I/O per second
stream_stats queue; // I/Os in queue
} mStats;
bool mValid;
const uint32_t mWindow;
const double mSigma;
struct disk_perf mMean;
struct disk_perf mStd;
void update_mean();
void update_std();
void add(struct disk_perf* perf);
void evict(struct disk_perf* perf);
bool detect(struct disk_perf* perf);
void update(struct disk_stats* stats);
public:
disk_stats_monitor(uint32_t window_size = 5, double sigma = 1.0) :
mStall(false),
mValid(false),
mWindow(window_size),
mSigma(sigma) {
memset(&mPrevious, 0, sizeof(mPrevious));
memset(&mMean, 0, sizeof(mMean));
memset(&mStd, 0, sizeof(mStd));
if (access(MMC_DISK_STATS_PATH, R_OK) >= 0) {
DISK_STATS_PATH = MMC_DISK_STATS_PATH;
} else {
DISK_STATS_PATH = SDA_DISK_STATS_PATH;
}
}
void update(void);
};
class disk_stats_publisher {
private:
FRIEND_TEST(storaged_test, disk_stats_publisher);
const char* DISK_STATS_PATH;
struct disk_stats mAccumulate;
struct disk_stats mPrevious;
public:
disk_stats_publisher(void) {
memset(&mAccumulate, 0, sizeof(struct disk_stats));
memset(&mPrevious, 0, sizeof(struct disk_stats));
if (access(MMC_DISK_STATS_PATH, R_OK) >= 0) {
DISK_STATS_PATH = MMC_DISK_STATS_PATH;
} else {
DISK_STATS_PATH = SDA_DISK_STATS_PATH;
}
}
~disk_stats_publisher(void) {}
void publish(void);
void update(void);
};
class emmc_info_t {
private:
struct emmc_info mInfo;
bool mValid;
int mFdEmmc;
public:
emmc_info_t(void) :
mValid(false),
mFdEmmc(-1) {
memset(&mInfo, 0, sizeof(struct emmc_info));
}
~emmc_info_t(void) {}
void publish(void);
void update(void);
void set_emmc_fd(int fd) {
mFdEmmc = fd;
}
};
// Periodic chores intervals in seconds
#define DEFAULT_PERIODIC_CHORES_INTERVAL_UNIT ( 20 )
#define DEFAULT_PERIODIC_CHORES_INTERVAL_DISK_STATS_PUBLISH ( 60 )
#define DEFAULT_PERIODIC_CHORES_INTERVAL_EMMC_INFO_PUBLISH ( 60 * 2 )
struct storaged_config {
int periodic_chores_interval_unit;
int periodic_chores_interval_disk_stats_publish;
int periodic_chores_interval_emmc_info_publish;
bool proc_taskio_readable; // are /proc/[pid]/{io, comm, cmdline, stat} all readable
bool emmc_available; // whether eMMC est_csd file is readable
bool diskstats_available; // whether diskstats is accessible
};
class storaged_t {
private:
time_t mTimer;
storaged_config mConfig;
disk_stats_publisher mDiskStats;
disk_stats_monitor mDsm;
emmc_info_t mEmmcInfo;
tasks_t mTasks;
time_t mStarttime;
public:
storaged_t(void);
~storaged_t() {}
void event(void);
void pause(void) {
sleep(mConfig.periodic_chores_interval_unit);
}
void set_unit_interval(int unit) {
mConfig.periodic_chores_interval_unit = unit;
}
void set_diskstats_interval(int disk_stats) {
mConfig.periodic_chores_interval_disk_stats_publish = disk_stats;
}
void set_emmc_interval(int emmc_info) {
mConfig.periodic_chores_interval_emmc_info_publish = emmc_info;
}
std::vector<struct task_info> get_tasks(void) {
// There could be a race when get_tasks() and the main thread is updating at the same time
// While update_running_tasks() is updating the critical sections at the end of the function
// all together atomically, the final state of task_t can only be either the main thread's
// update or this update. Since the race can only occur when both threads are updating
// "simultaneously", either final state is acceptable.
mTasks.update_running_tasks();
return mTasks.get_tasks();
}
void set_privileged_fds(int fd_emmc) {
mEmmcInfo.set_emmc_fd(fd_emmc);
}
time_t get_starttime(void) {
return mStarttime;
}
};
// Eventlog tag
// The content must match the definition in EventLogTags.logtags
#define EVENTLOGTAG_DISKSTATS ( 2732 )
#define EVENTLOGTAG_EMMCINFO ( 2733 )
#endif /* _STORAGED_H_ */

View File

@ -0,0 +1,59 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _STORAGED_SERVICE_H_
#define _STORAGED_SERVICE_H_
#include <vector>
#include <binder/IInterface.h>
#include <binder/IBinder.h>
#include "storaged.h"
using namespace android;
// Interface
class IStoraged : public IInterface {
public:
enum {
DUMPTASKS = IBinder::FIRST_CALL_TRANSACTION,
};
// Request the service to run the test function
virtual std::vector<struct task_info> dump_tasks(const char* option) = 0;
DECLARE_META_INTERFACE(Storaged);
};
// Client
class BpStoraged : public BpInterface<IStoraged> {
public:
BpStoraged(const sp<IBinder>& impl) : BpInterface<IStoraged>(impl){};
virtual std::vector<struct task_info> dump_tasks(const char* option);
};
// Server
class BnStoraged : public BnInterface<IStoraged> {
virtual status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0);
};
class Storaged : public BnStoraged {
virtual std::vector<struct task_info> dump_tasks(const char* option);
};
sp<IStoraged> get_storaged_service();
#endif /* _STORAGED_SERVICE_H_ */

View File

@ -0,0 +1,46 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _STORAGED_UTILS_H_
#define _STORAGED_UTILS_H_
#include <stdint.h>
#include <string>
#include <unordered_map>
#include <vector>
#include "storaged.h"
// Diskstats
bool parse_disk_stats(const char* disk_stats_path, struct disk_stats* stats);
struct disk_perf get_disk_perf(struct disk_stats* stats);
struct disk_stats get_inc_disk_stats(struct disk_stats* prev, struct disk_stats* curr);
void add_disk_stats(struct disk_stats* src, struct disk_stats* dst);
bool parse_emmc_ecsd(int ext_csd_fd, struct emmc_info* info);
// Task I/O
bool parse_task_info(uint32_t pid, struct task_info* info);
void sort_running_tasks_info(std::vector<struct task_info> &tasks);
// Logging
void log_console_running_tasks_info(std::vector<struct task_info> tasks);
void log_kernel_disk_stats(struct disk_stats* stats, const char* type);
void log_kernel_disk_perf(struct disk_perf* perf, const char* type);
void log_kernel_emmc_info(struct emmc_info* info);
void log_event_disk_stats(struct disk_stats* stats, const char* type);
void log_event_emmc_info(struct emmc_info* info_);
#endif /* _STORAGED_UTILS_H_ */

298
storaged/main.cpp Normal file
View File

@ -0,0 +1,298 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "storaged"
#define KLOG_LEVEL 6
#include <fcntl.h>
#include <getopt.h>
#include <pthread.h>
#include <stdio.h>
#include <sys/capability.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <vector>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include <binder/ProcessState.h>
#include <binder/IServiceManager.h>
#include <binder/IPCThreadState.h>
#include <cutils/android_get_control_file.h>
#include <cutils/klog.h>
#include <cutils/sched_policy.h>
#include <private/android_filesystem_config.h>
#include <storaged.h>
#include <storaged_service.h>
#include <storaged_utils.h>
storaged_t storaged;
static int drop_privs() {
// privilege setting
struct sched_param param;
memset(&param, 0, sizeof(param));
if (set_sched_policy(0, SP_BACKGROUND) < 0) return -1;
if (sched_setscheduler((pid_t) 0, SCHED_BATCH, &param) < 0) return -1;
if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_BACKGROUND) < 0) return -1;
if (prctl(PR_SET_KEEPCAPS, 1) < 0) return -1;
std::unique_ptr<struct _cap_struct, int(*)(void *)> caps(cap_init(), cap_free);
if (cap_clear(caps.get()) < 0) return -1;
cap_value_t cap_value[] = {
CAP_SETGID,
CAP_SETUID,
CAP_SYS_PTRACE // allow access to proc/<pid>/io as non-root user
};
if (cap_set_flag(caps.get(), CAP_PERMITTED,
arraysize(cap_value), cap_value,
CAP_SET) < 0) return -1;
if (cap_set_flag(caps.get(), CAP_EFFECTIVE,
arraysize(cap_value), cap_value,
CAP_SET) < 0) return -1;
if (cap_set_proc(caps.get()) < 0)
return -1;
gid_t groups[] = { AID_READPROC };
if (setgroups(sizeof(groups) / sizeof(groups[0]), groups) == -1) return -1;
if (setgid(AID_SYSTEM) != 0) return -1;
if (setuid(AID_SYSTEM) != 0) return -1;
if (cap_set_flag(caps.get(), CAP_PERMITTED, 2, cap_value, CAP_CLEAR) < 0) return -1;
if (cap_set_flag(caps.get(), CAP_EFFECTIVE, 2, cap_value, CAP_CLEAR) < 0) return -1;
if (cap_set_proc(caps.get()) < 0)
return -1;
return 0;
}
// Function of storaged's main thread
extern int fd_dmesg;
void* storaged_main(void* s) {
storaged_t* storaged = (storaged_t*)s;
if (fd_dmesg >= 0) {
static const char start_message[] = {KMSG_PRIORITY(LOG_INFO),
's', 't', 'o', 'r', 'a', 'g', 'e', 'd', ':', ' ', 'S', 't', 'a', 'r', 't', '\n'};
write(fd_dmesg, start_message, sizeof(start_message));
}
for (;;) {
storaged->event();
storaged->pause();
}
return NULL;
}
static void help_message(void) {
printf("usage: storaged [OPTION]\n");
printf(" -d --dump Dump task I/O usage to stdout\n");
printf(" -s --start Start storaged (default)\n");
printf(" --emmc=INTERVAL Set publish interval of emmc lifetime information (in days)\n");
printf(" --diskstats=INTERVAL Set publish interval of diskstats (in hours)\n");
printf(" --unit=INTERVAL Set storaged's refresh interval (in seconds)\n");
fflush(stdout);
}
#define HOUR_TO_SEC ( 3600 )
#define DAY_TO_SEC ( 3600 * 24 )
int main(int argc, char** argv) {
klog_set_level(KLOG_LEVEL);
int flag_main_service = 0;
int flag_dump_task = 0;
int flag_config = 0;
int unit_interval = DEFAULT_PERIODIC_CHORES_INTERVAL_UNIT;
int diskstats_interval = DEFAULT_PERIODIC_CHORES_INTERVAL_DISK_STATS_PUBLISH;
int emmc_interval = DEFAULT_PERIODIC_CHORES_INTERVAL_EMMC_INFO_PUBLISH;
int fd_emmc = -1;
int opt;
for (;;) {
int opt_idx = 0;
static struct option long_options[] = {
{"start", no_argument, 0, 's'},
{"kill", no_argument, 0, 'k'},
{"dump", no_argument, 0, 'd'},
{"help", no_argument, 0, 'h'},
{"unit", required_argument, 0, 0 },
{"diskstats", required_argument, 0, 0 },
{"emmc", required_argument, 0, 0 }
};
opt = getopt_long(argc, argv, ":skdh0", long_options, &opt_idx);
if (opt == -1) {
break;
}
switch (opt) {
case 0:
printf("option %s", long_options[opt_idx].name);
if (optarg) {
printf(" with arg %s", optarg);
if (strcmp(long_options[opt_idx].name, "unit") == 0) {
unit_interval = atoi(optarg);
if (unit_interval == 0) {
fprintf(stderr, "Invalid argument. Option %s requires an integer argument greater than 0.\n",
long_options[opt_idx].name);
help_message();
return -1;
}
} else if (strcmp(long_options[opt_idx].name, "diskstats") == 0) {
diskstats_interval = atoi(optarg) * HOUR_TO_SEC;
if (diskstats_interval == 0) {
fprintf(stderr, "Invalid argument. Option %s requires an integer argument greater than 0.\n",
long_options[opt_idx].name);
help_message();
return -1;
}
} else if (strcmp(long_options[opt_idx].name, "emmc") == 0) {
emmc_interval = atoi(optarg) * DAY_TO_SEC;
if (diskstats_interval == 0) {
fprintf(stderr, "Invalid argument. Option %s requires an integer argument greater than 0.\n",
long_options[opt_idx].name);
help_message();
return -1;
}
}
flag_config = 1;
} else {
fprintf(stderr, "Invalid argument. Option %s requires an argument.\n",
long_options[opt_idx].name);
help_message();
return -1;
}
printf("\n");
break;
case 's':
flag_main_service = 1;
break;
case 'd':
flag_dump_task = 1;
break;
case 'h':
help_message();
return 0;
case '?':
default:
fprintf(stderr, "no supported option\n");
help_message();
return -1;
}
}
if (argc == 1) {
flag_main_service = 1;
}
if (flag_main_service && flag_dump_task) {
fprintf(stderr, "Invalid arguments. Option \"start\" and \"dump\" cannot be used together.\n");
help_message();
return -1;
}
if (flag_config && flag_dump_task) {
fprintf(stderr, "Invalid arguments. Cannot set configs in \'dump\' option.\n");
help_message();
return -1;
}
if (flag_main_service) { // start main thread
static const char dev_kmsg[] = "/dev/kmsg";
fd_dmesg = android_get_control_file(dev_kmsg);
if (fd_dmesg < 0)
fd_dmesg = TEMP_FAILURE_RETRY(open(dev_kmsg, O_WRONLY));
static const char mmc0_ext_csd[] = "/d/mmc0/mmc0:0001/ext_csd";
fd_emmc = android_get_control_file(mmc0_ext_csd);
if (fd_emmc < 0)
fd_emmc = TEMP_FAILURE_RETRY(open(mmc0_ext_csd, O_RDONLY));
if (drop_privs() != 0) {
return -1;
}
storaged.set_privileged_fds(fd_emmc);
if (flag_config) {
storaged.set_unit_interval(unit_interval);
storaged.set_diskstats_interval(diskstats_interval);
storaged.set_emmc_interval(emmc_interval);
}
// Start the main thread of storaged
pthread_t storaged_main_thread;
if (pthread_create(&storaged_main_thread, NULL, storaged_main, &storaged)) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s Failed to create main thread\n", kmsg_error_prefix);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return -1;
}
defaultServiceManager()->addService(String16("storaged"), new Storaged());
android::ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();
pthread_join(storaged_main_thread, NULL);
close(fd_dmesg);
close(fd_emmc);
return 0;
}
if (flag_dump_task) {
sp<IStoraged> storaged_service = get_storaged_service();
if (storaged_service == NULL) {
fprintf(stderr, "Cannot find storaged service.\nMaybe run storaged --start first?\n");
return -1;
}
std::vector<struct task_info> res = storaged_service->dump_tasks(NULL);
if (res.size() == 0) {
fprintf(stderr, "Task I/O is not readable in this version of kernel.\n");
return 0;
}
time_t starttime = storaged.get_starttime();
if (starttime == (time_t)-1) {
fprintf(stderr, "Unknown start time\n");
} else {
char* time_str = ctime(&starttime);
printf("Application I/O was collected by storaged since %s", time_str);
}
sort_running_tasks_info(res);
log_console_running_tasks_info(res);
return 0;
}
return 0;
}

211
storaged/storaged.cpp Normal file
View File

@ -0,0 +1,211 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "storaged"
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <android-base/logging.h>
#include <storaged.h>
#include <storaged_utils.h>
/* disk_stats_publisher */
void disk_stats_publisher::publish(void) {
// Logging
log_kernel_disk_stats(&mAccumulate, "regular");
struct disk_perf perf = get_disk_perf(&mAccumulate);
log_kernel_disk_perf(&perf, "regular");
log_event_disk_stats(&mAccumulate, "regular");
// Reset global structures
memset(&mAccumulate, 0, sizeof(struct disk_stats));
}
void disk_stats_publisher::update(void) {
struct disk_stats curr;
if (parse_disk_stats(DISK_STATS_PATH, &curr)) {
struct disk_stats inc = get_inc_disk_stats(&mPrevious, &curr);
add_disk_stats(&inc, &mAccumulate);
#ifdef DEBUG
// log_kernel_disk_stats(&mPrevious, "prev stats");
// log_kernel_disk_stats(&curr, "curr stats");
// log_kernel_disk_stats(&inc, "inc stats");
// log_kernel_disk_stats(&mAccumulate, "accumulated stats");
#endif
mPrevious = curr;
}
}
/* disk_stats_monitor */
void disk_stats_monitor::update_mean() {
CHECK(mValid);
mMean.read_perf = (uint32_t)mStats.read_perf.get_mean();
mMean.read_ios = (uint32_t)mStats.read_ios.get_mean();
mMean.write_perf = (uint32_t)mStats.write_perf.get_mean();
mMean.write_ios = (uint32_t)mStats.write_ios.get_mean();
mMean.queue = (uint32_t)mStats.queue.get_mean();
}
void disk_stats_monitor::update_std() {
CHECK(mValid);
mStd.read_perf = (uint32_t)mStats.read_perf.get_std();
mStd.read_ios = (uint32_t)mStats.read_ios.get_std();
mStd.write_perf = (uint32_t)mStats.write_perf.get_std();
mStd.write_ios = (uint32_t)mStats.write_ios.get_std();
mStd.queue = (uint32_t)mStats.queue.get_std();
}
void disk_stats_monitor::add(struct disk_perf* perf) {
mStats.read_perf.add(perf->read_perf);
mStats.read_ios.add(perf->read_ios);
mStats.write_perf.add(perf->write_perf);
mStats.write_ios.add(perf->write_ios);
mStats.queue.add(perf->queue);
}
void disk_stats_monitor::evict(struct disk_perf* perf) {
mStats.read_perf.evict(perf->read_perf);
mStats.read_ios.evict(perf->read_ios);
mStats.write_perf.evict(perf->write_perf);
mStats.write_ios.evict(perf->write_ios);
mStats.queue.evict(perf->queue);
}
bool disk_stats_monitor::detect(struct disk_perf* perf) {
return ((double)perf->queue >= (double)mMean.queue + mSigma * (double)mStd.queue) &&
((double)perf->read_perf < (double)mMean.read_perf - mSigma * (double)mStd.read_perf) &&
((double)perf->write_perf < (double)mMean.write_perf - mSigma * (double)mStd.write_perf);
}
void disk_stats_monitor::update(struct disk_stats* stats) {
struct disk_stats inc = get_inc_disk_stats(&mPrevious, stats);
struct disk_perf perf = get_disk_perf(&inc);
// Update internal data structures
if (LIKELY(mValid)) {
CHECK_EQ(mBuffer.size(), mWindow);
if (UNLIKELY(detect(&perf))) {
mStall = true;
add_disk_stats(&inc, &mAccumulate);
#ifdef DEBUG
log_kernel_disk_perf(&mMean, "stalled_mean");
log_kernel_disk_perf(&mStd, "stalled_std");
#endif
} else {
if (mStall) {
log_kernel_disk_stats(&mAccumulate, "stalled");
struct disk_perf acc_perf = get_disk_perf(&mAccumulate);
log_kernel_disk_perf(&acc_perf, "stalled");
log_event_disk_stats(&mAccumulate, "stalled");
mStall = false;
memset(&mAccumulate, 0, sizeof(mAccumulate));
}
}
evict(&mBuffer.front());
mBuffer.pop();
add(&perf);
mBuffer.push(perf);
update_mean();
update_std();
} else { /* mValid == false */
CHECK_LT(mBuffer.size(), mWindow);
add(&perf);
mBuffer.push(perf);
if (mBuffer.size() == mWindow) {
mValid = true;
update_mean();
update_std();
}
}
mPrevious = *stats;
}
void disk_stats_monitor::update(void) {
struct disk_stats curr;
if (LIKELY(parse_disk_stats(DISK_STATS_PATH, &curr))) {
update(&curr);
}
}
/* emmc_info_t */
void emmc_info_t::publish(void) {
if (mValid) {
log_kernel_emmc_info(&mInfo);
log_event_emmc_info(&mInfo);
}
}
void emmc_info_t::update(void) {
if (mFdEmmc >= 0) {
mValid = parse_emmc_ecsd(mFdEmmc, &mInfo);
}
}
/* storaged_t */
storaged_t::storaged_t(void) {
mConfig.emmc_available = (access(EMMC_ECSD_PATH, R_OK) >= 0);
if (access(MMC_DISK_STATS_PATH, R_OK) < 0 && access(SDA_DISK_STATS_PATH, R_OK) < 0) {
mConfig.diskstats_available = false;
} else {
mConfig.diskstats_available = true;
}
mConfig.proc_taskio_readable = true;
const char* test_paths[] = {"/proc/1/io", "/proc/1/comm", "/proc/1/cmdline", "/proc/1/stat"};
for (uint i = 0; i < sizeof(test_paths) / sizeof(const char*); ++i) {
if (access(test_paths[i], R_OK) < 0) {
mConfig.proc_taskio_readable = false;
break;
}
}
mConfig.periodic_chores_interval_unit = DEFAULT_PERIODIC_CHORES_INTERVAL_UNIT;
mConfig.periodic_chores_interval_disk_stats_publish = DEFAULT_PERIODIC_CHORES_INTERVAL_DISK_STATS_PUBLISH;
mConfig.periodic_chores_interval_emmc_info_publish = DEFAULT_PERIODIC_CHORES_INTERVAL_EMMC_INFO_PUBLISH;
mStarttime = time(NULL);
}
void storaged_t::event(void) {
if (mConfig.diskstats_available) {
mDiskStats.update();
mDsm.update();
if (mTimer && (mTimer % mConfig.periodic_chores_interval_disk_stats_publish) == 0) {
mDiskStats.publish();
}
}
if (mConfig.proc_taskio_readable) {
mTasks.update_running_tasks();
}
if (mConfig.emmc_available && mTimer &&
(mTimer % mConfig.periodic_chores_interval_emmc_info_publish) == 0) {
mEmmcInfo.update();
mEmmcInfo.publish();
}
mTimer += mConfig.periodic_chores_interval_unit;
}

5
storaged/storaged.rc Normal file
View File

@ -0,0 +1,5 @@
service storaged /system/bin/storaged
class main
file /d/mmc0/mmc0:0001/ext_csd r
file /dev/kmsg w
group root readproc

View File

@ -0,0 +1,78 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <binder/IBinder.h>
#include <binder/IInterface.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <storaged.h>
#include <storaged_service.h>
extern storaged_t storaged;
std::vector<struct task_info> BpStoraged::dump_tasks(const char* /*option*/) {
Parcel data, reply;
data.writeInterfaceToken(IStoraged::getInterfaceDescriptor());
remote()->transact(DUMPTASKS, data, &reply);
uint32_t res_size = reply.readInt32();
std::vector<struct task_info> res(res_size);
for (auto&& task : res) {
reply.read(&task, sizeof(task));
}
return res;
}
IMPLEMENT_META_INTERFACE(Storaged, "Storaged");
status_t BnStoraged::onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) {
data.checkInterface(this);
switch(code) {
case DUMPTASKS: {
std::vector<struct task_info> res = dump_tasks(NULL);
reply->writeInt32(res.size());
for (auto task : res) {
reply->write(&task, sizeof(task));
}
return NO_ERROR;
}
break;
default:
return BBinder::onTransact(code, data, reply, flags);
}
}
std::vector<struct task_info> Storaged::dump_tasks(const char* /* option */) {
return storaged.get_tasks();
}
sp<IStoraged> get_storaged_service() {
sp<IServiceManager> sm = defaultServiceManager();
if (sm == NULL) return NULL;
sp<IBinder> binder = sm->getService(String16("storaged"));
if (binder == NULL) return NULL;
sp<IStoraged> storaged = interface_cast<IStoraged>(binder);
return storaged;
}

582
storaged/storaged_utils.cpp Normal file
View File

@ -0,0 +1,582 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "storaged"
#include <fcntl.h>
#include <sys/stat.h>
#include <linux/time.h>
#include <dirent.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sstream>
#include <string>
#include <unordered_map>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/logging.h>
#include <log/log.h>
#include <log/log_event_list.h>
#include <cutils/klog.h>
#include <storaged.h>
#include <storaged_utils.h>
#include <time.h>
#define SECTOR_SIZE ( 512 )
#define SEC_TO_MSEC ( 1000 )
#define MSEC_TO_USEC ( 1000 )
#define USEC_TO_NSEC ( 1000 )
int fd_dmesg = -1;
bool parse_disk_stats(const char* disk_stats_path, struct disk_stats* stats) {
// Get time
struct timespec ts;
// Use monotonic to exclude suspend time so that we measure IO bytes/sec
// when system is running.
int ret = clock_gettime(CLOCK_MONOTONIC, &ts);
if (ret < 0) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s clock_gettime() failed with errno %d\n",
kmsg_error_prefix, ret);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
std::string buffer;
if (!android::base::ReadFileToString(disk_stats_path, &buffer)) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s %s: ReadFileToString failed.\n", kmsg_error_prefix, disk_stats_path);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
// Regular diskstats entries
std::stringstream ss(buffer);
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
ss >> *((uint64_t*)stats + i);
}
// Other entries
stats->start_time = 0;
stats->end_time = (uint64_t)ts.tv_sec * SEC_TO_MSEC +
ts.tv_nsec / (MSEC_TO_USEC * USEC_TO_NSEC);
stats->counter = 1;
stats->io_avg = (double)stats->io_in_flight;
return true;
}
struct disk_perf get_disk_perf(struct disk_stats* stats) {
struct disk_perf perf;
memset(&perf, 0, sizeof(struct disk_perf)); // initialize
if (stats->io_ticks) {
if (stats->read_ticks) {
unsigned long long divisor = stats->read_ticks * stats->io_ticks;
perf.read_perf = ((unsigned long long)SECTOR_SIZE *
stats->read_sectors *
stats->io_in_queue +
(divisor >> 1)) /
divisor;
perf.read_ios = ((unsigned long long)SEC_TO_MSEC *
stats->read_ios *
stats->io_in_queue +
(divisor >> 1)) /
divisor;
}
if (stats->write_ticks) {
unsigned long long divisor = stats->write_ticks * stats->io_ticks;
perf.write_perf = ((unsigned long long)SECTOR_SIZE *
stats->write_sectors *
stats->io_in_queue +
(divisor >> 1)) /
divisor;
perf.write_ios = ((unsigned long long)SEC_TO_MSEC *
stats->write_ios *
stats->io_in_queue +
(divisor >> 1)) /
divisor;
}
perf.queue = (stats->io_in_queue + (stats->io_ticks >> 1)) /
stats->io_ticks;
}
return perf;
}
struct disk_stats get_inc_disk_stats(struct disk_stats* prev, struct disk_stats* curr) {
struct disk_stats inc;
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
if (i == DISK_STATS_IO_IN_FLIGHT_IDX) {
continue;
}
*((uint64_t*)&inc + i) =
*((uint64_t*)curr + i) - *((uint64_t*)prev + i);
}
// io_in_flight is exception
inc.io_in_flight = curr->io_in_flight;
inc.start_time = prev->end_time;
inc.end_time = curr->end_time;
inc.io_avg = curr->io_avg;
inc.counter = 1;
return inc;
}
// Add src to dst
void add_disk_stats(struct disk_stats* src, struct disk_stats* dst) {
if (dst->end_time != 0 && dst->end_time != src->start_time && fd_dmesg >= 0) {
std::string warning_message = android::base::StringPrintf(
"%s Two dis-continuous periods of diskstats are added. "
"dst end with %jd, src start with %jd\n",
kmsg_warning_prefix, dst->end_time, src->start_time);
write(fd_dmesg, warning_message.c_str(), warning_message.length());
}
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
if (i == DISK_STATS_IO_IN_FLIGHT_IDX) {
continue;
}
*((uint64_t*)dst + i) += *((uint64_t*)src + i);
}
dst->io_in_flight = src->io_in_flight;
if (dst->counter + src->counter) {
dst->io_avg = ((dst->io_avg * dst->counter) + (src->io_avg * src->counter)) /
(dst->counter + src->counter);
}
dst->counter += src->counter;
dst->end_time = src->end_time;
if (dst->start_time == 0) {
dst->start_time = src->start_time;
}
}
bool parse_emmc_ecsd(int ext_csd_fd, struct emmc_info* info) {
CHECK(ext_csd_fd >= 0);
struct hex {
char str[2];
};
// List of interesting offsets
static const size_t EXT_CSD_REV_IDX = 192 * sizeof(hex);
static const size_t EXT_PRE_EOL_INFO_IDX = 267 * sizeof(hex);
static const size_t EXT_DEVICE_LIFE_TIME_EST_A_IDX = 268 * sizeof(hex);
static const size_t EXT_DEVICE_LIFE_TIME_EST_B_IDX = 269 * sizeof(hex);
// Read file
CHECK(lseek(ext_csd_fd, 0, SEEK_SET) == 0);
std::string buffer;
if (!android::base::ReadFdToString(ext_csd_fd, &buffer)) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s ReadFdToString failed.\n", kmsg_error_prefix);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
if (buffer.length() < EXT_CSD_FILE_MIN_SIZE) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s EMMC ext csd file has truncated content. File length: %d\n",
kmsg_error_prefix, (int)buffer.length());
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
std::string sub;
std::stringstream ss;
// Parse EXT_CSD_REV
int ext_csd_rev = -1;
sub = buffer.substr(EXT_CSD_REV_IDX, sizeof(hex));
ss << sub;
ss >> std::hex >> ext_csd_rev;
if (ext_csd_rev < 0) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s Failure on parsing EXT_CSD_REV.\n", kmsg_error_prefix);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
ss.clear();
static const char* ver_str[] = {
"4.0", "4.1", "4.2", "4.3", "Obsolete", "4.41", "4.5", "5.0"
};
strncpy(info->mmc_ver,
(ext_csd_rev < (int)(sizeof(ver_str) / sizeof(ver_str[0]))) ?
ver_str[ext_csd_rev] :
"Unknown",
MMC_VER_STR_LEN);
if (ext_csd_rev < 7) {
return 0;
}
// Parse EXT_PRE_EOL_INFO
info->eol = -1;
sub = buffer.substr(EXT_PRE_EOL_INFO_IDX, sizeof(hex));
ss << sub;
ss >> std::hex >> info->eol;
if (info->eol < 0) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s Failure on parsing EXT_PRE_EOL_INFO.\n", kmsg_error_prefix);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
ss.clear();
// Parse DEVICE_LIFE_TIME_EST
info->lifetime_a = -1;
sub = buffer.substr(EXT_DEVICE_LIFE_TIME_EST_A_IDX, sizeof(hex));
ss << sub;
ss >> std::hex >> info->lifetime_a;
if (info->lifetime_a < 0) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s Failure on parsing EXT_DEVICE_LIFE_TIME_EST_TYP_A.\n", kmsg_error_prefix);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
ss.clear();
info->lifetime_b = -1;
sub = buffer.substr(EXT_DEVICE_LIFE_TIME_EST_B_IDX, sizeof(hex));
ss << sub;
ss >> std::hex >> info->lifetime_b;
if (info->lifetime_b < 0) {
if (fd_dmesg >= 0) {
std::string error_message = android::base::StringPrintf(
"%s Failure on parsing EXT_DEVICE_LIFE_TIME_EST_TYP_B.\n", kmsg_error_prefix);
write(fd_dmesg, error_message.c_str(), error_message.length());
}
return false;
}
ss.clear();
return true;
}
#define PROC_DIR "/proc/"
#define PROC_STAT_STARTTIME_IDX ( 22 ) // This index is 1 based according to the linux proc man page
bool parse_task_info(uint32_t pid, struct task_info* info) {
std::string buffer;
std::string pid_str = std::to_string(pid);
info->pid = pid;
// Get task I/O
std::string task_io_path = android::base::StringPrintf(PROC_DIR "%s/io", pid_str.c_str());
if (!android::base::ReadFileToString(task_io_path, &buffer)) return false;
std::stringstream ss(buffer);
std::string title;
ss >> title >> info->rchar
>> title >> info->wchar
>> title >> info->syscr
>> title >> info->syscw
>> title >> info->read_bytes
>> title >> info->write_bytes
>> title >> info->cancelled_write_bytes;
ss.clear();
// Get cmd string
std::string task_cmdline_path = android::base::StringPrintf(PROC_DIR "%u/cmdline", pid);
if (!android::base::ReadFileToString(task_cmdline_path, &buffer)) return false;
strcpy(info->cmd, android::base::Trim(buffer).c_str());
if (info->cmd[0] == '\0') {
std::string task_comm_path = android::base::StringPrintf(PROC_DIR "%u/comm", pid);
if (!android::base::ReadFileToString(task_comm_path, &buffer)) return false;
strcpy(info->cmd, android::base::Trim(buffer).c_str());
}
// Get task start time
std::string task_stat_path = android::base::StringPrintf(PROC_DIR "%u/stat", pid);
if (!android::base::ReadFileToString(task_stat_path, &buffer)) return false;
std::vector<std::string> stat_parts = android::base::Split(buffer, " ");
info->starttime = atoll(stat_parts[PROC_STAT_STARTTIME_IDX - 1].c_str());
return true;
}
static bool is_pid(char* d_name) {
if (!d_name || d_name[0] == '\0') return false;
char* c = d_name;
while (*c) {
if (!isdigit(*c)) return false;
++c;
}
return true;
}
static bool cmp_task_info(struct task_info i, struct task_info j) {
if (i.write_bytes + i.read_bytes != j.write_bytes + j.read_bytes) {
return i.write_bytes + i.read_bytes > j.write_bytes + j.read_bytes;
}
if (i.wchar + i.rchar != j.wchar + j.rchar) {
return i.wchar + i.rchar > j.wchar + j.rchar;
}
if (i.syscw + i.syscr != j.syscw + j.syscr) {
return i.syscw + i.syscr > j.syscw + j.syscr;
}
return strcmp(i.cmd, j.cmd) < 0;
}
std::unordered_map<uint32_t, struct task_info> tasks_t::get_running_tasks() {
std::unordered_map<uint32_t, struct task_info> retval;
std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(PROC_DIR), closedir);
CHECK(dir != NULL);
struct dirent* dp;
for (;;) {
if ((dp = readdir(dir.get())) == NULL) break;
if (!is_pid(dp->d_name)) continue;
uint32_t pid = atol(dp->d_name);
struct task_info info;
if (parse_task_info(pid, &info)) {
retval[pid] = info;
}
}
return retval;
}
static void add_task_info(struct task_info* src, struct task_info* dst) {
CHECK(strcmp(src->cmd, dst->cmd) == 0);
dst->pid = 0;
dst->rchar += src->rchar;
dst->wchar += src->wchar;
dst->syscr += src->syscr;
dst->syscw += src->syscw;
dst->read_bytes += src->read_bytes;
dst->write_bytes += src->write_bytes;
dst->cancelled_write_bytes += src->cancelled_write_bytes;
dst->starttime = 0;
}
void tasks_t::update_running_tasks(void) {
std::unordered_map<uint32_t, struct task_info> tasks_latest = get_running_tasks();
std::unordered_map<std::string, struct task_info> tasks_old = mOld;
for (auto t : mRunning) {
uint32_t pid = t.first;
// old task on mRunning still exist on tasks_latest
if (tasks_latest.find(pid) != tasks_latest.end() &&
tasks_latest[pid].starttime == t.second.starttime) {
continue;
} else {
// This branch will handle 2 cases:
// - Task get killed between the 2 samplings
// - Task get killed and its pid is reused
std::string cmd = t.second.cmd;
struct task_info info = t.second;
if (tasks_old.find(cmd) == tasks_old.end()) {
tasks_old[cmd] = info;
} else {
add_task_info(&info, &tasks_old[cmd]);
}
}
}
{ // update critical area
// this is really fast!
std::unique_ptr<lock_t> lock(new lock_t(&mSem));
mRunning = tasks_latest;
mOld = tasks_old;
}
}
std::vector<struct task_info> tasks_t::get_tasks(void) {
std::unique_ptr<lock_t> lock(new lock_t(&mSem));
std::unordered_map<std::string, struct task_info> tasks_map = mOld;
for (auto i : mRunning) {
std::string cmd = i.second.cmd;
if (tasks_map.find(cmd) == tasks_map.end()) {
tasks_map[cmd] = i.second;
} else {
add_task_info(&i.second, &tasks_map[cmd]);
}
}
std::vector<struct task_info> retval(tasks_map.size());
int idx = 0;
for (auto i : tasks_map) {
retval[idx++] = i.second;
}
return retval;
}
void sort_running_tasks_info(std::vector<struct task_info> &tasks) {
std::sort(tasks.begin(), tasks.end(), cmp_task_info);
}
/* Logging functions */
void log_console_running_tasks_info(std::vector<struct task_info> tasks) {
// Sample Output:
// Application Read Write Read Write Read Write Cancelled
// Name Characters Characters Syscalls Syscalls Bytes Bytes Writebytes
// ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
// zygote64 37688308 3388467 7607 4363 314519552 5373952 8192
// system_server 95874193 2216913 74613 52257 213078016 7237632 16384
// zygote 506279 1726194 921 263 128114688 1765376 0
// /vendor/bin/qcks 75415632 75154382 21672 25036 63627264 29974528 10485760
// /init 86658523 5107871 82113 8633 91015168 1245184 0
// Title
printf(" Application Read Write Read Write Read Write Cancelled\n"
" Name Characters Characters Syscalls Syscalls Bytes Bytes Writebytes\n"
" ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------\n");
for (struct task_info task : tasks) {
printf("%50s%15ju%15ju%15ju%15ju%15ju%15ju%15ju\n",
task.cmd, task.rchar, task.wchar, task.syscr, task.syscw,
task.read_bytes, task.write_bytes, task.cancelled_write_bytes);
}
fflush(stdout);
}
void log_kernel_disk_stats(struct disk_stats* stats, const char* type) {
// skip if the input structure are all zeros
if (stats == NULL) return;
struct disk_stats zero_cmp;
memset(&zero_cmp, 0, sizeof(zero_cmp));
if (memcmp(&zero_cmp, stats, sizeof(struct disk_stats)) == 0) return;
if (fd_dmesg >= 0) {
std::string info_message = android::base::StringPrintf(
"%s diskstats %s: %ju %ju %ju %ju %ju %ju %ju %ju %ju %ju %.1f %ju %ju\n",
kmsg_info_prefix, type, stats->start_time, stats->end_time,
stats->read_ios, stats->read_merges,
stats->read_sectors, stats->read_ticks,
stats->write_ios, stats->write_merges,
stats->write_sectors, stats->write_ticks,
stats->io_avg, stats->io_ticks,
stats->io_in_queue);
write(fd_dmesg, info_message.c_str(), info_message.length());
}
}
void log_kernel_disk_perf(struct disk_perf* perf, const char* type) {
// skip if the input structure are all zeros
if (perf == NULL) return;
struct disk_perf zero_cmp;
memset(&zero_cmp, 0, sizeof(zero_cmp));
if (memcmp(&zero_cmp, perf, sizeof(struct disk_perf)) == 0) return;
if (fd_dmesg >= 0) {
std::string info_message = android::base::StringPrintf(
"%s perf(ios) %s rd:%luKB/s(%lu/s) wr:%luKB/s(%lu/s) q:%lu\n",
kmsg_info_prefix, type,
(unsigned long)perf->read_perf, (unsigned long)perf->read_ios,
(unsigned long)perf->write_perf, (unsigned long)perf->write_ios,
(unsigned long)perf->queue);
write(fd_dmesg, info_message.c_str(), info_message.length());
}
}
void log_kernel_emmc_info(struct emmc_info* info) {
// skip if the input structure are all zeros
if (info == NULL) return;
struct emmc_info zero_cmp;
memset(&zero_cmp, 0, sizeof(zero_cmp));
if (memcmp(&zero_cmp, info, sizeof(struct emmc_info)) == 0) return;
if (fd_dmesg >= 0) {
std::string info_message = android::base::StringPrintf(
"%s MMC %s eol:%d, lifetime typA:%d, typB:%d\n",
kmsg_info_prefix, info->mmc_ver, info->eol, info->lifetime_a, info->lifetime_b);
write(fd_dmesg, info_message.c_str(), info_message.length());
}
}
void log_event_disk_stats(struct disk_stats* stats, const char* type) {
// skip if the input structure are all zeros
if (stats == NULL) return;
struct disk_stats zero_cmp;
memset(&zero_cmp, 0, sizeof(zero_cmp));
// skip event logging diskstats when it is zero increment (all first 11 entries are zero)
if (memcmp(&zero_cmp, stats, sizeof(uint64_t) * DISK_STATS_SIZE) == 0) return;
// Construct eventlog list
android_log_context ctx = create_android_logger(EVENTLOGTAG_DISKSTATS);
android_log_write_string8(ctx, type);
android_log_write_int64(ctx, stats->start_time);
android_log_write_int64(ctx, stats->end_time);
android_log_write_int64(ctx, stats->read_ios);
android_log_write_int64(ctx, stats->read_merges);
android_log_write_int64(ctx, stats->read_sectors);
android_log_write_int64(ctx, stats->read_ticks);
android_log_write_int64(ctx, stats->write_ios);
android_log_write_int64(ctx, stats->write_merges);
android_log_write_int64(ctx, stats->write_sectors);
android_log_write_int64(ctx, stats->write_ticks);
android_log_write_int64(ctx, (uint64_t)stats->io_avg);
android_log_write_int64(ctx, stats->io_ticks);
android_log_write_int64(ctx, stats->io_in_queue);
android_log_write_list(ctx, LOG_ID_EVENTS);
android_log_destroy(&ctx);
}
void log_event_emmc_info(struct emmc_info* info) {
// skip if the input structure are all zeros
if (info == NULL) return;
struct emmc_info zero_cmp;
memset(&zero_cmp, 0, sizeof(zero_cmp));
if (memcmp(&zero_cmp, info, sizeof(struct emmc_info)) == 0) return;
android_log_context ctx = create_android_logger(EVENTLOGTAG_EMMCINFO);
android_log_write_string8(ctx, info->mmc_ver);
android_log_write_int32(ctx, info->eol);
android_log_write_int32(ctx, info->lifetime_a);
android_log_write_int32(ctx, info->lifetime_b);
android_log_write_list(ctx, LOG_ID_EVENTS);
android_log_destroy(&ctx);
}

45
storaged/tests/Android.mk Normal file
View File

@ -0,0 +1,45 @@
#
# Copyright (C) 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
LOCAL_PATH := $(call my-dir)
test_module_prefix := storaged-
test_tags := tests
# -----------------------------------------------------------------------------
# Unit tests.
# -----------------------------------------------------------------------------
test_c_flags := \
-fstack-protector-all \
-g \
-Wall -Wextra \
-Werror \
-fno-builtin \
test_src_files := \
storaged_test.cpp \
# Build tests for the logger. Run with:
# adb shell /data/nativetest/storaged-unit-tests/storaged-unit-tests
include $(CLEAR_VARS)
LOCAL_MODULE := $(test_module_prefix)unit-tests
LOCAL_MODULE_TAGS := $(test_tags)
LOCAL_CFLAGS += $(test_c_flags)
LOCAL_STATIC_LIBRARIES := libstoraged
LOCAL_SHARED_LIBRARIES := libbase libcutils liblog
LOCAL_SRC_FILES := $(test_src_files)
include $(BUILD_NATIVE_TEST)

View File

@ -0,0 +1,587 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <deque>
#include <fcntl.h>
#include <random>
#include <string.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <gtest/gtest.h>
//#include <private/android_logger.h>
#include <storaged.h> // data structures
#include <storaged_utils.h> // functions to test
#define MMC_DISK_STATS_PATH "/sys/block/mmcblk0/stat"
#define SDA_DISK_STATS_PATH "/sys/block/sda/stat"
#define EMMC_EXT_CSD_PATH "/d/mmc0/mmc0:0001/ext_csd"
#define INIT_TASK_IO_PATH "/proc/1/io"
static void pause(uint32_t sec) {
const char* path = "/cache/test";
int fd = open(path, O_WRONLY | O_CREAT);
ASSERT_LT(-1, fd);
char buffer[2048];
memset(buffer, 1, sizeof(buffer));
int loop_size = 100;
for (int i = 0; i < loop_size; ++i) {
ASSERT_EQ(2048, write(fd, buffer, sizeof(buffer)));
}
fsync(fd);
close(fd);
fd = open(path, O_RDONLY);
ASSERT_LT(-1, fd);
for (int i = 0; i < loop_size; ++i) {
ASSERT_EQ(2048, read(fd, buffer, sizeof(buffer)));
}
close(fd);
sleep(sec);
}
// the return values of the tested functions should be the expected ones
const char* DISK_STATS_PATH;
TEST(storaged_test, retvals) {
struct disk_stats stats;
struct emmc_info info;
memset(&stats, 0, sizeof(struct disk_stats));
memset(&info, 0, sizeof(struct emmc_info));
int emmc_fd = open(EMMC_EXT_CSD_PATH, O_RDONLY);
if (emmc_fd >= 0) {
EXPECT_TRUE(parse_emmc_ecsd(emmc_fd, &info));
}
if (access(MMC_DISK_STATS_PATH, R_OK) >= 0) {
DISK_STATS_PATH = MMC_DISK_STATS_PATH;
} else if (access(SDA_DISK_STATS_PATH, R_OK) >= 0) {
DISK_STATS_PATH = SDA_DISK_STATS_PATH;
} else {
return;
}
EXPECT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats));
struct disk_stats old_stats;
memset(&old_stats, 0, sizeof(struct disk_stats));
old_stats = stats;
const char wrong_path[] = "/this/is/wrong";
EXPECT_FALSE(parse_disk_stats(wrong_path, &stats));
// reading a wrong path should not damage the output structure
EXPECT_EQ(0, memcmp(&stats, &old_stats, sizeof(disk_stats)));
}
TEST(storaged_test, disk_stats) {
struct disk_stats stats;
memset(&stats, 0, sizeof(struct disk_stats));
ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats));
// every entry of stats (except io_in_flight) should all be greater than 0
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
if (i == 8) continue; // skip io_in_flight which can be 0
EXPECT_LT((uint64_t)0, *((uint64_t*)&stats + i));
}
// accumulation of the increments should be the same with the overall increment
struct disk_stats base, tmp, curr, acc, inc[5];
memset(&base, 0, sizeof(struct disk_stats));
memset(&tmp, 0, sizeof(struct disk_stats));
memset(&acc, 0, sizeof(struct disk_stats));
for (uint i = 0; i < 5; ++i) {
ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &curr));
if (i == 0) {
base = curr;
tmp = curr;
sleep(5);
continue;
}
inc[i] = get_inc_disk_stats(&tmp, &curr);
add_disk_stats(&inc[i], &acc);
tmp = curr;
pause(5);
}
struct disk_stats overall_inc;
memset(&overall_inc, 0, sizeof(disk_stats));
overall_inc= get_inc_disk_stats(&base, &curr);
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
if (i == 8) continue; // skip io_in_flight which can be 0
EXPECT_EQ(*((uint64_t*)&overall_inc + i), *((uint64_t*)&acc + i));
}
}
TEST(storaged_test, emmc_info) {
struct emmc_info info, void_info;
memset(&info, 0, sizeof(struct emmc_info));
memset(&void_info, 0, sizeof(struct emmc_info));
if (access(EMMC_EXT_CSD_PATH, R_OK) >= 0) {
int emmc_fd = open(EMMC_EXT_CSD_PATH, O_RDONLY);
ASSERT_GE(emmc_fd, 0);
ASSERT_TRUE(parse_emmc_ecsd(emmc_fd, &info));
// parse_emmc_ecsd() should put something in info.
EXPECT_NE(0, memcmp(&void_info, &info, sizeof(struct emmc_info)));
}
}
TEST(storaged_test, task_info) {
// parse_task_info should read something other than 0 from /proc/1/*
struct task_info task_info;
memset(&task_info, 0, sizeof(task_info));
if (!parse_task_info(1, &task_info)) return;
EXPECT_EQ((uint32_t)1, task_info.pid);
EXPECT_LT((uint64_t)0, task_info.rchar);
EXPECT_LT((uint64_t)0, task_info.wchar);
EXPECT_LT((uint64_t)0, task_info.syscr);
EXPECT_LT((uint64_t)0, task_info.syscw);
EXPECT_LT((uint64_t)0, task_info.read_bytes);
EXPECT_LT((uint64_t)0, task_info.write_bytes);
// cancelled_write_bytes of init could be 0, there is no need to test
EXPECT_LE((uint64_t)0, task_info.starttime);
EXPECT_NE((char*)NULL, strstr(task_info.cmd, "init"));
// Entries in /proc/1/io should be increasing through time
struct task_info task_old, task_new;
memset(&task_old, 0, sizeof(task_old));
memset(&task_new, 0, sizeof(task_new));
// parse_task_info should succeed at this point
ASSERT_TRUE(parse_task_info(1, &task_old));
sleep(1);
ASSERT_TRUE(parse_task_info(1, &task_new));
EXPECT_EQ(task_old.pid, task_new.pid);
EXPECT_LE(task_old.rchar, task_new.rchar);
EXPECT_LE(task_old.wchar, task_new.wchar);
EXPECT_LE(task_old.syscr, task_new.syscr);
EXPECT_LE(task_old.syscw, task_new.syscw);
EXPECT_LE(task_old.read_bytes, task_new.read_bytes);
EXPECT_LE(task_old.write_bytes, task_new.write_bytes);
EXPECT_LE(task_old.cancelled_write_bytes, task_new.cancelled_write_bytes);
EXPECT_EQ(task_old.starttime, task_new.starttime);
EXPECT_EQ(0, strcmp(task_old.cmd, task_new.cmd));
}
static double mean(std::deque<uint32_t> nums) {
double sum = 0.0;
for (uint32_t i : nums) {
sum += i;
}
return sum / nums.size();
}
static double standard_deviation(std::deque<uint32_t> nums) {
double sum = 0.0;
double avg = mean(nums);
for (uint32_t i : nums) {
sum += ((double)i - avg) * ((double)i - avg);
}
return sqrt(sum / nums.size());
}
TEST(storaged_test, stream_stats) {
// 100 random numbers
std::vector<uint32_t> data = {8147,9058,1270,9134,6324,975,2785,5469,9575,9649,1576,9706,9572,4854,8003,1419,4218,9157,7922,9595,6557,357,8491,9340,6787,7577,7431,3922,6555,1712,7060,318,2769,462,971,8235,6948,3171,9502,344,4387,3816,7655,7952,1869,4898,4456,6463,7094,7547,2760,6797,6551,1626,1190,4984,9597,3404,5853,2238,7513,2551,5060,6991,8909,9593,5472,1386,1493,2575,8407,2543,8143,2435,9293,3500,1966,2511,6160,4733,3517,8308,5853,5497,9172,2858,7572,7537,3804,5678,759,540,5308,7792,9340,1299,5688,4694,119,3371};
std::deque<uint32_t> test_data;
stream_stats sstats;
for (uint32_t i : data) {
test_data.push_back(i);
sstats.add(i);
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean());
}
for (uint32_t i : data) {
test_data.pop_front();
sstats.evict(i);
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean());
}
// some real data
std::vector<uint32_t> another_data = {113875,81620,103145,28327,86855,207414,96526,52567,28553,250311};
test_data.clear();
uint32_t window_size = 2;
uint32_t idx;
stream_stats sstats1;
for (idx = 0; idx < window_size; ++idx) {
test_data.push_back(another_data[idx]);
sstats1.add(another_data[idx]);
}
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean());
for (;idx < another_data.size(); ++idx) {
test_data.pop_front();
sstats1.evict(another_data[idx - window_size]);
test_data.push_back(another_data[idx]);
sstats1.add(another_data[idx]);
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean());
}
}
static void expect_increasing(struct task_info told, struct task_info tnew) {
ASSERT_EQ(told.pid, tnew.pid);
ASSERT_EQ(told.starttime, tnew.starttime);
ASSERT_EQ(strcmp(told.cmd, tnew.cmd), 0);
EXPECT_LE(told.rchar, tnew.rchar);
EXPECT_LE(told.wchar, tnew.wchar);
EXPECT_LE(told.syscr, tnew.syscr);
EXPECT_LE(told.syscw, tnew.syscw);
EXPECT_LE(told.read_bytes, tnew.read_bytes);
EXPECT_LE(told.write_bytes, tnew.write_bytes);
EXPECT_LE(told.cancelled_write_bytes, tnew.cancelled_write_bytes);
}
static void expect_equal(struct task_info told, struct task_info tnew) {
ASSERT_EQ(told.pid, tnew.pid);
ASSERT_EQ(told.starttime, tnew.starttime);
ASSERT_EQ(strcmp(told.cmd, tnew.cmd), 0);
EXPECT_EQ(told.rchar, tnew.rchar);
EXPECT_EQ(told.wchar, tnew.wchar);
EXPECT_EQ(told.syscr, tnew.syscr);
EXPECT_EQ(told.syscw, tnew.syscw);
EXPECT_EQ(told.read_bytes, tnew.read_bytes);
EXPECT_EQ(told.write_bytes, tnew.write_bytes);
EXPECT_EQ(told.cancelled_write_bytes, tnew.cancelled_write_bytes);
}
static std::set<uint32_t> find_overlap(std::unordered_map<uint32_t, struct task_info> t1,
std::unordered_map<uint32_t, struct task_info> t2) {
std::set<uint32_t> retval;
for (auto i : t1) {
if (t2.find(i.first) != t2.end()) {
retval.insert(i.first);
}
}
return retval;
}
static std::set<std::string> find_overlap(std::unordered_map<std::string, struct task_info> t1,
std::unordered_map<std::string, struct task_info> t2) {
std::set<std::string> retval;
for (auto i : t1) {
if (t2.find(i.first) != t2.end()) {
retval.insert(i.first);
}
}
return retval;
}
static bool cmp_app_name(struct task_info i, struct task_info j) {
return strcmp(i.cmd, j.cmd) > 0;
}
static void expect_match(std::vector<struct task_info> v1, std::vector<struct task_info> v2) {
ASSERT_EQ(v1.size(), v2.size());
std::sort(v1.begin(), v1.end(), cmp_app_name);
std::sort(v2.begin(), v2.end(), cmp_app_name);
for (uint i = 0; i < v1.size(); ++i) {
expect_equal(v1[i], v2[i]);
}
}
static void add_task_info(struct task_info* src, struct task_info* dst) {
ASSERT_EQ(0, strcmp(src->cmd, dst->cmd));
dst->pid = 0;
dst->rchar += src->rchar;
dst->wchar += src->wchar;
dst->syscr += src->syscr;
dst->syscw += src->syscw;
dst->read_bytes += src->read_bytes;
dst->write_bytes += src->write_bytes;
dst->cancelled_write_bytes += src->cancelled_write_bytes;
dst->starttime = 0;
}
static std::vector<struct task_info>
categorize_tasks(std::unordered_map<uint32_t, struct task_info> tasks) {
std::unordered_map<std::string, struct task_info> tasks_cmd;
for (auto i : tasks) {
std::string cmd = i.second.cmd;
if (tasks_cmd.find(cmd) == tasks_cmd.end()) {
tasks_cmd[cmd] = i.second;
} else {
add_task_info(&i.second, &tasks_cmd[cmd]);
}
}
std::vector<struct task_info> retval(tasks_cmd.size());
int cnt = 0;
for (auto i : tasks_cmd) {
retval[cnt++] = i.second;
}
return retval;
}
#define TEST_LOOPS 20
TEST(storaged_test, tasks_t) {
// pass this test if /proc/[pid]/io is not readable
const char* test_paths[] = {"/proc/1/io", "/proc/1/comm", "/proc/1/cmdline", "/proc/1/stat"};
for (uint i = 0; i < sizeof(test_paths) / sizeof(const char*); ++i) {
if (access(test_paths[i], R_OK) < 0) return;
}
tasks_t tasks;
EXPECT_EQ((uint32_t)0, tasks.mRunning.size());
EXPECT_EQ((uint32_t)0, tasks.mOld.size());
tasks.update_running_tasks();
std::unordered_map<uint32_t, struct task_info> prev_running = tasks.mRunning;
std::unordered_map<std::string, struct task_info> prev_old = tasks.mOld;
// hashmap maintaining
std::unordered_map<uint32_t, struct task_info> tasks_pid = tasks.mRunning;
// get_running_tasks() should return something other than a null map
std::unordered_map<uint32_t, struct task_info> test = tasks.get_running_tasks();
EXPECT_LE((uint32_t)1, test.size());
for (int i = 0; i < TEST_LOOPS; ++i) {
tasks.update_running_tasks();
std::set<uint32_t> overlap_running = find_overlap(prev_running, tasks.mRunning);
std::set<std::string> overlap_old = find_overlap(prev_old, tasks.mOld);
// overlap_running should capture init(pid == 1), since init never get killed
EXPECT_LE((uint32_t)1, overlap_running.size());
EXPECT_NE(overlap_running.find((uint32_t)1), overlap_running.end());
// overlap_old should never capture init, since init never get killed
EXPECT_EQ(overlap_old.find("init"), overlap_old.end());
// overlapping entries in previous and current running-tasks map should have increasing contents
for (uint32_t i : overlap_running) {
expect_increasing(prev_running[i], tasks.mRunning[i]);
}
// overlapping entries in previous and current killed-tasks map should have increasing contents
// and the map size should also be increasing
for (std::string i : overlap_old) {
expect_increasing(prev_old[i], tasks.mOld[i]);
}
EXPECT_LE(prev_old.size(), tasks.mRunning.size());
// update app name & tasks_pid
for (auto i : tasks.mRunning) {
// test will fail if the pid got wrapped
if (tasks_pid.find(i.first) != tasks_pid.end()) {
expect_increasing(tasks_pid[i.first], i.second);
tasks_pid[i.first] = i.second;
} else {
tasks_pid[i.first] = i.second;
}
}
// get maintained tasks
std::vector<struct task_info> test_tasks = categorize_tasks(tasks_pid);
std::vector<struct task_info> real_tasks = tasks.get_tasks();
expect_match(test_tasks, real_tasks);
prev_running = tasks.mRunning;
prev_old = tasks.mOld;
pause(5);
}
}
static struct disk_perf disk_perf_multiply(struct disk_perf perf, double mul) {
struct disk_perf retval;
retval.read_perf = (double)perf.read_perf * mul;
retval.read_ios = (double)perf.read_ios * mul;
retval.write_perf = (double)perf.write_perf * mul;
retval.write_ios = (double)perf.write_ios * mul;
retval.queue = (double)perf.queue * mul;
return retval;
}
static struct disk_stats disk_stats_add(struct disk_stats stats1, struct disk_stats stats2) {
struct disk_stats retval;
retval.read_ios = stats1.read_ios + stats2.read_ios;
retval.read_merges = stats1.read_merges + stats2.read_merges;
retval.read_sectors = stats1.read_sectors + stats2.read_sectors;
retval.read_ticks = stats1.read_ticks + stats2.read_ticks;
retval.write_ios = stats1.write_ios + stats2.write_ios;
retval.write_merges = stats1.write_merges + stats2.write_merges;
retval.write_sectors = stats1.write_sectors + stats2.write_sectors;
retval.write_ticks = stats1.write_ticks + stats2.write_ticks;
retval.io_in_flight = stats1.io_in_flight + stats2.io_in_flight;
retval.io_ticks = stats1.io_ticks + stats2.io_ticks;
retval.io_in_queue = stats1.io_in_queue + stats2.io_in_queue;
retval.end_time = stats1.end_time + stats2.end_time;
return retval;
}
TEST(storaged_test, disk_stats_monitor) {
// asserting that there is one file for diskstats
ASSERT_TRUE(access(MMC_DISK_STATS_PATH, R_OK) >= 0 || access(SDA_DISK_STATS_PATH, R_OK) >= 0);
// testing if detect() will return the right value
disk_stats_monitor dsm_detect;
// feed monitor with constant perf data for io perf baseline
// using constant perf is reasonable since the functionality of stream_stats
// has already been tested
struct disk_perf norm_perf = {
.read_perf = 10 * 1024,
.read_ios = 50,
.write_perf = 5 * 1024,
.write_ios = 25,
.queue = 5
};
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> rand(0.8, 1.2);
for (uint i = 0; i < dsm_detect.mWindow; ++i) {
struct disk_perf perf = disk_perf_multiply(norm_perf, rand(gen));
dsm_detect.add(&perf);
dsm_detect.mBuffer.push(perf);
EXPECT_EQ(dsm_detect.mBuffer.size(), (uint64_t)i + 1);
}
dsm_detect.mValid = true;
dsm_detect.update_mean();
dsm_detect.update_std();
for (double i = 0; i < 2 * dsm_detect.mSigma; i += 0.5) {
struct disk_perf test_perf;
struct disk_perf test_mean = dsm_detect.mMean;
struct disk_perf test_std = dsm_detect.mStd;
test_perf.read_perf = (double)test_mean.read_perf - i * test_std.read_perf;
test_perf.read_ios = (double)test_mean.read_ios - i * test_std.read_ios;
test_perf.write_perf = (double)test_mean.write_perf - i * test_std.write_perf;
test_perf.write_ios = (double)test_mean.write_ios - i * test_std.write_ios;
test_perf.queue = (double)test_mean.queue + i * test_std.queue;
EXPECT_EQ((i > dsm_detect.mSigma), dsm_detect.detect(&test_perf));
}
// testing if stalled disk_stats can be correctly accumulated in the monitor
disk_stats_monitor dsm_acc;
struct disk_stats norm_inc = {
.read_ios = 200,
.read_merges = 0,
.read_sectors = 200,
.read_ticks = 200,
.write_ios = 100,
.write_merges = 0,
.write_sectors = 100,
.write_ticks = 100,
.io_in_flight = 0,
.io_ticks = 600,
.io_in_queue = 300,
.start_time = 0,
.end_time = 100,
.counter = 0,
.io_avg = 0
};
struct disk_stats stall_inc = {
.read_ios = 200,
.read_merges = 0,
.read_sectors = 20,
.read_ticks = 200,
.write_ios = 100,
.write_merges = 0,
.write_sectors = 10,
.write_ticks = 100,
.io_in_flight = 0,
.io_ticks = 600,
.io_in_queue = 1200,
.start_time = 0,
.end_time = 100,
.counter = 0,
.io_avg = 0
};
struct disk_stats stats_base;
memset(&stats_base, 0, sizeof(stats_base));
int loop_size = 100;
for (int i = 0; i < loop_size; ++i) {
stats_base = disk_stats_add(stats_base, norm_inc);
dsm_acc.update(&stats_base);
EXPECT_EQ(dsm_acc.mValid, (uint32_t)(i + 1) >= dsm_acc.mWindow);
EXPECT_FALSE(dsm_acc.mStall);
}
stats_base = disk_stats_add(stats_base, stall_inc);
dsm_acc.update(&stats_base);
EXPECT_TRUE(dsm_acc.mValid);
EXPECT_TRUE(dsm_acc.mStall);
for (int i = 0; i < 10; ++i) {
stats_base = disk_stats_add(stats_base, norm_inc);
dsm_acc.update(&stats_base);
EXPECT_TRUE(dsm_acc.mValid);
EXPECT_FALSE(dsm_acc.mStall);
}
}
static void expect_increasing(struct disk_stats stats1, struct disk_stats stats2) {
EXPECT_LE(stats1.read_ios, stats2.read_ios);
EXPECT_LE(stats1.read_merges, stats2.read_merges);
EXPECT_LE(stats1.read_sectors, stats2.read_sectors);
EXPECT_LE(stats1.read_ticks, stats2.read_ticks);
EXPECT_LE(stats1.write_ios, stats2.write_ios);
EXPECT_LE(stats1.write_merges, stats2.write_merges);
EXPECT_LE(stats1.write_sectors, stats2.write_sectors);
EXPECT_LE(stats1.write_ticks, stats2.write_ticks);
EXPECT_LE(stats1.io_ticks, stats2.io_ticks);
EXPECT_LE(stats1.io_in_queue, stats2.io_in_queue);
}
TEST(storaged_test, disk_stats_publisher) {
// asserting that there is one file for diskstats
ASSERT_TRUE(access(MMC_DISK_STATS_PATH, R_OK) >= 0 || access(SDA_DISK_STATS_PATH, R_OK) >= 0);
disk_stats_publisher dsp;
struct disk_stats prev;
memset(&prev, 0, sizeof(prev));
for (int i = 0; i < TEST_LOOPS; ++i) {
dsp.update();
expect_increasing(prev, dsp.mPrevious);
prev = dsp.mPrevious;
pause(10);
}
}