adb: add IOVector.

An IOVector is a collection of immutable reference counted blocks which
can have its head detached at an arbitrary index. This is extremely
useful for implementing packet-framed protocols like adb on top of a
stream protocol like TCP: a stream reader can read blocks, append them
to the end of the IOVector, and then pull packets off of the front.
This also lends itself naturally towards scatter/gather I/O, which will
enable us to read data from disk and send it across the wire with a
theoretical minimum number of copies in USB, and one extra copy over
TCP.

Since this is basically a generalization of std::deque<Range>, delete
Range and replace its uses with IOVector.

Test: adb_test
Test: wine adb_test.exe
Change-Id: I06561ad0bb25a3a51b378b61d257b5b04b41d9c4
This commit is contained in:
Josh Gao 2018-04-03 14:37:11 -07:00
parent 9da1a9118b
commit 7c738cdb53
5 changed files with 322 additions and 29 deletions

View File

@ -122,6 +122,7 @@ libadb_test_srcs = [
"sysdeps_test.cpp",
"sysdeps/stat_test.cpp",
"transport_test.cpp",
"types_test.cpp",
]
cc_library_host_static {

View File

@ -62,7 +62,7 @@ struct asocket {
int fd = -1;
// queue of data waiting to be written
std::deque<Range> packet_queue;
IOVector packet_queue;
std::string smart_socket_data;

View File

@ -113,14 +113,14 @@ enum class SocketFlushResult {
};
static SocketFlushResult local_socket_flush_incoming(asocket* s) {
while (!s->packet_queue.empty()) {
Range& r = s->packet_queue.front();
int rc = adb_write(s->fd, r.data(), r.size());
if (rc == static_cast<int>(r.size())) {
s->packet_queue.pop_front();
if (!s->packet_queue.empty()) {
std::vector<adb_iovec> iov = s->packet_queue.iovecs();
ssize_t rc = adb_writev(s->fd, iov.data(), iov.size());
if (rc > 0 && static_cast<size_t>(rc) == s->packet_queue.size()) {
s->packet_queue.clear();
} else if (rc > 0) {
r.drop_front(rc);
// TODO: Implement a faster drop_front?
s->packet_queue.take_front(rc);
fdevent_add(s->fde, FDE_WRITE);
return SocketFlushResult::TryAgain;
} else if (rc == -1 && errno == EAGAIN) {
@ -130,7 +130,6 @@ static SocketFlushResult local_socket_flush_incoming(asocket* s) {
// We failed to write, but it's possible that we can still read from the socket.
// Give that a try before giving up.
s->has_write_error = true;
break;
}
}
@ -217,8 +216,7 @@ static bool local_socket_flush_outgoing(asocket* s) {
static int local_socket_enqueue(asocket* s, apacket::payload_type data) {
D("LS(%d): enqueue %zu", s->id, data.size());
Range r(std::move(data));
s->packet_queue.push_back(std::move(r));
s->packet_queue.append(std::move(data));
switch (local_socket_flush_incoming(s)) {
case SocketFlushResult::Destroyed:
return -1;
@ -622,7 +620,7 @@ static int smart_socket_enqueue(asocket* s, apacket::payload_type data) {
D("SS(%d): enqueue %zu", s->id, data.size());
if (s->smart_socket_data.empty()) {
// TODO: Make this a BlockChain?
// TODO: Make this an IOVector?
s->smart_socket_data.assign(data.begin(), data.end());
} else {
std::copy(data.begin(), data.end(), std::back_inserter(s->smart_socket_data));

View File

@ -17,11 +17,15 @@
#pragma once
#include <algorithm>
#include <deque>
#include <type_traits>
#include <utility>
#include <vector>
#include <android-base/logging.h>
#include "sysdeps/memory.h"
#include "sysdeps/uio.h"
// Essentially std::vector<char>, except without zero initialization or reallocation.
struct Block {
@ -130,34 +134,205 @@ struct apacket {
payload_type payload;
};
struct Range {
explicit Range(apacket::payload_type data) : data_(std::move(data)) {}
struct IOVector {
using value_type = char;
using block_type = Block;
using size_type = size_t;
Range(const Range& copy) = delete;
Range& operator=(const Range& copy) = delete;
IOVector() {}
Range(Range&& move) = default;
Range& operator=(Range&& move) = default;
explicit IOVector(std::unique_ptr<block_type> block) {
append(std::move(block));
}
size_t size() const { return data_.size() - begin_offset_ - end_offset_; };
IOVector(const IOVector& copy) = delete;
IOVector(IOVector&& move) : IOVector() {
*this = std::move(move);
}
IOVector& operator=(const IOVector& copy) = delete;
IOVector& operator=(IOVector&& move) {
chain_ = std::move(move.chain_);
chain_length_ = move.chain_length_;
begin_offset_ = move.begin_offset_;
end_offset_ = move.end_offset_;
move.chain_.clear();
move.chain_length_ = 0;
move.begin_offset_ = 0;
move.end_offset_ = 0;
return *this;
}
size_type size() const { return chain_length_ - begin_offset_ - end_offset_; }
bool empty() const { return size() == 0; }
void drop_front(size_t n) {
CHECK_GE(size(), n);
begin_offset_ += n;
void clear() {
chain_length_ = 0;
begin_offset_ = 0;
end_offset_ = 0;
chain_.clear();
}
void drop_end(size_t n) {
CHECK_GE(size(), n);
end_offset_ += n;
// Split the first |len| bytes out of this chain into its own.
IOVector take_front(size_type len) {
IOVector head;
if (len == 0) {
return head;
}
CHECK_GE(size(), len);
std::shared_ptr<const block_type> first_block = chain_.front();
CHECK_GE(first_block->size(), begin_offset_);
head.append_shared(std::move(first_block));
head.begin_offset_ = begin_offset_;
while (head.size() < len) {
pop_front_block();
CHECK(!chain_.empty());
head.append_shared(chain_.front());
}
if (head.size() == len) {
// Head takes full ownership of the last block it took.
head.end_offset_ = 0;
begin_offset_ = 0;
pop_front_block();
} else {
// Head takes partial ownership of the last block it took.
size_t bytes_taken = head.size() - len;
head.end_offset_ = bytes_taken;
CHECK_GE(chain_.front()->size(), bytes_taken);
begin_offset_ = chain_.front()->size() - bytes_taken;
}
return head;
}
char* data() { return &data_[0] + begin_offset_; }
// Add a nonempty block to the chain.
// The end of the chain must be a complete block (i.e. end_offset_ == 0).
void append(std::unique_ptr<const block_type> block) {
CHECK_NE(0ULL, block->size());
CHECK_EQ(0ULL, end_offset_);
chain_length_ += block->size();
chain_.emplace_back(std::move(block));
}
apacket::payload_type::iterator begin() { return data_.begin() + begin_offset_; }
apacket::payload_type::iterator end() { return data_.end() - end_offset_; }
void append(block_type&& block) { append(std::make_unique<block_type>(std::move(block))); }
void trim_front() {
if (begin_offset_ == 0) {
return;
}
const block_type* first_block = chain_.front().get();
auto copy = std::make_unique<block_type>(first_block->size() - begin_offset_);
memcpy(copy->data(), first_block->data() + begin_offset_, copy->size());
chain_.front() = std::move(copy);
chain_length_ -= begin_offset_;
begin_offset_ = 0;
}
private:
// append, except takes a shared_ptr.
// Private to prevent exterior mutation of blocks.
void append_shared(std::shared_ptr<const block_type> block) {
CHECK_NE(0ULL, block->size());
CHECK_EQ(0ULL, end_offset_);
chain_length_ += block->size();
chain_.emplace_back(std::move(block));
}
// Drop the front block from the chain, and update chain_length_ appropriately.
void pop_front_block() {
chain_length_ -= chain_.front()->size();
begin_offset_ = 0;
chain_.pop_front();
}
// Iterate over the blocks with a callback with an operator()(const char*, size_t).
template <typename Fn>
void iterate_blocks(Fn&& callback) const {
if (chain_.size() == 0) {
return;
}
for (size_t i = 0; i < chain_.size(); ++i) {
const std::shared_ptr<const block_type>& block = chain_.at(i);
const char* begin = block->data();
size_t length = block->size();
// Note that both of these conditions can be true if there's only one block.
if (i == 0) {
CHECK_GE(block->size(), begin_offset_);
begin += begin_offset_;
length -= begin_offset_;
}
if (i == chain_.size() - 1) {
CHECK_GE(length, end_offset_);
length -= end_offset_;
}
callback(begin, length);
}
}
public:
// Copy all of the blocks into a single block.
template <typename CollectionType = block_type>
CollectionType coalesce() const {
CollectionType result;
if (size() == 0) {
return result;
}
result.resize(size());
size_t offset = 0;
iterate_blocks([&offset, &result](const char* data, size_t len) {
memcpy(&result[offset], data, len);
offset += len;
});
return result;
}
template <typename FunctionType>
auto coalesced(FunctionType&& f) const ->
typename std::result_of<FunctionType(const char*, size_t)>::type {
if (chain_.size() == 1) {
// If we only have one block, we can use it directly.
return f(chain_.front()->data() + begin_offset_, size());
} else {
// Otherwise, copy to a single block.
auto data = coalesce();
return f(data.data(), data.size());
}
}
// Get a list of iovecs that can be used to write out all of the blocks.
std::vector<adb_iovec> iovecs() const {
std::vector<adb_iovec> result;
iterate_blocks([&result](const char* data, size_t len) {
adb_iovec iov;
iov.iov_base = const_cast<char*>(data);
iov.iov_len = len;
result.emplace_back(iov);
});
return result;
}
private:
// Total length of all of the blocks in the chain.
size_t chain_length_ = 0;
apacket::payload_type data_;
size_t begin_offset_ = 0;
size_t end_offset_ = 0;
std::deque<std::shared_ptr<const block_type>> chain_;
};

119
adb/types_test.cpp Normal file
View File

@ -0,0 +1,119 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include "sysdeps/memory.h"
#include "types.h"
static std::unique_ptr<IOVector::block_type> create_block(const std::string& string) {
return std::make_unique<IOVector::block_type>(string.begin(), string.end());
}
static std::unique_ptr<IOVector::block_type> create_block(char value, size_t len) {
auto block = std::make_unique<IOVector::block_type>();
block->resize(len);
memset(&(*block)[0], value, len);
return block;
}
template <typename T>
static std::unique_ptr<IOVector::block_type> copy_block(T&& block) {
auto copy = std::make_unique<IOVector::block_type>();
copy->assign(block->begin(), block->end());
return copy;
}
TEST(IOVector, empty) {
// Empty IOVector.
IOVector bc;
CHECK_EQ(0ULL, bc.coalesce().size());
}
TEST(IOVector, single_block) {
// A single block.
auto block = create_block('x', 100);
IOVector bc;
bc.append(copy_block(block));
ASSERT_EQ(100ULL, bc.size());
auto coalesced = bc.coalesce();
ASSERT_EQ(*block, coalesced);
}
TEST(IOVector, single_block_split) {
// One block split.
IOVector bc;
bc.append(create_block("foobar"));
IOVector foo = bc.take_front(3);
ASSERT_EQ(3ULL, foo.size());
ASSERT_EQ(3ULL, bc.size());
ASSERT_EQ(*create_block("foo"), foo.coalesce());
ASSERT_EQ(*create_block("bar"), bc.coalesce());
}
TEST(IOVector, aligned_split) {
IOVector bc;
bc.append(create_block("foo"));
bc.append(create_block("bar"));
bc.append(create_block("baz"));
ASSERT_EQ(9ULL, bc.size());
IOVector foo = bc.take_front(3);
ASSERT_EQ(3ULL, foo.size());
ASSERT_EQ(*create_block("foo"), foo.coalesce());
IOVector bar = bc.take_front(3);
ASSERT_EQ(3ULL, bar.size());
ASSERT_EQ(*create_block("bar"), bar.coalesce());
IOVector baz = bc.take_front(3);
ASSERT_EQ(3ULL, baz.size());
ASSERT_EQ(*create_block("baz"), baz.coalesce());
ASSERT_EQ(0ULL, bc.size());
}
TEST(IOVector, misaligned_split) {
IOVector bc;
bc.append(create_block("foo"));
bc.append(create_block("bar"));
bc.append(create_block("baz"));
bc.append(create_block("qux"));
bc.append(create_block("quux"));
// Aligned left, misaligned right, across multiple blocks.
IOVector foob = bc.take_front(4);
ASSERT_EQ(4ULL, foob.size());
ASSERT_EQ(*create_block("foob"), foob.coalesce());
// Misaligned left, misaligned right, in one block.
IOVector a = bc.take_front(1);
ASSERT_EQ(1ULL, a.size());
ASSERT_EQ(*create_block("a"), a.coalesce());
// Misaligned left, misaligned right, across two blocks.
IOVector rba = bc.take_front(3);
ASSERT_EQ(3ULL, rba.size());
ASSERT_EQ(*create_block("rba"), rba.coalesce());
// Misaligned left, misaligned right, across three blocks.
IOVector zquxquu = bc.take_front(7);
ASSERT_EQ(7ULL, zquxquu.size());
ASSERT_EQ(*create_block("zquxquu"), zquxquu.coalesce());
ASSERT_EQ(1ULL, bc.size());
ASSERT_EQ(*create_block("x"), bc.coalesce());
}