Add android::base::expected

android::base::expected is an Android implementation of the
std::expected proposal.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html

For usage, refer to the expected.h header file and
expected_test.cpp

Bug: 132145659
Test: libbase_test

Change-Id: I65d3a1ecf8654d9858989755dfd0065c81f7b209
This commit is contained in:
Jiyong Park 2019-05-15 19:17:48 +09:00
parent de725e6e75
commit 7d89fb164b
3 changed files with 1346 additions and 0 deletions

View File

@ -131,6 +131,7 @@ cc_test {
"cmsg_test.cpp",
"endian_test.cpp",
"errors_test.cpp",
"expected_test.cpp",
"file_test.cpp",
"logging_test.cpp",
"macros_test.cpp",

745
base/expected_test.cpp Normal file
View File

@ -0,0 +1,745 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "android-base/expected.h"
#include <cstdio>
#include <memory>
#include <string>
#include <gtest/gtest.h>
using android::base::expected;
using android::base::unexpected;
typedef expected<int, int> exp_int;
typedef expected<double, double> exp_double;
typedef expected<std::string, std::string> exp_string;
typedef expected<std::pair<std::string, int>, int> exp_pair;
struct T {
int a;
int b;
T() = default;
T(int a, int b) noexcept : a(a), b(b) {}
};
bool operator==(const T& x, const T& y) {
return x.a == y.a && x.b == y.b;
}
bool operator!=(const T& x, const T& y) {
return x.a != y.a || x.b != y.b;
}
struct E {
std::string message;
int cause;
E(const std::string& message, int cause) : message(message), cause(cause) {}
};
typedef expected<T,E> exp_complex;
TEST(Expected, testDefaultConstructible) {
exp_int e;
EXPECT_TRUE(e.has_value());
EXPECT_EQ(0, e.value());
exp_complex e2;
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(T(0,0), e2.value());
}
TEST(Expected, testCopyConstructible) {
exp_int e;
exp_int e2 = e;
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(0, e.value());
EXPECT_EQ(0, e2.value());
}
TEST(Expected, testMoveConstructible) {
exp_int e;
exp_int e2 = std::move(e);
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(0, e.value());
EXPECT_EQ(0, e2.value());
exp_string e3(std::string("hello"));
exp_string e4 = std::move(e3);
EXPECT_TRUE(e3.has_value());
EXPECT_TRUE(e4.has_value());
EXPECT_EQ("", e3.value()); // e3 is moved
EXPECT_EQ("hello", e4.value());
}
TEST(Expected, testCopyConstructibleFromConvertibleType) {
exp_double e = 3.3f;
exp_int e2 = e;
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(3.3f, e.value());
EXPECT_EQ(3, e2.value());
}
TEST(Expected, testMoveConstructibleFromConvertibleType) {
exp_double e = 3.3f;
exp_int e2 = std::move(e);
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(3.3f, e.value());
EXPECT_EQ(3, e2.value());
}
TEST(Expected, testConstructibleFromValue) {
exp_int e = 3;
exp_double e2 = 5.5f;
exp_string e3 = std::string("hello");
exp_complex e4 = T(10, 20);
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_TRUE(e3.has_value());
EXPECT_TRUE(e4.has_value());
EXPECT_EQ(3, e.value());
EXPECT_EQ(5.5f, e2.value());
EXPECT_EQ("hello", e3.value());
EXPECT_EQ(T(10,20), e4.value());
}
TEST(Expected, testConstructibleFromMovedValue) {
std::string hello = "hello";
exp_string e = std::move(hello);
EXPECT_TRUE(e.has_value());
EXPECT_EQ("hello", e.value());
EXPECT_EQ("", hello);
}
TEST(Expected, testConstructibleFromConvertibleValue) {
exp_int e = 3.3f; // double to int
exp_string e2 = "hello"; // char* to std::string
EXPECT_TRUE(e.has_value());
EXPECT_EQ(3, e.value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ("hello", e2.value());
}
TEST(Expected, testConstructibleFromUnexpected) {
exp_int::unexpected_type unexp = unexpected(10);
exp_int e = unexp;
exp_double::unexpected_type unexp2 = unexpected(10.5f);
exp_double e2 = unexp2;
exp_string::unexpected_type unexp3 = unexpected(std::string("error"));
exp_string e3 = unexp3;
EXPECT_FALSE(e.has_value());
EXPECT_FALSE(e2.has_value());
EXPECT_FALSE(e3.has_value());
EXPECT_EQ(10, e.error());
EXPECT_EQ(10.5f, e2.error());
EXPECT_EQ("error", e3.error());
}
TEST(Expected, testMoveConstructibleFromUnexpected) {
exp_int e = unexpected(10);
exp_double e2 = unexpected(10.5f);
exp_string e3 = unexpected(std::string("error"));
EXPECT_FALSE(e.has_value());
EXPECT_FALSE(e2.has_value());
EXPECT_FALSE(e3.has_value());
EXPECT_EQ(10, e.error());
EXPECT_EQ(10.5f, e2.error());
EXPECT_EQ("error", e3.error());
}
TEST(Expected, testConstructibleByForwarding) {
exp_string e(std::in_place, 5, 'a');
EXPECT_TRUE(e.has_value());
EXPECT_EQ("aaaaa", e.value());
exp_string e2({'a', 'b', 'c'});
EXPECT_TRUE(e2.has_value());
EXPECT_EQ("abc", e2.value());
exp_pair e3({"hello", 30});
EXPECT_TRUE(e3.has_value());
EXPECT_EQ("hello",e3->first);
EXPECT_EQ(30,e3->second);
}
TEST(Expected, testDestructible) {
bool destroyed = false;
struct T {
bool* flag_;
T(bool* flag) : flag_(flag) {}
~T() { *flag_ = true; }
};
{
expected<T, int> exp = T(&destroyed);
}
EXPECT_TRUE(destroyed);
}
TEST(Expected, testAssignable) {
exp_int e = 10;
exp_int e2 = 20;
e = e2;
EXPECT_EQ(20, e.value());
EXPECT_EQ(20, e2.value());
exp_int e3 = 10;
exp_int e4 = 20;
e3 = std::move(e4);
EXPECT_EQ(20, e3.value());
EXPECT_EQ(20, e4.value());
}
TEST(Expected, testAssignableFromValue) {
exp_int e = 10;
e = 20;
EXPECT_EQ(20, e.value());
exp_double e2 = 3.5f;
e2 = 10.5f;
EXPECT_EQ(10.5f, e2.value());
exp_string e3 = "hello";
e3 = "world";
EXPECT_EQ("world", e3.value());
}
TEST(Expected, testAssignableFromUnexpected) {
exp_int e = 10;
e = unexpected(30);
EXPECT_FALSE(e.has_value());
EXPECT_EQ(30, e.error());
exp_double e2 = 3.5f;
e2 = unexpected(10.5f);
EXPECT_FALSE(e2.has_value());
EXPECT_EQ(10.5f, e2.error());
exp_string e3 = "hello";
e3 = unexpected("world");
EXPECT_FALSE(e3.has_value());
EXPECT_EQ("world", e3.error());
}
TEST(Expected, testAssignableFromMovedValue) {
std::string world = "world";
exp_string e = "hello";
e = std::move(world);
EXPECT_TRUE(e.has_value());
EXPECT_EQ("world", e.value());
EXPECT_EQ("", world);
}
TEST(Expected, testAssignableFromMovedUnexpected) {
std::string world = "world";
exp_string e = "hello";
e = unexpected(std::move(world));
EXPECT_FALSE(e.has_value());
EXPECT_EQ("world", e.error());
EXPECT_EQ("", world);
}
TEST(Expected, testEmplace) {
struct T {
int a;
double b;
T() {}
T(int a, double b) noexcept : a(a), b(b) {}
};
expected<T, int> exp;
T& t = exp.emplace(3, 10.5f);
EXPECT_TRUE(exp.has_value());
EXPECT_EQ(3, t.a);
EXPECT_EQ(10.5f, t.b);
EXPECT_EQ(3, exp.value().a);
EXPECT_EQ(10.5, exp.value().b);
}
TEST(Expected, testSwapExpectedExpected) {
exp_int e = 10;
exp_int e2 = 20;
e.swap(e2);
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(20, e.value());
EXPECT_EQ(10, e2.value());
}
TEST(Expected, testSwapUnexpectedUnexpected) {
exp_int e = unexpected(10);
exp_int e2 = unexpected(20);
e.swap(e2);
EXPECT_FALSE(e.has_value());
EXPECT_FALSE(e2.has_value());
EXPECT_EQ(20, e.error());
EXPECT_EQ(10, e2.error());
}
TEST(Expected, testSwapExpectedUnepected) {
exp_int e = 10;
exp_int e2 = unexpected(30);
e.swap(e2);
EXPECT_FALSE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(30, e.error());
EXPECT_EQ(10, e2.value());
}
TEST(Expected, testDereference) {
struct T {
int a;
double b;
T() {}
T(int a, double b) : a(a), b(b) {}
};
expected<T, int> exp = T(3, 10.5f);
EXPECT_EQ(3, exp->a);
EXPECT_EQ(10.5f, exp->b);
EXPECT_EQ(3, (*exp).a);
EXPECT_EQ(10.5f, (*exp).b);
}
TEST(Expected, testTest) {
exp_int e = 10;
EXPECT_TRUE(e);
EXPECT_TRUE(e.has_value());
exp_int e2 = unexpected(10);
EXPECT_FALSE(e2);
EXPECT_FALSE(e2.has_value());
}
TEST(Expected, testGetValue) {
exp_int e = 10;
EXPECT_EQ(10, e.value());
EXPECT_EQ(10, e.value_or(20));
exp_int e2 = unexpected(10);
EXPECT_EQ(10, e2.error());
EXPECT_EQ(20, e2.value_or(20));
}
TEST(Expected, testSameValues) {
exp_int e = 10;
exp_int e2 = 10;
EXPECT_TRUE(e == e2);
EXPECT_TRUE(e2 == e);
EXPECT_FALSE(e != e2);
EXPECT_FALSE(e2 != e);
}
TEST(Expected, testDifferentValues) {
exp_int e = 10;
exp_int e2 = 20;
EXPECT_FALSE(e == e2);
EXPECT_FALSE(e2 == e);
EXPECT_TRUE(e != e2);
EXPECT_TRUE(e2 != e);
}
TEST(Expected, testValueWithError) {
exp_int e = 10;
exp_int e2 = unexpected(10);
EXPECT_FALSE(e == e2);
EXPECT_FALSE(e2 == e);
EXPECT_TRUE(e != e2);
EXPECT_TRUE(e2 != e);
}
TEST(Expected, testSameErrors) {
exp_int e = unexpected(10);
exp_int e2 = unexpected(10);
EXPECT_TRUE(e == e2);
EXPECT_TRUE(e2 == e);
EXPECT_FALSE(e != e2);
EXPECT_FALSE(e2 != e);
}
TEST(Expected, testDifferentErrors) {
exp_int e = unexpected(10);
exp_int e2 = unexpected(20);
EXPECT_FALSE(e == e2);
EXPECT_FALSE(e2 == e);
EXPECT_TRUE(e != e2);
EXPECT_TRUE(e2 != e);
}
TEST(Expected, testCompareWithSameValue) {
exp_int e = 10;
int value = 10;
EXPECT_TRUE(e == value);
EXPECT_TRUE(value == e);
EXPECT_FALSE(e != value);
EXPECT_FALSE(value != e);
}
TEST(Expected, testCompareWithDifferentValue) {
exp_int e = 10;
int value = 20;
EXPECT_FALSE(e == value);
EXPECT_FALSE(value == e);
EXPECT_TRUE(e != value);
EXPECT_TRUE(value != e);
}
TEST(Expected, testCompareWithSameError) {
exp_int e = unexpected(10);
exp_int::unexpected_type error = 10;
EXPECT_TRUE(e == error);
EXPECT_TRUE(error == e);
EXPECT_FALSE(e != error);
EXPECT_FALSE(error != e);
}
TEST(Expected, testCompareWithDifferentError) {
exp_int e = unexpected(10);
exp_int::unexpected_type error = 20;
EXPECT_FALSE(e == error);
EXPECT_FALSE(error == e);
EXPECT_TRUE(e != error);
EXPECT_TRUE(error != e);
}
TEST(Expected, testDivideExample) {
struct QR {
int quotient;
int remainder;
QR(int q, int r) noexcept : quotient(q), remainder(r) {}
bool operator==(const QR& rhs) const {
return quotient == rhs.quotient && remainder == rhs.remainder;
}
bool operator!=(const QR& rhs) const {
return quotient != rhs.quotient || remainder == rhs.remainder;
}
};
auto divide = [](int x, int y) -> expected<QR,E> {
if (y == 0) {
return unexpected(E("divide by zero", -1));
} else {
return QR(x / y, x % y);
}
};
EXPECT_FALSE(divide(10, 0));
EXPECT_EQ("divide by zero", divide(10, 0).error().message);
EXPECT_EQ(-1, divide(10, 0).error().cause);
EXPECT_TRUE(divide(10, 3));
EXPECT_EQ(QR(3, 1), divide(10, 3));
}
TEST(Expected, testPair) {
auto test = [](bool yes) -> exp_pair {
if (yes) {
return exp_pair({"yes", 42});
} else {
return unexpected(42);
}
};
auto r = test(true);
EXPECT_TRUE(r);
EXPECT_EQ("yes", r->first);
}
// copied from result_test.cpp
struct ConstructorTracker {
static size_t constructor_called;
static size_t copy_constructor_called;
static size_t move_constructor_called;
static size_t copy_assignment_called;
static size_t move_assignment_called;
template <typename T,
typename std::enable_if_t<std::is_convertible_v<T, std::string>>* = nullptr>
ConstructorTracker(T&& string) : string(string) {
++constructor_called;
}
ConstructorTracker(const ConstructorTracker& ct) {
++copy_constructor_called;
string = ct.string;
}
ConstructorTracker(ConstructorTracker&& ct) noexcept {
++move_constructor_called;
string = std::move(ct.string);
}
ConstructorTracker& operator=(const ConstructorTracker& ct) {
++copy_assignment_called;
string = ct.string;
return *this;
}
ConstructorTracker& operator=(ConstructorTracker&& ct) noexcept {
++move_assignment_called;
string = std::move(ct.string);
return *this;
}
static void Reset() {
constructor_called = 0;
copy_constructor_called = 0;
move_constructor_called = 0;
copy_assignment_called = 0;
move_assignment_called = 0;
}
std::string string;
};
size_t ConstructorTracker::constructor_called = 0;
size_t ConstructorTracker::copy_constructor_called = 0;
size_t ConstructorTracker::move_constructor_called = 0;
size_t ConstructorTracker::copy_assignment_called = 0;
size_t ConstructorTracker::move_assignment_called = 0;
typedef expected<ConstructorTracker, int> exp_track;
TEST(Expected, testNumberOfCopies) {
// default constructor
ConstructorTracker::Reset();
exp_track e("hello");
EXPECT_EQ(1U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
// copy constructor
ConstructorTracker::Reset();
exp_track e2 = e;
EXPECT_EQ(0U, ConstructorTracker::constructor_called);
EXPECT_EQ(1U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
// move constructor
ConstructorTracker::Reset();
exp_track e3 = std::move(e);
EXPECT_EQ(0U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(1U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
// construct from lvalue
ConstructorTracker::Reset();
ConstructorTracker ct = "hello";
exp_track e4(ct);
EXPECT_EQ(1U, ConstructorTracker::constructor_called);
EXPECT_EQ(1U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
// construct from rvalue
ConstructorTracker::Reset();
ConstructorTracker ct2 = "hello";
exp_track e5(std::move(ct2));
EXPECT_EQ(1U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(1U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
// copy assignment
ConstructorTracker::Reset();
exp_track e6 = "hello";
exp_track e7 = "world";
e7 = e6;
EXPECT_EQ(2U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(1U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
// move assignment
ConstructorTracker::Reset();
exp_track e8 = "hello";
exp_track e9 = "world";
e9 = std::move(e8);
EXPECT_EQ(2U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(1U, ConstructorTracker::move_assignment_called);
// swap
ConstructorTracker::Reset();
exp_track e10 = "hello";
exp_track e11 = "world";
std::swap(e10, e11);
EXPECT_EQ(2U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(1U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(2U, ConstructorTracker::move_assignment_called);
}
TEST(Expected, testNoCopyOnReturn) {
auto test = [](const std::string& in) -> exp_track {
if (in.empty()) {
return "literal string";
}
if (in == "test2") {
return ConstructorTracker(in + in + "2");
}
ConstructorTracker result(in + " " + in);
return result;
};
ConstructorTracker::Reset();
auto result1 = test("");
ASSERT_TRUE(result1);
EXPECT_EQ("literal string", result1->string);
EXPECT_EQ(1U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
ConstructorTracker::Reset();
auto result2 = test("test2");
ASSERT_TRUE(result2);
EXPECT_EQ("test2test22", result2->string);
EXPECT_EQ(1U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(1U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
ConstructorTracker::Reset();
auto result3 = test("test3");
ASSERT_TRUE(result3);
EXPECT_EQ("test3 test3", result3->string);
EXPECT_EQ(1U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(1U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
}
TEST(Expected, testNested) {
expected<exp_string, std::string> e = "hello";
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e.value().has_value());
EXPECT_TRUE(e);
EXPECT_TRUE(*e);
EXPECT_EQ("hello", e.value().value());
expected<exp_string, std::string> e2 = unexpected("world");
EXPECT_FALSE(e2.has_value());
EXPECT_FALSE(e2);
EXPECT_EQ("world", e2.error());
expected<exp_string, std::string> e3 = exp_string(unexpected("world"));
EXPECT_TRUE(e3.has_value());
EXPECT_FALSE(e3.value().has_value());
EXPECT_TRUE(e3);
EXPECT_FALSE(*e3);
EXPECT_EQ("world", e3.value().error());
}
constexpr bool equals(const char* a, const char* b) {
return (a == nullptr && b == nullptr) ||
(a != nullptr && b != nullptr && *a == *b &&
(*a == '\0' || equals(a + 1, b + 1)));
}
TEST(Expected, testConstexpr) {
// Compliation error will occur if these expressions can't be
// evaluated at compile time
constexpr exp_int e(3);
constexpr exp_int::unexpected_type err(3);
constexpr int i = 4;
// default constructor
static_assert(exp_int().value() == 0);
// copy constructor
static_assert(exp_int(e).value() == 3);
// move constructor
static_assert(exp_int(exp_int(4)).value() == 4);
// copy construct from value
static_assert(exp_int(i).value() == 4);
// copy construct from unexpected
static_assert(exp_int(err).error() == 3);
// move costruct from unexpected
static_assert(exp_int(unexpected(3)).error() == 3);
// observers
static_assert(*exp_int(3) == 3);
static_assert(exp_int(3).has_value() == true);
static_assert(exp_int(3).value_or(4) == 3);
typedef expected<const char*, int> exp_s;
constexpr exp_s s("hello");
constexpr const char* c = "hello";
static_assert(equals(exp_s().value(), nullptr));
static_assert(equals(exp_s(s).value(), "hello"));
static_assert(equals(exp_s(exp_s("hello")).value(), "hello"));
static_assert(equals(exp_s("hello").value(), "hello"));
static_assert(equals(exp_s(c).value(), "hello"));
}
TEST(Expected, testWithNonConstructible) {
struct AssertNotConstructed {
AssertNotConstructed() = delete;
};
expected<int, AssertNotConstructed> v(42);
EXPECT_TRUE(v.has_value());
EXPECT_EQ(42, v.value());
expected<AssertNotConstructed, int> e(unexpected(42));
EXPECT_FALSE(e.has_value());
EXPECT_EQ(42, e.error());
}
TEST(Expected, testWithMoveOnlyType) {
typedef expected<std::unique_ptr<int>,std::unique_ptr<int>> exp_ptr;
exp_ptr e(std::make_unique<int>(3));
exp_ptr e2(unexpected(std::make_unique<int>(4)));
EXPECT_TRUE(e.has_value());
EXPECT_FALSE(e2.has_value());
EXPECT_EQ(3, *(e.value()));
EXPECT_EQ(4, *(e2.error()));
e2 = std::move(e);
EXPECT_TRUE(e.has_value());
EXPECT_TRUE(e2.has_value());
EXPECT_EQ(3, *(e2.value()));
}

View File

@ -0,0 +1,600 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <initializer_list>
#include <type_traits>
#include <utility>
#include <variant>
// android::base::expected is an Android implementation of the std::expected
// proposal.
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
//
// Usage:
// using android::base::expected;
// using android::base::unexpected;
//
// expected<double,std::string> safe_divide(double i, double j) {
// if (j == 0) return unexpected("divide by zero");
// else return i / j;
// }
//
// void test() {
// auto q = safe_divide(10, 0);
// if (q) { printf("%f\n", q.value()); }
// else { printf("%s\n", q.error().c_str()); }
// }
//
// When the proposal becomes part of the standard and is implemented by
// libcxx, this will be removed and android::base::expected will be
// type alias to std::expected.
//
namespace android {
namespace base {
// Synopsis
template<class T, class E>
class expected;
template<class E>
class unexpected;
template<class E>
unexpected(E) -> unexpected<E>;
template<class E>
class bad_expected_access;
template<>
class bad_expected_access<void>;
struct unexpect_t {
explicit unexpect_t() = default;
};
inline constexpr unexpect_t unexpect{};
// macros for SFINAE
#define _ENABLE_IF(...) \
, std::enable_if_t<(__VA_ARGS__)>* = nullptr
// Define NODISCARD_EXPECTED to prevent expected<T,E> from being
// ignored when used as a return value. This is off by default.
#ifdef NODISCARD_EXPECTED
#define _NODISCARD_ [[nodiscard]]
#else
#define _NODISCARD_
#endif
// Class expected
template<class T, class E>
class _NODISCARD_ expected {
public:
using value_type = T;
using error_type = E;
using unexpected_type = unexpected<E>;
template<class U>
using rebind = expected<U, error_type>;
// constructors
constexpr expected() = default;
constexpr expected(const expected& rhs) = default;
constexpr expected(expected&& rhs) noexcept = default;
template<class U, class G _ENABLE_IF(
std::is_constructible_v<T, const U&> &&
std::is_constructible_v<E, const G&> &&
!std::is_constructible_v<T, expected<U, G>&> &&
!std::is_constructible_v<T, expected<U, G>&&> &&
!std::is_constructible_v<T, const expected<U, G>&> &&
!std::is_constructible_v<T, const expected<U, G>&&> &&
!std::is_convertible_v<expected<U, G>&, T> &&
!std::is_convertible_v<expected<U, G>&&, T> &&
!std::is_convertible_v<const expected<U, G>&, T> &&
!std::is_convertible_v<const expected<U, G>&&, T> &&
!(!std::is_convertible_v<const U&, T> ||
!std::is_convertible_v<const G&, E>) /* non-explicit */
)>
constexpr expected(const expected<U, G>& rhs) {
if (rhs.has_value()) var_ = rhs.value();
else var_ = unexpected(rhs.error());
}
template<class U, class G _ENABLE_IF(
std::is_constructible_v<T, const U&> &&
std::is_constructible_v<E, const G&> &&
!std::is_constructible_v<T, expected<U, G>&> &&
!std::is_constructible_v<T, expected<U, G>&&> &&
!std::is_constructible_v<T, const expected<U, G>&> &&
!std::is_constructible_v<T, const expected<U, G>&&> &&
!std::is_convertible_v<expected<U, G>&, T> &&
!std::is_convertible_v<expected<U, G>&&, T> &&
!std::is_convertible_v<const expected<U, G>&, T> &&
!std::is_convertible_v<const expected<U, G>&&, T> &&
(!std::is_convertible_v<const U&, T> ||
!std::is_convertible_v<const G&, E>) /* explicit */
)>
constexpr explicit expected(const expected<U, G>& rhs) {
if (rhs.has_value()) var_ = rhs.value();
else var_ = unexpected(rhs.error());
}
template<class U, class G _ENABLE_IF(
std::is_constructible_v<T, const U&> &&
std::is_constructible_v<E, const G&> &&
!std::is_constructible_v<T, expected<U, G>&> &&
!std::is_constructible_v<T, expected<U, G>&&> &&
!std::is_constructible_v<T, const expected<U, G>&> &&
!std::is_constructible_v<T, const expected<U, G>&&> &&
!std::is_convertible_v<expected<U, G>&, T> &&
!std::is_convertible_v<expected<U, G>&&, T> &&
!std::is_convertible_v<const expected<U, G>&, T> &&
!std::is_convertible_v<const expected<U, G>&&, T> &&
!(!std::is_convertible_v<const U&, T> ||
!std::is_convertible_v<const G&, E>) /* non-explicit */
)>
constexpr expected(expected<U, G>&& rhs) {
if (rhs.has_value()) var_ = std::move(rhs.value());
else var_ = unexpected(std::move(rhs.error()));
}
template<class U, class G _ENABLE_IF(
std::is_constructible_v<T, const U&> &&
std::is_constructible_v<E, const G&> &&
!std::is_constructible_v<T, expected<U, G>&> &&
!std::is_constructible_v<T, expected<U, G>&&> &&
!std::is_constructible_v<T, const expected<U, G>&> &&
!std::is_constructible_v<T, const expected<U, G>&&> &&
!std::is_convertible_v<expected<U, G>&, T> &&
!std::is_convertible_v<expected<U, G>&&, T> &&
!std::is_convertible_v<const expected<U, G>&, T> &&
!std::is_convertible_v<const expected<U, G>&&, T> &&
(!std::is_convertible_v<const U&, T> ||
!std::is_convertible_v<const G&, E>) /* explicit */
)>
constexpr explicit expected(expected<U, G>&& rhs) {
if (rhs.has_value()) var_ = std::move(rhs.value());
else var_ = unexpected(std::move(rhs.error()));
}
template<class U = T _ENABLE_IF(
std::is_constructible_v<T, U&&> &&
std::is_convertible_v<U&&,T> /* non-explicit */
)>
constexpr expected(U&& v)
: var_(std::in_place_index<0>, std::forward<U>(v)) {}
template<class U = T _ENABLE_IF(
std::is_constructible_v<T, U&&> &&
!std::is_convertible_v<U&&,T> /* explicit */
)>
constexpr explicit expected(U&& v)
: var_(std::in_place_index<0>, T(std::forward<U>(v))) {}
template<class G = E _ENABLE_IF(
std::is_constructible_v<E, const G&> &&
std::is_convertible_v<const G&, E> /* non-explicit */
)>
constexpr expected(const unexpected<G>& e)
: var_(std::in_place_index<1>, e.value()) {}
template<class G = E _ENABLE_IF(
std::is_constructible_v<E, const G&> &&
!std::is_convertible_v<const G&, E> /* explicit */
)>
constexpr explicit expected(const unexpected<G>& e)
: var_(std::in_place_index<1>, E(e.value())) {}
template<class G = E _ENABLE_IF(
std::is_constructible_v<E, G&&> &&
std::is_convertible_v<G&&, E> /* non-explicit */
)>
constexpr expected(unexpected<G>&& e)
: var_(std::in_place_index<1>, std::move(e.value())) {}
template<class G = E _ENABLE_IF(
std::is_constructible_v<E, G&&> &&
!std::is_convertible_v<G&&, E> /* explicit */
)>
constexpr explicit expected(unexpected<G>&& e)
: var_(std::in_place_index<1>, E(std::move(e.value()))) {}
template<class... Args _ENABLE_IF(
std::is_constructible_v<T, Args&&...>
)>
constexpr explicit expected(std::in_place_t, Args&&... args)
: var_(std::in_place_index<0>, std::forward<Args>(args)...) {}
template<class U, class... Args _ENABLE_IF(
std::is_constructible_v<T, std::initializer_list<U>&, Args...>
)>
constexpr explicit expected(std::in_place_t, std::initializer_list<U> il, Args&&... args)
: var_(std::in_place_index<0>, il, std::forward<Args>(args)...) {}
template<class... Args _ENABLE_IF(
std::is_constructible_v<E, Args...>
)>
constexpr explicit expected(unexpect_t, Args&&... args)
: var_(unexpected_type(std::forward<Args>(args)...)) {}
template<class U, class... Args _ENABLE_IF(
std::is_constructible_v<E, std::initializer_list<U>&, Args...>
)>
constexpr explicit expected(unexpect_t, std::initializer_list<U> il, Args&&... args)
: var_(unexpected_type(il, std::forward<Args>(args)...)) {}
// destructor
~expected() = default;
// assignment
// TODO(b/132145659) enable assignment operator only when the condition
// satisfies. SFNAIE doesn't work here because assignment operator should be
// non-template. We could workaround this by defining a templated parent class
// having the assignment operator. This incomplete implementation however
// doesn't allow us to copy assign expected<T,E> even when T is non-copy
// assignable. The copy assignment will fail by the underlying std::variant
// anyway though the error message won't be clear.
// std::enable_if_t<(
// std::is_copy_assignable_v<T> &&
// std::is_copy_constructible_v<T> &&
// std::is_copy_assignable_v<E> &&
// std::is_copy_constructible_v<E> &&
// (std::is_nothrow_move_constructible_v<E> ||
// std::is_nothrow_move_constructible_v<T>)
// ), expected&>
expected& operator=(const expected& rhs) {
var_ = rhs.var_;
return *this;
}
// std::enable_if_t<(
// std::is_move_constructible_v<T> &&
// std::is_move_assignable_v<T> &&
// std::is_nothrow_move_constructible_v<E> &&
// std::is_nothrow_move_assignable_v<E>
// ), expected&>
expected& operator=(expected&& rhs) noexcept {
var_ = std::move(rhs.var_);
return *this;
}
template<class U = T _ENABLE_IF(
!std::is_void_v<T> &&
std::is_constructible_v<T,U> &&
std::is_assignable_v<T&,U> &&
std::is_nothrow_move_constructible_v<E>
)>
expected& operator=(U&& rhs) {
var_ = T(std::forward<U>(rhs));
return *this;
}
template<class G = E>
// TODO: std::is_nothrow_copy_constructible_v<E> && std::is_copy_assignable_v<E>
expected& operator=(const unexpected<G>& rhs) {
var_ = rhs;
return *this;
}
template<class G = E _ENABLE_IF(
std::is_nothrow_move_constructible_v<G> &&
std::is_move_assignable_v<G>
)>
expected& operator=(unexpected<G>&& rhs) {
var_ = std::move(rhs);
return *this;
}
// modifiers
template<class... Args _ENABLE_IF(
std::is_nothrow_constructible_v<T, Args...>
)>
T& emplace(Args&&... args) {
expected(std::in_place, std::forward<Args>(args)...).swap(*this);
return value();
}
template<class U, class... Args _ENABLE_IF(
std::is_nothrow_constructible_v<T, std::initializer_list<U>&, Args...>
)>
T& emplace(std::initializer_list<U> il, Args&&... args) {
expected(std::in_place, il, std::forward<Args>(args)...).swap(*this);
return value();
}
// swap
template<typename U = T, typename = std::enable_if_t<(
std::is_swappable_v<U> &&
std::is_swappable_v<E> &&
(std::is_move_constructible_v<U> ||
std::is_move_constructible_v<E>))>>
void swap(expected& rhs) noexcept(
std::is_nothrow_move_constructible_v<T> &&
std::is_nothrow_swappable_v<T> &&
std::is_nothrow_move_constructible_v<E> &&
std::is_nothrow_swappable_v<E>) {
var_.swap(rhs.var_);
}
// observers
constexpr const T* operator->() const { return std::addressof(value()); }
constexpr T* operator->() { return std::addressof(value()); }
constexpr const T& operator*() const& { return value(); }
constexpr T& operator*() & { return value(); }
constexpr const T&& operator*() const&& { return std::move(std::get<T>(var_)); }
constexpr T&& operator*() && { return std::move(std::get<T>(var_)); }
constexpr explicit operator bool() const noexcept { return has_value(); }
constexpr bool has_value() const noexcept { return var_.index() == 0; }
constexpr const T& value() const& { return std::get<T>(var_); }
constexpr T& value() & { return std::get<T>(var_); }
constexpr const T&& value() const&& { return std::move(std::get<T>(var_)); }
constexpr T&& value() && { return std::move(std::get<T>(var_)); }
constexpr const E& error() const& { return std::get<unexpected_type>(var_).value(); }
constexpr E& error() & { return std::get<unexpected_type>(var_).value(); }
constexpr const E&& error() const&& { return std::move(std::get<unexpected_type>(var_)).value(); }
constexpr E&& error() && { return std::move(std::get<unexpected_type>(var_)).value(); }
template<class U _ENABLE_IF(
std::is_copy_constructible_v<T> &&
std::is_convertible_v<U, T>
)>
constexpr T value_or(U&& v) const& {
if (has_value()) return value();
else return static_cast<T>(std::forward<U>(v));
}
template<class U _ENABLE_IF(
std::is_move_constructible_v<T> &&
std::is_convertible_v<U, T>
)>
constexpr T value_or(U&& v) && {
if (has_value()) return std::move(value());
else return static_cast<T>(std::forward<U>(v));
}
// expected equality operators
template<class T1, class E1, class T2, class E2>
friend constexpr bool operator==(const expected<T1, E1>& x, const expected<T2, E2>& y);
template<class T1, class E1, class T2, class E2>
friend constexpr bool operator!=(const expected<T1, E1>& x, const expected<T2, E2>& y);
// comparison with T
template<class T1, class E1, class T2>
friend constexpr bool operator==(const expected<T1, E1>&, const T2&);
template<class T1, class E1, class T2>
friend constexpr bool operator==(const T2&, const expected<T1, E1>&);
template<class T1, class E1, class T2>
friend constexpr bool operator!=(const expected<T1, E1>&, const T2&);
template<class T1, class E1, class T2>
friend constexpr bool operator!=(const T2&, const expected<T1, E1>&);
// Comparison with unexpected<E>
template<class T1, class E1, class E2>
friend constexpr bool operator==(const expected<T1, E1>&, const unexpected<E2>&);
template<class T1, class E1, class E2>
friend constexpr bool operator==(const unexpected<E2>&, const expected<T1, E1>&);
template<class T1, class E1, class E2>
friend constexpr bool operator!=(const expected<T1, E1>&, const unexpected<E2>&);
template<class T1, class E1, class E2>
friend constexpr bool operator!=(const unexpected<E2>&, const expected<T1, E1>&);
// Specialized algorithms
template<class T1, class E1>
friend void swap(expected<T1, E1>&, expected<T1, E1>&) noexcept;
private:
std::variant<value_type, unexpected_type> var_;
};
template<class T1, class E1, class T2, class E2>
constexpr bool operator==(const expected<T1, E1>& x, const expected<T2, E2>& y) {
if (x.has_value() != y.has_value()) {
return false;
} else if (!x.has_value()) {
return x.error() == y.error();
} else {
return *x == *y;
}
}
template<class T1, class E1, class T2, class E2>
constexpr bool operator!=(const expected<T1, E1>& x, const expected<T2, E2>& y) {
if (x.has_value() != y.has_value()) {
return true;
} else if (!x.has_value()) {
return x.error() != y.error();
} else {
return *x != *y;
}
}
// comparison with T
template<class T1, class E1, class T2>
constexpr bool operator==(const expected<T1, E1>& x, const T2& y) {
return x.has_value() && (*x == y);
}
template<class T1, class E1, class T2>
constexpr bool operator==(const T2& x, const expected<T1, E1>& y) {
return y.has_value() && (x == *y);
}
template<class T1, class E1, class T2>
constexpr bool operator!=(const expected<T1, E1>& x, const T2& y) {
return !x.has_value() || (*x != y);
}
template<class T1, class E1, class T2>
constexpr bool operator!=(const T2& x, const expected<T1, E1>& y) {
return !y.has_value() || (x != *y);
}
// Comparison with unexpected<E>
template<class T1, class E1, class E2>
constexpr bool operator==(const expected<T1, E1>& x, const unexpected<E2>& y) {
return !x.has_value() && (x.error() == y.value());
}
template<class T1, class E1, class E2>
constexpr bool operator==(const unexpected<E2>& x, const expected<T1, E1>& y) {
return !y.has_value() && (x.value() == y.error());
}
template<class T1, class E1, class E2>
constexpr bool operator!=(const expected<T1, E1>& x, const unexpected<E2>& y) {
return x.has_value() || (x.error() != y.value());
}
template<class T1, class E1, class E2>
constexpr bool operator!=(const unexpected<E2>& x, const expected<T1, E1>& y) {
return y.has_value() || (x.value() != y.error());
}
template<class E>
class unexpected {
public:
// constructors
constexpr unexpected(const unexpected&) = default;
constexpr unexpected(unexpected&&) = default;
template<class Err = E _ENABLE_IF(
std::is_constructible_v<E, Err>
)>
constexpr unexpected(Err&& e)
: val_(std::forward<Err>(e)) {}
template<class U, class... Args _ENABLE_IF(
std::is_constructible_v<E, std::initializer_list<U>&, Args...>
)>
constexpr explicit unexpected(std::in_place_t, std::initializer_list<U> il, Args&&... args)
: val_(il, std::forward<Args>(args)...) {}
template<class Err _ENABLE_IF(
std::is_constructible_v<E, Err> &&
!std::is_constructible_v<E, unexpected<Err>&> &&
!std::is_constructible_v<E, unexpected<Err>> &&
!std::is_constructible_v<E, const unexpected<Err>&> &&
!std::is_constructible_v<E, const unexpected<Err>> &&
!std::is_convertible_v<unexpected<Err>&, E> &&
!std::is_convertible_v<unexpected<Err>, E> &&
!std::is_convertible_v<const unexpected<Err>&, E> &&
!std::is_convertible_v<const unexpected<Err>, E> &&
std::is_convertible_v<Err, E> /* non-explicit */
)>
constexpr unexpected(const unexpected<Err>& rhs)
: val_(rhs.value()) {}
template<class Err _ENABLE_IF(
std::is_constructible_v<E, Err> &&
!std::is_constructible_v<E, unexpected<Err>&> &&
!std::is_constructible_v<E, unexpected<Err>> &&
!std::is_constructible_v<E, const unexpected<Err>&> &&
!std::is_constructible_v<E, const unexpected<Err>> &&
!std::is_convertible_v<unexpected<Err>&, E> &&
!std::is_convertible_v<unexpected<Err>, E> &&
!std::is_convertible_v<const unexpected<Err>&, E> &&
!std::is_convertible_v<const unexpected<Err>, E> &&
!std::is_convertible_v<Err, E> /* explicit */
)>
constexpr explicit unexpected(const unexpected<Err>& rhs)
: val_(E(rhs.value())) {}
template<class Err _ENABLE_IF(
std::is_constructible_v<E, Err> &&
!std::is_constructible_v<E, unexpected<Err>&> &&
!std::is_constructible_v<E, unexpected<Err>> &&
!std::is_constructible_v<E, const unexpected<Err>&> &&
!std::is_constructible_v<E, const unexpected<Err>> &&
!std::is_convertible_v<unexpected<Err>&, E> &&
!std::is_convertible_v<unexpected<Err>, E> &&
!std::is_convertible_v<const unexpected<Err>&, E> &&
!std::is_convertible_v<const unexpected<Err>, E> &&
std::is_convertible_v<Err, E> /* non-explicit */
)>
constexpr unexpected(unexpected<Err>&& rhs)
: val_(std::move(rhs.value())) {}
template<class Err _ENABLE_IF(
std::is_constructible_v<E, Err> &&
!std::is_constructible_v<E, unexpected<Err>&> &&
!std::is_constructible_v<E, unexpected<Err>> &&
!std::is_constructible_v<E, const unexpected<Err>&> &&
!std::is_constructible_v<E, const unexpected<Err>> &&
!std::is_convertible_v<unexpected<Err>&, E> &&
!std::is_convertible_v<unexpected<Err>, E> &&
!std::is_convertible_v<const unexpected<Err>&, E> &&
!std::is_convertible_v<const unexpected<Err>, E> &&
!std::is_convertible_v<Err, E> /* explicit */
)>
constexpr explicit unexpected(unexpected<Err>&& rhs)
: val_(E(std::move(rhs.value()))) {}
// assignment
constexpr unexpected& operator=(const unexpected&) = default;
constexpr unexpected& operator=(unexpected&&) = default;
template<class Err = E>
constexpr unexpected& operator=(const unexpected<Err>& rhs) {
val_ = rhs.value();
return *this;
}
template<class Err = E>
constexpr unexpected& operator=(unexpected<Err>&& rhs) {
val_ = std::forward<E>(rhs.value());
return *this;
}
// observer
constexpr const E& value() const& noexcept { return val_; }
constexpr E& value() & noexcept { return val_; }
constexpr const E&& value() const&& noexcept { return std::move(val_); }
constexpr E&& value() && noexcept { return std::move(val_); }
void swap(unexpected& other) noexcept { std::swap(val_, other.val_); }
template<class E1, class E2>
friend constexpr bool
operator==(const unexpected<E1>& e1, const unexpected<E2>& e2);
template<class E1, class E2>
friend constexpr bool
operator!=(const unexpected<E1>& e1, const unexpected<E2>& e2);
template<class E1>
friend void swap(unexpected<E1>& x, unexpected<E1>& y) noexcept(noexcept(x.swap(y)));
private:
E val_;
};
template<class E1, class E2>
constexpr bool
operator==(const unexpected<E1>& e1, const unexpected<E2>& e2) {
return e1.value() == e2.value();
}
template<class E1, class E2>
constexpr bool
operator!=(const unexpected<E1>& e1, const unexpected<E2>& e2) {
return e1.value() != e2.value();
}
template<class E1>
void swap(unexpected<E1>& x, unexpected<E1>& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);
}
// TODO: bad_expected_access class
#undef _ENABLE_IF
#undef _NODISCARD_
} // namespace base
} // namespace android