Merge "adb shell: Win32: fix Ctrl-C, tab completion, line editing, server echo"

This commit is contained in:
Dan Albert 2015-03-27 05:28:37 +00:00 committed by Gerrit Code Review
commit 87378814a0
3 changed files with 909 additions and 11 deletions

View File

@ -245,13 +245,10 @@ int usage()
#if defined(_WIN32)
// Windows does not have <termio.h>.
static void stdin_raw_init(int fd) {
}
static void stdin_raw_restore(int fd) {
// Implemented in sysdeps_win32.c.
extern "C" {
void stdin_raw_init(int fd);
void stdin_raw_restore(int fd);
}
#else

View File

@ -150,10 +150,8 @@ static __inline__ int unix_close(int fd)
#undef close
#define close ____xxx_close
static __inline__ int unix_read(int fd, void* buf, size_t len)
{
return read(fd, buf, len);
}
extern int unix_read(int fd, void* buf, size_t len);
#undef read
#define read ___xxx_read

View File

@ -22,6 +22,7 @@
#include <windows.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
@ -2250,3 +2251,905 @@ cont:
}
/* NOTREACHED */
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** Console Window Terminal Emulation *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
// This reads input from a Win32 console window and translates it into Unix
// terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
// mode, not Application mode), which itself emulates xterm. Gnome Terminal
// is emulated instead of xterm because it is probably more popular than xterm:
// Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
// supports modern fonts, etc. It seems best to emulate the terminal that most
// Android developers use because they'll fix apps (the shell, etc.) to keep
// working with that terminal's emulation.
//
// The point of this emulation is not to be perfect or to solve all issues with
// console windows on Windows, but to be better than the original code which
// just called read() (which called ReadFile(), which called ReadConsoleA())
// which did not support Ctrl-C, tab completion, shell input line editing
// keys, server echo, and more.
//
// This implementation reconfigures the console with SetConsoleMode(), then
// calls ReadConsoleInput() to get raw input which it remaps to Unix
// terminal-style sequences which is returned via unix_read() which is used
// by the 'adb shell' command.
//
// Code organization:
//
// * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
// * unix_read() detects console windows (as opposed to pipes, files, etc.).
// * _console_read() is the main code of the emulation.
// Read an input record from the console; one that should be processed.
static bool _get_interesting_input_record_uncached(const HANDLE console,
INPUT_RECORD* const input_record) {
for (;;) {
DWORD read_count = 0;
memset(input_record, 0, sizeof(*input_record));
if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
D("_get_interesting_input_record_uncached: ReadConsoleInputA() "
"failure, error %ld\n", GetLastError());
errno = EIO;
return false;
}
if (read_count == 0) { // should be impossible
fatal("ReadConsoleInputA returned 0");
}
if (read_count != 1) { // should be impossible
fatal("ReadConsoleInputA did not return one input record");
}
if ((input_record->EventType == KEY_EVENT) &&
(input_record->Event.KeyEvent.bKeyDown)) {
if (input_record->Event.KeyEvent.wRepeatCount == 0) {
fatal("ReadConsoleInputA returned a key event with zero repeat"
" count");
}
// Got an interesting INPUT_RECORD, so return
return true;
}
}
}
// Cached input record (in case _console_read() is passed a buffer that doesn't
// have enough space to fit wRepeatCount number of key sequences). A non-zero
// wRepeatCount indicates that a record is cached.
static INPUT_RECORD _win32_input_record;
// Get the next KEY_EVENT_RECORD that should be processed.
static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) {
// If nothing cached, read directly from the console until we get an
// interesting record.
if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) {
if (!_get_interesting_input_record_uncached(console,
&_win32_input_record)) {
// There was an error, so make sure wRepeatCount is zero because
// that signifies no cached input record.
_win32_input_record.Event.KeyEvent.wRepeatCount = 0;
return NULL;
}
}
return &_win32_input_record.Event.KeyEvent;
}
static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
return (control_key_state & SHIFT_PRESSED) != 0;
}
static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
}
static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
}
static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
return (control_key_state & NUMLOCK_ON) != 0;
}
static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
return (control_key_state & CAPSLOCK_ON) != 0;
}
static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
return (control_key_state & ENHANCED_KEY) != 0;
}
// Constants from MSDN for ToAscii().
static const BYTE TOASCII_KEY_OFF = 0x00;
static const BYTE TOASCII_KEY_DOWN = 0x80;
static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
// Given a key event, ignore a modifier key and return the character that was
// entered without the modifier. Writes to *ch and returns the number of bytes
// written.
static size_t _get_char_ignoring_modifier(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
const WORD modifier) {
// If there is no character from Windows, try ignoring the specified
// modifier and look for a character. Note that if AltGr is being used,
// there will be a character from Windows.
if (key_event->uChar.AsciiChar == '\0') {
// Note that we read the control key state from the passed in argument
// instead of from key_event since the argument has been normalized.
if (((modifier == VK_SHIFT) &&
_is_shift_pressed(control_key_state)) ||
((modifier == VK_CONTROL) &&
_is_ctrl_pressed(control_key_state)) ||
((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
BYTE key_state[256] = {0};
key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
// cause this modifier to be ignored
key_state[modifier] = TOASCII_KEY_OFF;
WORD translated = 0;
if (ToAscii(key_event->wVirtualKeyCode,
key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
// Ignoring the modifier, we found a character.
*ch = (CHAR)translated;
return 1;
}
}
}
// Just use whatever Windows told us originally.
*ch = key_event->uChar.AsciiChar;
// If the character from Windows is NULL, return a size of zero.
return (*ch == '\0') ? 0 : 1;
}
// If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
// but taking into account the shift key. This is because for a sequence like
// Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
// we want to find the character ')'.
//
// Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
// because it is the default key-sequence to switch the input language.
// This is configurable in the Region and Language control panel.
static __inline__ size_t _get_non_control_char(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
VK_CONTROL);
}
// Get without Alt.
static __inline__ size_t _get_non_alt_char(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
VK_MENU);
}
// Ignore the control key, find the character from Windows, and apply any
// Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
// *pch and returns number of bytes written.
static size_t _get_control_character(char* const pch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
const size_t len = _get_non_control_char(pch, key_event,
control_key_state);
if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
char ch = *pch;
switch (ch) {
case '2':
case '@':
case '`':
ch = '\0';
break;
case '3':
case '[':
case '{':
ch = '\x1b';
break;
case '4':
case '\\':
case '|':
ch = '\x1c';
break;
case '5':
case ']':
case '}':
ch = '\x1d';
break;
case '6':
case '^':
case '~':
ch = '\x1e';
break;
case '7':
case '-':
case '_':
ch = '\x1f';
break;
case '8':
ch = '\x7f';
break;
case '/':
if (!_is_alt_pressed(control_key_state)) {
ch = '\x1f';
}
break;
case '?':
if (!_is_alt_pressed(control_key_state)) {
ch = '\x7f';
}
break;
}
*pch = ch;
}
return len;
}
static DWORD _normalize_altgr_control_key_state(
const KEY_EVENT_RECORD* const key_event) {
DWORD control_key_state = key_event->dwControlKeyState;
// If we're in an AltGr situation where the AltGr key is down (depending on
// the keyboard layout, that might be the physical right alt key which
// produces a control_key_state where Right-Alt and Left-Ctrl are down) or
// AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
// a character (which indicates that there was an AltGr mapping), then act
// as if alt and control are not really down for the purposes of modifiers.
// This makes it so that if the user with, say, a German keyboard layout
// presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
// output the key and we don't see the Alt and Ctrl keys.
if (_is_ctrl_pressed(control_key_state) &&
_is_alt_pressed(control_key_state)
&& (key_event->uChar.AsciiChar != '\0')) {
// Try to remove as few bits as possible to improve our chances of
// detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
// Left-Alt + Right-Ctrl + AltGr.
if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
// Remove Right-Alt.
control_key_state &= ~RIGHT_ALT_PRESSED;
// If uChar is set, a Ctrl key is pressed, and Right-Alt is
// pressed, Left-Ctrl is almost always set, except if the user
// presses Right-Ctrl, then AltGr (in that specific order) for
// whatever reason. At any rate, make sure the bit is not set.
control_key_state &= ~LEFT_CTRL_PRESSED;
} else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
// Remove Left-Alt.
control_key_state &= ~LEFT_ALT_PRESSED;
// Whichever Ctrl key is down, remove it from the state. We only
// remove one key, to improve our chances of detecting the
// corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
// Remove Left-Ctrl.
control_key_state &= ~LEFT_CTRL_PRESSED;
} else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
// Remove Right-Ctrl.
control_key_state &= ~RIGHT_CTRL_PRESSED;
}
}
// Note that this logic isn't 100% perfect because Windows doesn't
// allow us to detect all combinations because a physical AltGr key
// press shows up as two bits, plus some combinations are ambiguous
// about what is actually physically pressed.
}
return control_key_state;
}
// If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
// dwControlKeyState for the following keypad keys: period, 0-9. If we detect
// this scenario, set the SHIFT_PRESSED bit so we can add modifiers
// appropriately.
static DWORD _normalize_keypad_control_key_state(const WORD vk,
const DWORD control_key_state) {
if (!_is_numlock_on(control_key_state)) {
return control_key_state;
}
if (!_is_enhanced_key(control_key_state)) {
switch (vk) {
case VK_INSERT: // 0
case VK_DELETE: // .
case VK_END: // 1
case VK_DOWN: // 2
case VK_NEXT: // 3
case VK_LEFT: // 4
case VK_CLEAR: // 5
case VK_RIGHT: // 6
case VK_HOME: // 7
case VK_UP: // 8
case VK_PRIOR: // 9
return control_key_state | SHIFT_PRESSED;
}
}
return control_key_state;
}
static const char* _get_keypad_sequence(const DWORD control_key_state,
const char* const normal, const char* const shifted) {
if (_is_shift_pressed(control_key_state)) {
// Shift is pressed and NumLock is off
return shifted;
} else {
// Shift is not pressed and NumLock is off, or,
// Shift is pressed and NumLock is on, in which case we want the
// NumLock and Shift to neutralize each other, thus, we want the normal
// sequence.
return normal;
}
// If Shift is not pressed and NumLock is on, a different virtual key code
// is returned by Windows, which can be taken care of by a different case
// statement in _console_read().
}
// Write sequence to buf and return the number of bytes written.
static size_t _get_modifier_sequence(char* const buf, const WORD vk,
DWORD control_key_state, const char* const normal) {
// Copy the base sequence into buf.
const size_t len = strlen(normal);
memcpy(buf, normal, len);
int code = 0;
control_key_state = _normalize_keypad_control_key_state(vk,
control_key_state);
if (_is_shift_pressed(control_key_state)) {
code |= 0x1;
}
if (_is_alt_pressed(control_key_state)) { // any alt key pressed
code |= 0x2;
}
if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
code |= 0x4;
}
// If some modifier was held down, then we need to insert the modifier code
if (code != 0) {
if (len == 0) {
// Should be impossible because caller should pass a string of
// non-zero length.
return 0;
}
size_t index = len - 1;
const char lastChar = buf[index];
if (lastChar != '~') {
buf[index++] = '1';
}
buf[index++] = ';'; // modifier separator
// 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
// 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
buf[index++] = '1' + code;
buf[index++] = lastChar; // move ~ (or other last char) to the end
return index;
}
return len;
}
// Write sequence to buf and return the number of bytes written.
static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
const DWORD control_key_state, const char* const normal,
const char shifted) {
if (_is_shift_pressed(control_key_state)) {
// Shift is pressed and NumLock is off
if (shifted != '\0') {
buf[0] = shifted;
return sizeof(buf[0]);
} else {
return 0;
}
} else {
// Shift is not pressed and NumLock is off, or,
// Shift is pressed and NumLock is on, in which case we want the
// NumLock and Shift to neutralize each other, thus, we want the normal
// sequence.
return _get_modifier_sequence(buf, vk, control_key_state, normal);
}
// If Shift is not pressed and NumLock is on, a different virtual key code
// is returned by Windows, which can be taken care of by a different case
// statement in _console_read().
}
// The decimal key on the keypad produces a '.' for U.S. English and a ',' for
// Standard German. Figure this out at runtime so we know what to output for
// Shift-VK_DELETE.
static char _get_decimal_char() {
return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
}
// Prefix the len bytes in buf with the escape character, and then return the
// new buffer length.
size_t _escape_prefix(char* const buf, const size_t len) {
// If nothing to prefix, don't do anything. We might be called with
// len == 0, if alt was held down with a dead key which produced nothing.
if (len == 0) {
return 0;
}
memmove(&buf[1], buf, len);
buf[0] = '\x1b';
return len + 1;
}
// Writes to buffer buf (of length len), returning number of bytes written or
// -1 on error. Never returns zero because Win32 consoles are never 'closed'
// (as far as I can tell).
static int _console_read(const HANDLE console, void* buf, size_t len) {
for (;;) {
KEY_EVENT_RECORD* const key_event = _get_key_event_record(console);
if (key_event == NULL) {
return -1;
}
const WORD vk = key_event->wVirtualKeyCode;
const CHAR ch = key_event->uChar.AsciiChar;
const DWORD control_key_state = _normalize_altgr_control_key_state(
key_event);
// The following emulation code should write the output sequence to
// either seqstr or to seqbuf and seqbuflen.
const char* seqstr = NULL; // NULL terminated C-string
// Enough space for max sequence string below, plus modifiers and/or
// escape prefix.
char seqbuf[16];
size_t seqbuflen = 0; // Space used in seqbuf.
#define MATCH(vk, normal) \
case (vk): \
{ \
seqstr = (normal); \
} \
break;
// Modifier keys should affect the output sequence.
#define MATCH_MODIFIER(vk, normal) \
case (vk): \
{ \
seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
control_key_state, (normal)); \
} \
break;
// The shift key should affect the output sequence.
#define MATCH_KEYPAD(vk, normal, shifted) \
case (vk): \
{ \
seqstr = _get_keypad_sequence(control_key_state, (normal), \
(shifted)); \
} \
break;
// The shift key and other modifier keys should affect the output
// sequence.
#define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
case (vk): \
{ \
seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
control_key_state, (normal), (shifted)); \
} \
break;
#define ESC "\x1b"
#define CSI ESC "["
#define SS3 ESC "O"
// Only support normal mode, not application mode.
// Enhanced keys:
// * 6-pack: insert, delete, home, end, page up, page down
// * cursor keys: up, down, right, left
// * keypad: divide, enter
// * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
// VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
if (_is_enhanced_key(control_key_state)) {
switch (vk) {
case VK_RETURN: // Enter key on keypad
if (_is_ctrl_pressed(control_key_state)) {
seqstr = "\n";
} else {
seqstr = "\r";
}
break;
MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
// gnome-terminal currently sends SS3 "F" and SS3 "H", but that
// will be fixed soon to match xterm which sends CSI "F" and
// CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
MATCH(VK_END, CSI "F");
MATCH(VK_HOME, CSI "H");
MATCH_MODIFIER(VK_LEFT, CSI "D");
MATCH_MODIFIER(VK_UP, CSI "A");
MATCH_MODIFIER(VK_RIGHT, CSI "C");
MATCH_MODIFIER(VK_DOWN, CSI "B");
MATCH_MODIFIER(VK_INSERT, CSI "2~");
MATCH_MODIFIER(VK_DELETE, CSI "3~");
MATCH(VK_DIVIDE, "/");
}
} else { // Non-enhanced keys:
switch (vk) {
case VK_BACK: // backspace
if (_is_alt_pressed(control_key_state)) {
seqstr = ESC "\x7f";
} else {
seqstr = "\x7f";
}
break;
case VK_TAB:
if (_is_shift_pressed(control_key_state)) {
seqstr = CSI "Z";
} else {
seqstr = "\t";
}
break;
// Number 5 key in keypad when NumLock is off, or if NumLock is
// on and Shift is down.
MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
case VK_RETURN: // Enter key on main keyboard
if (_is_alt_pressed(control_key_state)) {
seqstr = ESC "\n";
} else if (_is_ctrl_pressed(control_key_state)) {
seqstr = "\n";
} else {
seqstr = "\r";
}
break;
// VK_ESCAPE: Don't do any special handling. The OS uses many
// of the sequences with Escape and many of the remaining
// sequences don't produce bKeyDown messages, only !bKeyDown
// for whatever reason.
case VK_SPACE:
if (_is_alt_pressed(control_key_state)) {
seqstr = ESC " ";
} else if (_is_ctrl_pressed(control_key_state)) {
seqbuf[0] = '\0'; // NULL char
seqbuflen = 1;
} else {
seqstr = " ";
}
break;
MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
MATCH_KEYPAD(VK_END, CSI "4~", "1");
MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
_get_decimal_char());
case 0x30: // 0
case 0x31: // 1
case 0x39: // 9
case VK_OEM_1: // ;:
case VK_OEM_PLUS: // =+
case VK_OEM_COMMA: // ,<
case VK_OEM_PERIOD: // .>
case VK_OEM_7: // '"
case VK_OEM_102: // depends on keyboard, could be <> or \|
case VK_OEM_2: // /?
case VK_OEM_3: // `~
case VK_OEM_4: // [{
case VK_OEM_5: // \|
case VK_OEM_6: // ]}
{
seqbuflen = _get_control_character(seqbuf, key_event,
control_key_state);
if (_is_alt_pressed(control_key_state)) {
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
}
}
break;
case 0x32: // 2
case 0x36: // 6
case VK_OEM_MINUS: // -_
{
seqbuflen = _get_control_character(seqbuf, key_event,
control_key_state);
// If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
// prefix with escape.
if (_is_alt_pressed(control_key_state) &&
!(_is_ctrl_pressed(control_key_state) &&
!_is_shift_pressed(control_key_state))) {
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
}
}
break;
case 0x33: // 3
case 0x34: // 4
case 0x35: // 5
case 0x37: // 7
case 0x38: // 8
{
seqbuflen = _get_control_character(seqbuf, key_event,
control_key_state);
// If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
// prefix with escape.
if (_is_alt_pressed(control_key_state) &&
!(_is_ctrl_pressed(control_key_state) &&
!_is_shift_pressed(control_key_state))) {
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
}
}
break;
case 0x41: // a
case 0x42: // b
case 0x43: // c
case 0x44: // d
case 0x45: // e
case 0x46: // f
case 0x47: // g
case 0x48: // h
case 0x49: // i
case 0x4a: // j
case 0x4b: // k
case 0x4c: // l
case 0x4d: // m
case 0x4e: // n
case 0x4f: // o
case 0x50: // p
case 0x51: // q
case 0x52: // r
case 0x53: // s
case 0x54: // t
case 0x55: // u
case 0x56: // v
case 0x57: // w
case 0x58: // x
case 0x59: // y
case 0x5a: // z
{
seqbuflen = _get_non_alt_char(seqbuf, key_event,
control_key_state);
// If Alt is pressed, then prefix with escape.
if (_is_alt_pressed(control_key_state)) {
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
}
}
break;
// These virtual key codes are generated by the keys on the
// keypad *when NumLock is on* and *Shift is up*.
MATCH(VK_NUMPAD0, "0");
MATCH(VK_NUMPAD1, "1");
MATCH(VK_NUMPAD2, "2");
MATCH(VK_NUMPAD3, "3");
MATCH(VK_NUMPAD4, "4");
MATCH(VK_NUMPAD5, "5");
MATCH(VK_NUMPAD6, "6");
MATCH(VK_NUMPAD7, "7");
MATCH(VK_NUMPAD8, "8");
MATCH(VK_NUMPAD9, "9");
MATCH(VK_MULTIPLY, "*");
MATCH(VK_ADD, "+");
MATCH(VK_SUBTRACT, "-");
// VK_DECIMAL is generated by the . key on the keypad *when
// NumLock is on* and *Shift is up* and the sequence is not
// Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
// Windows Security screen to come up).
case VK_DECIMAL:
// U.S. English uses '.', Germany German uses ','.
seqbuflen = _get_non_control_char(seqbuf, key_event,
control_key_state);
break;
MATCH_MODIFIER(VK_F1, SS3 "P");
MATCH_MODIFIER(VK_F2, SS3 "Q");
MATCH_MODIFIER(VK_F3, SS3 "R");
MATCH_MODIFIER(VK_F4, SS3 "S");
MATCH_MODIFIER(VK_F5, CSI "15~");
MATCH_MODIFIER(VK_F6, CSI "17~");
MATCH_MODIFIER(VK_F7, CSI "18~");
MATCH_MODIFIER(VK_F8, CSI "19~");
MATCH_MODIFIER(VK_F9, CSI "20~");
MATCH_MODIFIER(VK_F10, CSI "21~");
MATCH_MODIFIER(VK_F11, CSI "23~");
MATCH_MODIFIER(VK_F12, CSI "24~");
MATCH_MODIFIER(VK_F13, CSI "25~");
MATCH_MODIFIER(VK_F14, CSI "26~");
MATCH_MODIFIER(VK_F15, CSI "28~");
MATCH_MODIFIER(VK_F16, CSI "29~");
MATCH_MODIFIER(VK_F17, CSI "31~");
MATCH_MODIFIER(VK_F18, CSI "32~");
MATCH_MODIFIER(VK_F19, CSI "33~");
MATCH_MODIFIER(VK_F20, CSI "34~");
// MATCH_MODIFIER(VK_F21, ???);
// MATCH_MODIFIER(VK_F22, ???);
// MATCH_MODIFIER(VK_F23, ???);
// MATCH_MODIFIER(VK_F24, ???);
}
}
#undef MATCH
#undef MATCH_MODIFIER
#undef MATCH_KEYPAD
#undef MATCH_MODIFIER_KEYPAD
#undef ESC
#undef CSI
#undef SS3
const char* out;
size_t outlen;
// Check for output in any of:
// * seqstr is set (and strlen can be used to determine the length).
// * seqbuf and seqbuflen are set
// Fallback to ch from Windows.
if (seqstr != NULL) {
out = seqstr;
outlen = strlen(seqstr);
} else if (seqbuflen > 0) {
out = seqbuf;
outlen = seqbuflen;
} else if (ch != '\0') {
// Use whatever Windows told us it is.
seqbuf[0] = ch;
seqbuflen = 1;
out = seqbuf;
outlen = seqbuflen;
} else {
// No special handling for the virtual key code and Windows isn't
// telling us a character code, then we don't know how to translate
// the key press.
//
// Consume the input and 'continue' to cause us to get a new key
// event.
D("_console_read: unknown virtual key code: %d, enhanced: %s\n",
vk, _is_enhanced_key(control_key_state) ? "true" : "false");
key_event->wRepeatCount = 0;
continue;
}
int bytesRead = 0;
// put output wRepeatCount times into buf/len
while (key_event->wRepeatCount > 0) {
if (len >= outlen) {
// Write to buf/len
memcpy(buf, out, outlen);
buf = (void*)((char*)buf + outlen);
len -= outlen;
bytesRead += outlen;
// consume the input
--key_event->wRepeatCount;
} else {
// Not enough space, so just leave it in _win32_input_record
// for a subsequent retrieval.
if (bytesRead == 0) {
// We didn't write anything because there wasn't enough
// space to even write one sequence. This should never
// happen if the caller uses sensible buffer sizes
// (i.e. >= maximum sequence length which is probably a
// few bytes long).
D("_console_read: no buffer space to write one sequence; "
"buffer: %ld, sequence: %ld\n", (long)len,
(long)outlen);
errno = ENOMEM;
return -1;
} else {
// Stop trying to write to buf/len, just return whatever
// we wrote so far.
break;
}
}
}
return bytesRead;
}
}
static DWORD _old_console_mode; // previous GetConsoleMode() result
static HANDLE _console_handle; // when set, console mode should be restored
void stdin_raw_init(const int fd) {
if (STDIN_FILENO == fd) {
const HANDLE in = GetStdHandle(STD_INPUT_HANDLE);
if ((in == INVALID_HANDLE_VALUE) || (in == NULL)) {
return;
}
if (GetFileType(in) != FILE_TYPE_CHAR) {
// stdin might be a file or pipe.
return;
}
if (!GetConsoleMode(in, &_old_console_mode)) {
// If GetConsoleMode() fails, stdin is probably is not a console.
return;
}
// Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
// calling the process Ctrl-C routine (configured by
// SetConsoleCtrlHandler()).
// Disable ENABLE_LINE_INPUT so that input is immediately sent.
// Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
// flag also seems necessary to have proper line-ending processing.
if (!SetConsoleMode(in, _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT))) {
// This really should not fail.
D("stdin_raw_init: SetConsoleMode() failure, error %ld\n",
GetLastError());
}
// Once this is set, it means that stdin has been configured for
// reading from and that the old console mode should be restored later.
_console_handle = in;
// Note that we don't need to configure C Runtime line-ending
// translation because _console_read() does not call the C Runtime to
// read from the console.
}
}
void stdin_raw_restore(const int fd) {
if (STDIN_FILENO == fd) {
if (_console_handle != NULL) {
const HANDLE in = _console_handle;
_console_handle = NULL; // clear state
if (!SetConsoleMode(in, _old_console_mode)) {
// This really should not fail.
D("stdin_raw_restore: SetConsoleMode() failure, error %ld\n",
GetLastError());
}
}
}
}
// Called by 'adb shell' command to read from stdin.
int unix_read(int fd, void* buf, size_t len) {
if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
// If it is a request to read from stdin, and stdin_raw_init() has been
// called, and it successfully configured the console, then read from
// the console using Win32 console APIs and partially emulate a unix
// terminal.
return _console_read(_console_handle, buf, len);
} else {
// Just call into C Runtime which can read from pipes/files and which
// can do LF/CR translation.
#undef read
return read(fd, buf, len);
}
}