Merge "Add signal handling to the register object."

am: 33913ebfb5

Change-Id: Icfaa2cca55a5aef4b48f58026a64395a267a517b
This commit is contained in:
Christopher Ferris 2017-07-19 15:44:24 +00:00 committed by android-build-merger
commit b945cc6de0
8 changed files with 544 additions and 81 deletions

View File

@ -96,7 +96,8 @@ bool Elf::GetFunctionName(uint64_t addr, std::string* name, uint64_t* func_offse
}
bool Elf::Step(uint64_t rel_pc, Regs* regs, Memory* process_memory) {
return valid_ && (interface_->Step(rel_pc, regs, process_memory) ||
return valid_ && (regs->StepIfSignalHandler(process_memory) ||
interface_->Step(rel_pc, regs, process_memory) ||
(gnu_debugdata_interface_ &&
gnu_debugdata_interface_->Step(rel_pc, regs, process_memory)));
}
@ -147,21 +148,22 @@ ElfInterface* Elf::CreateInterfaceFromMemory(Memory* memory) {
machine_type_ = e_machine;
if (e_machine == EM_ARM) {
interface.reset(new ElfInterfaceArm(memory));
} else {
} else if (e_machine == EM_386) {
interface.reset(new ElfInterface32(memory));
} else {
ALOGI("32 bit elf that is neither arm nor x86: e_machine = %d\n", e_machine);
return nullptr;
}
} else if (class_type_ == ELFCLASS64) {
Elf64_Half e_machine;
if (!memory->Read(EI_NIDENT + sizeof(Elf64_Half), &e_machine, sizeof(e_machine))) {
return nullptr;
}
if (e_machine != EM_AARCH64 && e_machine != EM_X86_64) {
// Unsupported.
ALOGI("64 bit elf that is neither aarch64 nor x86_64: e_machine = %d\n", e_machine);
return nullptr;
}
machine_type_ = e_machine;
interface.reset(new ElfInterface64(memory));
}

View File

@ -258,49 +258,51 @@ static Regs* CreateFromArm64Ucontext(void* ucontext) {
return regs;
}
void RegsX86::SetFromUcontext(x86_ucontext_t* ucontext) {
// Put the registers in the expected order.
regs_[X86_REG_EDI] = ucontext->uc_mcontext.edi;
regs_[X86_REG_ESI] = ucontext->uc_mcontext.esi;
regs_[X86_REG_EBP] = ucontext->uc_mcontext.ebp;
regs_[X86_REG_ESP] = ucontext->uc_mcontext.esp;
regs_[X86_REG_EBX] = ucontext->uc_mcontext.ebx;
regs_[X86_REG_EDX] = ucontext->uc_mcontext.edx;
regs_[X86_REG_ECX] = ucontext->uc_mcontext.ecx;
regs_[X86_REG_EAX] = ucontext->uc_mcontext.eax;
regs_[X86_REG_EIP] = ucontext->uc_mcontext.eip;
SetFromRaw();
}
static Regs* CreateFromX86Ucontext(void* ucontext) {
x86_ucontext_t* x86_ucontext = reinterpret_cast<x86_ucontext_t*>(ucontext);
RegsX86* regs = new RegsX86();
// Put the registers in the expected order.
(*regs)[X86_REG_GS] = x86_ucontext->uc_mcontext.gs;
(*regs)[X86_REG_FS] = x86_ucontext->uc_mcontext.fs;
(*regs)[X86_REG_ES] = x86_ucontext->uc_mcontext.es;
(*regs)[X86_REG_DS] = x86_ucontext->uc_mcontext.ds;
(*regs)[X86_REG_EDI] = x86_ucontext->uc_mcontext.edi;
(*regs)[X86_REG_ESI] = x86_ucontext->uc_mcontext.esi;
(*regs)[X86_REG_EBP] = x86_ucontext->uc_mcontext.ebp;
(*regs)[X86_REG_ESP] = x86_ucontext->uc_mcontext.esp;
(*regs)[X86_REG_EBX] = x86_ucontext->uc_mcontext.ebx;
(*regs)[X86_REG_EDX] = x86_ucontext->uc_mcontext.edx;
(*regs)[X86_REG_ECX] = x86_ucontext->uc_mcontext.ecx;
(*regs)[X86_REG_EAX] = x86_ucontext->uc_mcontext.eax;
(*regs)[X86_REG_EIP] = x86_ucontext->uc_mcontext.eip;
regs->SetFromRaw();
regs->SetFromUcontext(x86_ucontext);
return regs;
}
void RegsX86_64::SetFromUcontext(x86_64_ucontext_t* ucontext) {
// R8-R15
memcpy(&regs_[X86_64_REG_R8], &ucontext->uc_mcontext.r8, 8 * sizeof(uint64_t));
// Rest of the registers.
regs_[X86_64_REG_RDI] = ucontext->uc_mcontext.rdi;
regs_[X86_64_REG_RSI] = ucontext->uc_mcontext.rsi;
regs_[X86_64_REG_RBP] = ucontext->uc_mcontext.rbp;
regs_[X86_64_REG_RBX] = ucontext->uc_mcontext.rbx;
regs_[X86_64_REG_RDX] = ucontext->uc_mcontext.rdx;
regs_[X86_64_REG_RAX] = ucontext->uc_mcontext.rax;
regs_[X86_64_REG_RCX] = ucontext->uc_mcontext.rcx;
regs_[X86_64_REG_RSP] = ucontext->uc_mcontext.rsp;
regs_[X86_64_REG_RIP] = ucontext->uc_mcontext.rip;
SetFromRaw();
}
static Regs* CreateFromX86_64Ucontext(void* ucontext) {
x86_64_ucontext_t* x86_64_ucontext = reinterpret_cast<x86_64_ucontext_t*>(ucontext);
RegsX86_64* regs = new RegsX86_64();
// Put the registers in the expected order.
// R8-R15
memcpy(&(*regs)[X86_64_REG_R8], &x86_64_ucontext->uc_mcontext.r8, 8 * sizeof(uint64_t));
// Rest of the registers.
(*regs)[X86_64_REG_RDI] = x86_64_ucontext->uc_mcontext.rdi;
(*regs)[X86_64_REG_RSI] = x86_64_ucontext->uc_mcontext.rsi;
(*regs)[X86_64_REG_RBP] = x86_64_ucontext->uc_mcontext.rbp;
(*regs)[X86_64_REG_RBX] = x86_64_ucontext->uc_mcontext.rbx;
(*regs)[X86_64_REG_RDX] = x86_64_ucontext->uc_mcontext.rdx;
(*regs)[X86_64_REG_RAX] = x86_64_ucontext->uc_mcontext.rax;
(*regs)[X86_64_REG_RCX] = x86_64_ucontext->uc_mcontext.rcx;
(*regs)[X86_64_REG_RSP] = x86_64_ucontext->uc_mcontext.rsp;
(*regs)[X86_64_REG_RIP] = x86_64_ucontext->uc_mcontext.rip;
regs->SetFromRaw();
regs->SetFromUcontext(x86_64_ucontext);
return regs;
}
@ -348,4 +350,178 @@ Regs* Regs::CreateFromLocal() {
return regs;
}
bool RegsArm::StepIfSignalHandler(Memory* memory) {
uint32_t data;
if (!memory->Read(pc(), &data, sizeof(data))) {
return false;
}
uint64_t offset = 0;
if (data == 0xe3a07077 || data == 0xef900077 || data == 0xdf002777) {
// non-RT sigreturn call.
// __restore:
//
// Form 1 (arm):
// 0x77 0x70 mov r7, #0x77
// 0xa0 0xe3 svc 0x00000000
//
// Form 2 (arm):
// 0x77 0x00 0x90 0xef svc 0x00900077
//
// Form 3 (thumb):
// 0x77 0x27 movs r7, #77
// 0x00 0xdf svc 0
if (!memory->Read(sp(), &data, sizeof(data))) {
return false;
}
if (data == 0x5ac3c35a) {
// SP + uc_mcontext offset + r0 offset.
offset = sp() + 0x14 + 0xc;
} else {
// SP + r0 offset
offset = sp() + 0xc;
}
} else if (data == 0xe3a070ad || data == 0xef9000ad || data == 0xdf0027ad) {
// RT sigreturn call.
// __restore_rt:
//
// Form 1 (arm):
// 0xad 0x70 mov r7, #0xad
// 0xa0 0xe3 svc 0x00000000
//
// Form 2 (arm):
// 0xad 0x00 0x90 0xef svc 0x009000ad
//
// Form 3 (thumb):
// 0xad 0x27 movs r7, #ad
// 0x00 0xdf svc 0
if (!memory->Read(sp(), &data, sizeof(data))) {
return false;
}
if (data == sp() + 8) {
// SP + 8 + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset
offset = sp() + 8 + 0x80 + 0x14 + 0xc;
} else {
// SP + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset
offset = sp() + 0x80 + 0x14 + 0xc;
}
}
if (offset == 0) {
return false;
}
if (!memory->Read(offset, regs_.data(), sizeof(uint32_t) * ARM_REG_LAST)) {
return false;
}
SetFromRaw();
return true;
}
bool RegsArm64::StepIfSignalHandler(Memory* memory) {
uint64_t data;
if (!memory->Read(pc(), &data, sizeof(data))) {
return false;
}
// Look for the kernel sigreturn function.
// __kernel_rt_sigreturn:
// 0xd2801168 mov x8, #0x8b
// 0xd4000001 svc #0x0
if (data != 0xd4000001d2801168ULL) {
return false;
}
// SP + sizeof(siginfo_t) + uc_mcontext offset + X0 offset.
if (!memory->Read(sp() + 0x80 + 0xb0 + 0x08, regs_.data(), sizeof(uint64_t) * ARM64_REG_LAST)) {
return false;
}
SetFromRaw();
return true;
}
bool RegsX86::StepIfSignalHandler(Memory* memory) {
uint64_t data;
if (!memory->Read(pc(), &data, sizeof(data))) {
return false;
}
if (data == 0x80cd00000077b858ULL) {
// Without SA_SIGINFO set, the return sequence is:
//
// __restore:
// 0x58 pop %eax
// 0xb8 0x77 0x00 0x00 0x00 movl 0x77,%eax
// 0xcd 0x80 int 0x80
//
// SP points at arguments:
// int signum
// struct sigcontext (same format as mcontext)
struct x86_mcontext_t context;
if (!memory->Read(sp() + 4, &context, sizeof(context))) {
return false;
}
regs_[X86_REG_EBP] = context.ebp;
regs_[X86_REG_ESP] = context.esp;
regs_[X86_REG_EBX] = context.ebx;
regs_[X86_REG_EDX] = context.edx;
regs_[X86_REG_ECX] = context.ecx;
regs_[X86_REG_EAX] = context.eax;
regs_[X86_REG_EIP] = context.eip;
SetFromRaw();
return true;
} else if ((data & 0x00ffffffffffffffULL) == 0x0080cd000000adb8ULL) {
// With SA_SIGINFO set, the return sequence is:
//
// __restore_rt:
// 0xb8 0xad 0x00 0x00 0x00 movl 0xad,%eax
// 0xcd 0x80 int 0x80
//
// SP points at arguments:
// int signum
// siginfo*
// ucontext*
// Get the location of the sigcontext data.
uint32_t ptr;
if (!memory->Read(sp() + 8, &ptr, sizeof(ptr))) {
return false;
}
// Only read the portion of the data structure we care about.
x86_ucontext_t x86_ucontext;
if (!memory->Read(ptr + 0x14, &x86_ucontext.uc_mcontext, sizeof(x86_mcontext_t))) {
return false;
}
SetFromUcontext(&x86_ucontext);
return true;
}
return false;
}
bool RegsX86_64::StepIfSignalHandler(Memory* memory) {
uint64_t data;
if (!memory->Read(pc(), &data, sizeof(data)) || data != 0x0f0000000fc0c748) {
return false;
}
uint16_t data2;
if (!memory->Read(pc() + 8, &data2, sizeof(data2)) || data2 != 0x0f05) {
return false;
}
// __restore_rt:
// 0x48 0xc7 0xc0 0x0f 0x00 0x00 0x00 mov $0xf,%rax
// 0x0f 0x05 syscall
// 0x0f nopl 0x0($rax)
// Read the mcontext data from the stack.
// sp points to the ucontext data structure, read only the mcontext part.
x86_64_ucontext_t x86_64_ucontext;
if (!memory->Read(sp() + 0x28, &x86_64_ucontext.uc_mcontext, sizeof(x86_64_mcontext_t))) {
return false;
}
SetFromUcontext(&x86_64_ucontext);
return true;
}
} // namespace unwindstack

View File

@ -170,13 +170,13 @@ struct x86_64_mcontext_t {
// Only care about the registers, skip everything else.
};
typedef struct x86_64_ucontext {
struct x86_64_ucontext_t {
uint64_t uc_flags; // unsigned long
uint64_t uc_link; // struct ucontext*
x86_64_stack_t uc_stack;
x86_64_mcontext_t uc_mcontext;
// Nothing else is used, so don't define it.
} x86_64_ucontext_t;
};
//-------------------------------------------------------------------
} // namespace unwindstack

View File

@ -27,6 +27,8 @@ namespace unwindstack {
class Elf;
struct MapInfo;
class Memory;
struct x86_ucontext_t;
struct x86_64_ucontext_t;
class Regs {
public:
@ -55,6 +57,8 @@ class Regs {
virtual uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) = 0;
virtual bool StepIfSignalHandler(Memory*) = 0;
virtual void SetFromRaw() = 0;
uint16_t sp_reg() { return sp_reg_; }
@ -104,6 +108,8 @@ class RegsArm : public RegsImpl<uint32_t> {
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
void SetFromRaw() override;
bool StepIfSignalHandler(Memory* memory) override;
};
class RegsArm64 : public RegsImpl<uint64_t> {
@ -114,6 +120,8 @@ class RegsArm64 : public RegsImpl<uint64_t> {
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
void SetFromRaw() override;
bool StepIfSignalHandler(Memory* memory) override;
};
class RegsX86 : public RegsImpl<uint32_t> {
@ -124,6 +132,10 @@ class RegsX86 : public RegsImpl<uint32_t> {
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
void SetFromRaw() override;
bool StepIfSignalHandler(Memory* memory) override;
void SetFromUcontext(x86_ucontext_t* ucontext);
};
class RegsX86_64 : public RegsImpl<uint64_t> {
@ -134,6 +146,10 @@ class RegsX86_64 : public RegsImpl<uint64_t> {
uint64_t GetAdjustedPc(uint64_t rel_pc, Elf* elf) override;
void SetFromRaw() override;
bool StepIfSignalHandler(Memory* memory) override;
void SetFromUcontext(x86_64_ucontext_t* ucontext);
};
} // namespace unwindstack

View File

@ -26,6 +26,7 @@
#include <unwindstack/MapInfo.h>
#include "ElfTestUtils.h"
#include "LogFake.h"
#include "MemoryFake.h"
#if !defined(PT_ARM_EXIDX)
@ -131,6 +132,32 @@ TEST_F(ElfTest, elf_invalid) {
ASSERT_FALSE(elf.Step(0, nullptr, nullptr));
}
TEST_F(ElfTest, elf32_invalid_machine) {
Elf elf(memory_);
InitElf32(EM_PPC);
ResetLogs();
ASSERT_FALSE(elf.Init());
ASSERT_EQ("", GetFakeLogBuf());
ASSERT_EQ("4 unwind 32 bit elf that is neither arm nor x86: e_machine = 20\n\n",
GetFakeLogPrint());
}
TEST_F(ElfTest, elf64_invalid_machine) {
Elf elf(memory_);
InitElf64(EM_PPC64);
ResetLogs();
ASSERT_FALSE(elf.Init());
ASSERT_EQ("", GetFakeLogBuf());
ASSERT_EQ("4 unwind 64 bit elf that is neither aarch64 nor x86_64: e_machine = 21\n\n",
GetFakeLogPrint());
}
TEST_F(ElfTest, elf_arm) {
Elf elf(memory_);

View File

@ -33,6 +33,7 @@ class RegsFake : public RegsImpl<TypeParam> {
uint64_t GetAdjustedPc(uint64_t, Elf*) override { return 0; }
void SetFromRaw() override {}
bool StepIfSignalHandler(Memory*) override { return false; }
bool GetReturnAddressFromDefault(Memory*, uint64_t*) { return false; }
};

View File

@ -23,6 +23,8 @@
#include <unwindstack/MapInfo.h>
#include <unwindstack/Regs.h>
#include "Machine.h"
#include "MemoryFake.h"
namespace unwindstack {
@ -60,6 +62,7 @@ class RegsTestImpl : public RegsImpl<TypeParam> {
uint64_t GetAdjustedPc(uint64_t, Elf*) override { return 0; }
void SetFromRaw() override {}
bool StepIfSignalHandler(Memory*) override { return false; }
};
class RegsTest : public ::testing::Test {
@ -72,7 +75,10 @@ class RegsTest : public ::testing::Test {
}
template <typename AddressType>
void regs_return_address_register();
void RegsReturnAddressRegister();
void ArmStepIfSignalHandlerNonRt(uint32_t pc_data);
void ArmStepIfSignalHandlerRt(uint32_t pc_data);
ElfInterfaceFake* elf_interface_;
MemoryFake* memory_;
@ -126,7 +132,7 @@ TEST_F(RegsTest, regs64) {
}
template <typename AddressType>
void RegsTest::regs_return_address_register() {
void RegsTest::RegsReturnAddressRegister() {
RegsTestImpl<AddressType> regs(20, 10, Regs::Location(Regs::LOCATION_REGISTER, 5));
regs[5] = 0x12345;
@ -136,11 +142,11 @@ void RegsTest::regs_return_address_register() {
}
TEST_F(RegsTest, regs32_return_address_register) {
regs_return_address_register<uint32_t>();
RegsReturnAddressRegister<uint32_t>();
}
TEST_F(RegsTest, regs64_return_address_register) {
regs_return_address_register<uint64_t>();
RegsReturnAddressRegister<uint64_t>();
}
TEST_F(RegsTest, regs32_return_address_sp_offset) {
@ -285,4 +291,160 @@ TEST_F(RegsTest, x86_64_set_from_raw) {
EXPECT_EQ(0x4900000000U, x86_64.pc());
}
void RegsTest::ArmStepIfSignalHandlerNonRt(uint32_t pc_data) {
uint64_t addr = 0x1000;
RegsArm regs;
regs[ARM_REG_PC] = 0x5000;
regs[ARM_REG_SP] = addr;
regs.SetFromRaw();
memory_->SetData32(0x5000, pc_data);
for (uint64_t index = 0; index <= 30; index++) {
memory_->SetData32(addr + index * 4, index * 0x10);
}
ASSERT_TRUE(regs.StepIfSignalHandler(memory_));
EXPECT_EQ(0x100U, regs[ARM_REG_SP]);
EXPECT_EQ(0x120U, regs[ARM_REG_PC]);
EXPECT_EQ(0x100U, regs.sp());
EXPECT_EQ(0x120U, regs.pc());
}
TEST_F(RegsTest, arm_step_if_signal_handler_non_rt) {
// Form 1
ArmStepIfSignalHandlerNonRt(0xe3a07077);
// Form 2
ArmStepIfSignalHandlerNonRt(0xef900077);
// Form 3
ArmStepIfSignalHandlerNonRt(0xdf002777);
}
void RegsTest::ArmStepIfSignalHandlerRt(uint32_t pc_data) {
uint64_t addr = 0x1000;
RegsArm regs;
regs[ARM_REG_PC] = 0x5000;
regs[ARM_REG_SP] = addr;
regs.SetFromRaw();
memory_->SetData32(0x5000, pc_data);
for (uint64_t index = 0; index <= 100; index++) {
memory_->SetData32(addr + index * 4, index * 0x10);
}
ASSERT_TRUE(regs.StepIfSignalHandler(memory_));
EXPECT_EQ(0x350U, regs[ARM_REG_SP]);
EXPECT_EQ(0x370U, regs[ARM_REG_PC]);
EXPECT_EQ(0x350U, regs.sp());
EXPECT_EQ(0x370U, regs.pc());
}
TEST_F(RegsTest, arm_step_if_signal_handler_rt) {
// Form 1
ArmStepIfSignalHandlerRt(0xe3a070ad);
// Form 2
ArmStepIfSignalHandlerRt(0xef9000ad);
// Form 3
ArmStepIfSignalHandlerRt(0xdf0027ad);
}
TEST_F(RegsTest, arm64_step_if_signal_handler) {
uint64_t addr = 0x1000;
RegsArm64 regs;
regs[ARM64_REG_PC] = 0x8000;
regs[ARM64_REG_SP] = addr;
regs.SetFromRaw();
memory_->SetData64(0x8000, 0xd4000001d2801168ULL);
for (uint64_t index = 0; index <= 100; index++) {
memory_->SetData64(addr + index * 8, index * 0x10);
}
ASSERT_TRUE(regs.StepIfSignalHandler(memory_));
EXPECT_EQ(0x460U, regs[ARM64_REG_SP]);
EXPECT_EQ(0x470U, regs[ARM64_REG_PC]);
EXPECT_EQ(0x460U, regs.sp());
EXPECT_EQ(0x470U, regs.pc());
}
TEST_F(RegsTest, x86_step_if_signal_handler_no_siginfo) {
uint64_t addr = 0xa00;
RegsX86 regs;
regs[X86_REG_EIP] = 0x4100;
regs[X86_REG_ESP] = addr;
regs.SetFromRaw();
memory_->SetData64(0x4100, 0x80cd00000077b858ULL);
for (uint64_t index = 0; index <= 25; index++) {
memory_->SetData32(addr + index * 4, index * 0x10);
}
ASSERT_TRUE(regs.StepIfSignalHandler(memory_));
EXPECT_EQ(0x70U, regs[X86_REG_EBP]);
EXPECT_EQ(0x80U, regs[X86_REG_ESP]);
EXPECT_EQ(0x90U, regs[X86_REG_EBX]);
EXPECT_EQ(0xa0U, regs[X86_REG_EDX]);
EXPECT_EQ(0xb0U, regs[X86_REG_ECX]);
EXPECT_EQ(0xc0U, regs[X86_REG_EAX]);
EXPECT_EQ(0xf0U, regs[X86_REG_EIP]);
EXPECT_EQ(0x80U, regs.sp());
EXPECT_EQ(0xf0U, regs.pc());
}
TEST_F(RegsTest, x86_step_if_signal_handler_siginfo) {
uint64_t addr = 0xa00;
RegsX86 regs;
regs[X86_REG_EIP] = 0x4100;
regs[X86_REG_ESP] = addr;
regs.SetFromRaw();
memory_->SetData64(0x4100, 0x0080cd000000adb8ULL);
addr += 8;
// Pointer to ucontext data.
memory_->SetData32(addr, 0x8100);
addr = 0x8100;
for (uint64_t index = 0; index <= 30; index++) {
memory_->SetData32(addr + index * 4, index * 0x10);
}
ASSERT_TRUE(regs.StepIfSignalHandler(memory_));
EXPECT_EQ(0xb0U, regs[X86_REG_EBP]);
EXPECT_EQ(0xc0U, regs[X86_REG_ESP]);
EXPECT_EQ(0xd0U, regs[X86_REG_EBX]);
EXPECT_EQ(0xe0U, regs[X86_REG_EDX]);
EXPECT_EQ(0xf0U, regs[X86_REG_ECX]);
EXPECT_EQ(0x100U, regs[X86_REG_EAX]);
EXPECT_EQ(0x130U, regs[X86_REG_EIP]);
EXPECT_EQ(0xc0U, regs.sp());
EXPECT_EQ(0x130U, regs.pc());
}
TEST_F(RegsTest, x86_64_step_if_signal_handler) {
uint64_t addr = 0x500;
RegsX86_64 regs;
regs[X86_64_REG_RIP] = 0x7000;
regs[X86_64_REG_RSP] = addr;
regs.SetFromRaw();
memory_->SetData64(0x7000, 0x0f0000000fc0c748);
memory_->SetData16(0x7008, 0x0f05);
for (uint64_t index = 0; index <= 30; index++) {
memory_->SetData64(addr + index * 8, index * 0x10);
}
ASSERT_TRUE(regs.StepIfSignalHandler(memory_));
EXPECT_EQ(0x140U, regs[X86_64_REG_RSP]);
EXPECT_EQ(0x150U, regs[X86_64_REG_RIP]);
EXPECT_EQ(0x140U, regs.sp());
EXPECT_EQ(0x150U, regs.pc());
}
} // namespace unwindstack

View File

@ -30,6 +30,7 @@
#include <sstream>
#include <string>
#include <thread>
#include <vector>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
@ -42,16 +43,41 @@ namespace unwindstack {
static std::atomic_bool g_ready(false);
static volatile bool g_ready_for_remote = false;
static volatile bool g_signal_ready_for_remote = false;
static std::atomic_bool g_finish(false);
static std::atomic_uintptr_t g_ucontext;
static void Signal(int, siginfo_t*, void* sigcontext) {
static std::vector<const char*> kFunctionOrder{"InnerFunction", "MiddleFunction", "OuterFunction"};
static std::vector<const char*> kFunctionSignalOrder{"SignalInnerFunction", "SignalMiddleFunction",
"SignalOuterFunction", "InnerFunction",
"MiddleFunction", "OuterFunction"};
static void SignalHandler(int, siginfo_t*, void* sigcontext) {
g_ucontext = reinterpret_cast<uintptr_t>(sigcontext);
while (!g_finish.load()) {
}
}
static std::string ErrorMsg(const char** function_names, size_t index,
extern "C" void SignalInnerFunction() {
g_signal_ready_for_remote = true;
while (!g_finish.load()) {
}
}
extern "C" void SignalMiddleFunction() {
SignalInnerFunction();
}
extern "C" void SignalOuterFunction() {
SignalMiddleFunction();
}
static void SignalCallerHandler(int, siginfo_t*, void*) {
SignalOuterFunction();
}
static std::string ErrorMsg(const std::vector<const char*>& function_names, size_t index,
std::stringstream& unwind_stream) {
return std::string(
"Unwind completed without finding all frames\n"
@ -59,10 +85,8 @@ static std::string ErrorMsg(const char** function_names, size_t index,
function_names[index] + "\n" + "Unwind data:\n" + unwind_stream.str();
}
static void VerifyUnwind(pid_t pid, Memory* memory, Maps* maps, Regs* regs) {
const char* function_names[] = {
"InnerFunction", "MiddleFunction", "OuterFunction",
};
static void VerifyUnwind(pid_t pid, Memory* memory, Maps* maps, Regs* regs,
std::vector<const char*>& function_names) {
size_t function_name_index = 0;
std::stringstream unwind_stream;
@ -91,8 +115,7 @@ static void VerifyUnwind(pid_t pid, Memory* memory, Maps* maps, Regs* regs) {
uint64_t func_offset;
if (elf->GetFunctionName(adjusted_rel_pc, &name, &func_offset)) {
if (name == function_names[function_name_index]) {
function_name_index++;
if (function_name_index == sizeof(function_names) / sizeof(const char*)) {
if (++function_name_index == function_names.size()) {
return;
}
}
@ -116,7 +139,7 @@ extern "C" void InnerFunction(bool local) {
RegsGetLocal(regs.get());
MemoryLocal memory;
VerifyUnwind(getpid(), &memory, &maps, regs.get());
VerifyUnwind(getpid(), &memory, &maps, regs.get(), kFunctionOrder);
} else {
g_ready_for_remote = true;
g_ready = true;
@ -137,6 +160,37 @@ TEST(UnwindTest, local) {
OuterFunction(true);
}
void WaitForRemote(pid_t pid, uint64_t addr, bool leave_attached, bool* completed) {
*completed = false;
// Need to sleep before attempting first ptrace. Without this, on the
// host it becomes impossible to attach and ptrace set errno to EPERM.
usleep(1000);
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptrace(PTRACE_ATTACH, pid, 0, 0));
for (size_t j = 0; j < 100; j++) {
siginfo_t si;
if (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) == 0) {
MemoryRemote memory(pid);
// Read the remote value to see if we are ready.
bool value;
if (memory.Read(addr, &value, sizeof(value)) && value) {
*completed = true;
break;
}
}
usleep(1000);
}
if (leave_attached && *completed) {
break;
}
ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0));
if (*completed) {
break;
}
usleep(1000);
}
}
TEST(UnwindTest, remote) {
pid_t pid;
if ((pid = fork()) == 0) {
@ -145,31 +199,9 @@ TEST(UnwindTest, remote) {
}
ASSERT_NE(-1, pid);
bool ready = false;
uint64_t addr = reinterpret_cast<uint64_t>(&g_ready_for_remote);
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptrace(PTRACE_ATTACH, pid, 0, 0));
for (size_t j = 0; j < 100; j++) {
siginfo_t si;
if (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) == 0) {
// Check to see if process is ready to be unwound.
MemoryRemote memory(pid);
// Read the remote value to see if we are ready.
bool value;
if (memory.Read(addr, &value, sizeof(value)) && value) {
ready = true;
break;
}
}
usleep(1000);
}
if (ready) {
break;
}
ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0));
usleep(1000);
}
ASSERT_TRUE(read) << "Timed out waiting for remote process to be ready.";
bool completed;
WaitForRemote(pid, reinterpret_cast<uint64_t>(&g_ready_for_remote), true, &completed);
ASSERT_TRUE(completed) << "Timed out waiting for remote process to be ready.";
RemoteMaps maps(pid);
ASSERT_TRUE(maps.Parse());
@ -178,7 +210,7 @@ TEST(UnwindTest, remote) {
std::unique_ptr<Regs> regs(Regs::RemoteGet(pid, &machine_type));
ASSERT_TRUE(regs.get() != nullptr);
VerifyUnwind(pid, &memory, &maps, regs.get());
VerifyUnwind(pid, &memory, &maps, regs.get(), kFunctionOrder);
ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0));
@ -195,7 +227,7 @@ TEST(UnwindTest, from_context) {
struct sigaction act, oldact;
memset(&act, 0, sizeof(act));
act.sa_sigaction = Signal;
act.sa_sigaction = SignalHandler;
act.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK;
ASSERT_EQ(0, sigaction(SIGUSR1, &act, &oldact));
// Wait for the tid to get set.
@ -207,8 +239,7 @@ TEST(UnwindTest, from_context) {
}
ASSERT_NE(0, tid.load());
// Portable tgkill method.
ASSERT_EQ(0, syscall(__NR_tgkill, getpid(), tid.load(), SIGUSR1)) << "Failed because "
<< strerror(errno);
ASSERT_EQ(0, syscall(__NR_tgkill, getpid(), tid.load(), SIGUSR1)) << "Error: " << strerror(errno);
// Wait for context data.
void* ucontext;
@ -226,7 +257,7 @@ TEST(UnwindTest, from_context) {
std::unique_ptr<Regs> regs(Regs::CreateFromUcontext(Regs::GetMachineType(), ucontext));
MemoryLocal memory;
VerifyUnwind(tid.load(), &memory, &maps, regs.get());
VerifyUnwind(tid.load(), &memory, &maps, regs.get(), kFunctionOrder);
ASSERT_EQ(0, sigaction(SIGUSR1, &oldact, nullptr));
@ -234,4 +265,52 @@ TEST(UnwindTest, from_context) {
thread.join();
}
static void RemoteThroughSignal(unsigned int sa_flags) {
g_ready = false;
g_signal_ready_for_remote = false;
g_finish = false;
pid_t pid;
if ((pid = fork()) == 0) {
struct sigaction act, oldact;
memset(&act, 0, sizeof(act));
act.sa_sigaction = SignalCallerHandler;
act.sa_flags = SA_RESTART | SA_ONSTACK | sa_flags;
ASSERT_EQ(0, sigaction(SIGUSR1, &act, &oldact));
OuterFunction(false);
exit(0);
}
ASSERT_NE(-1, pid);
bool completed;
WaitForRemote(pid, reinterpret_cast<uint64_t>(&g_ready_for_remote), false, &completed);
ASSERT_TRUE(completed) << "Timed out waiting for remote process to be ready.";
ASSERT_EQ(0, kill(pid, SIGUSR1));
WaitForRemote(pid, reinterpret_cast<uint64_t>(&g_signal_ready_for_remote), true, &completed);
ASSERT_TRUE(completed) << "Timed out waiting for remote process to be in signal handler.";
RemoteMaps maps(pid);
ASSERT_TRUE(maps.Parse());
MemoryRemote memory(pid);
uint32_t machine_type;
std::unique_ptr<Regs> regs(Regs::RemoteGet(pid, &machine_type));
ASSERT_TRUE(regs.get() != nullptr);
VerifyUnwind(pid, &memory, &maps, regs.get(), kFunctionSignalOrder);
ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0));
kill(pid, SIGKILL);
ASSERT_EQ(pid, wait(nullptr));
}
TEST(UnwindTest, remote_through_signal) {
RemoteThroughSignal(0);
}
TEST(UnwindTest, remote_through_signal_sa_siginfo) {
RemoteThroughSignal(SA_SIGINFO);
}
} // namespace unwindstack