ueventd: parallelize uevent handling
fork() subprocesses to handle uevents in parallel. This reduces coldboot time on bullhead from ~446ms to ~230ms. This reduces coldboot time on sailfish from ~690ms to ~360ms. This reduces coldboot time on ryu from ~187ms to ~122ms. Bug: 33785894 Test: boot bullhead x40, observe no major differences in /dev and /sys Test: boot sailfish x40, observe no major differences in /dev and /sys Test: boot ryu x40, observe no major differences in /dev and /sys Test: boottime tests on bullhead and sailfish Test: init unit tests Change-Id: Ie2f63e000b8af78d187477d31fe109f20304d749
This commit is contained in:
parent
28c11dcff4
commit
c583305ed7
|
@ -175,7 +175,7 @@ void DeviceHandler::FixupSysPermissions(const std::string& upath,
|
|||
if (s.MatchWithSubsystem(path, subsystem)) s.SetPermissions(path);
|
||||
}
|
||||
|
||||
if (access(path.c_str(), F_OK) == 0) {
|
||||
if (!skip_restorecon_ && access(path.c_str(), F_OK) == 0) {
|
||||
LOG(VERBOSE) << "restorecon_recursive: " << path;
|
||||
if (selinux_android_restorecon(path.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE) != 0) {
|
||||
PLOG(ERROR) << "selinux_android_restorecon(" << path << ") failed";
|
||||
|
@ -467,12 +467,13 @@ void DeviceHandler::HandleDeviceEvent(const Uevent& uevent) {
|
|||
|
||||
DeviceHandler::DeviceHandler(std::vector<Permissions> dev_permissions,
|
||||
std::vector<SysfsPermissions> sysfs_permissions,
|
||||
std::vector<Subsystem> subsystems)
|
||||
std::vector<Subsystem> subsystems, bool skip_restorecon)
|
||||
: dev_permissions_(std::move(dev_permissions)),
|
||||
sysfs_permissions_(std::move(sysfs_permissions)),
|
||||
subsystems_(std::move(subsystems)),
|
||||
sehandle_(selinux_android_file_context_handle()) {}
|
||||
sehandle_(selinux_android_file_context_handle()),
|
||||
skip_restorecon_(skip_restorecon) {}
|
||||
|
||||
DeviceHandler::DeviceHandler()
|
||||
: DeviceHandler(std::vector<Permissions>{}, std::vector<SysfsPermissions>{},
|
||||
std::vector<Subsystem>{}) {}
|
||||
std::vector<Subsystem>{}, false) {}
|
||||
|
|
|
@ -114,14 +114,21 @@ class DeviceHandler {
|
|||
DeviceHandler();
|
||||
DeviceHandler(std::vector<Permissions> dev_permissions,
|
||||
std::vector<SysfsPermissions> sysfs_permissions,
|
||||
std::vector<Subsystem> subsystems);
|
||||
std::vector<Subsystem> subsystems, bool skip_restorecon);
|
||||
~DeviceHandler(){};
|
||||
|
||||
void HandleDeviceEvent(const Uevent& uevent);
|
||||
|
||||
void FixupSysPermissions(const std::string& upath, const std::string& subsystem) const;
|
||||
|
||||
void HandlePlatformDeviceEvent(const Uevent& uevent);
|
||||
void HandleBlockDeviceEvent(const Uevent& uevent) const;
|
||||
void HandleGenericDeviceEvent(const Uevent& uevent) const;
|
||||
|
||||
std::vector<std::string> GetBlockDeviceSymlinks(const Uevent& uevent) const;
|
||||
void set_skip_restorecon(bool value) { skip_restorecon_ = value; }
|
||||
|
||||
private:
|
||||
void FixupSysPermissions(const std::string& upath, const std::string& subsystem) const;
|
||||
std::tuple<mode_t, uid_t, gid_t> GetDevicePermissions(
|
||||
const std::string& path, const std::vector<std::string>& links) const;
|
||||
void MakeDevice(const std::string& path, int block, int major, int minor,
|
||||
|
@ -129,15 +136,13 @@ class DeviceHandler {
|
|||
std::vector<std::string> GetCharacterDeviceSymlinks(const Uevent& uevent) const;
|
||||
void HandleDevice(const std::string& action, const std::string& devpath, int block, int major,
|
||||
int minor, const std::vector<std::string>& links) const;
|
||||
void HandlePlatformDeviceEvent(const Uevent& uevent);
|
||||
void HandleBlockDeviceEvent(const Uevent& uevent) const;
|
||||
void HandleGenericDeviceEvent(const Uevent& uevent) const;
|
||||
|
||||
std::vector<Permissions> dev_permissions_;
|
||||
std::vector<SysfsPermissions> sysfs_permissions_;
|
||||
std::vector<Subsystem> subsystems_;
|
||||
PlatformDeviceList platform_devices_;
|
||||
selabel_handle* sehandle_;
|
||||
bool skip_restorecon_;
|
||||
};
|
||||
|
||||
// Exposed for testing
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
|
||||
#include <fcntl.h>
|
||||
#include <sys/sendfile.h>
|
||||
#include <sys/wait.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <string>
|
||||
|
@ -103,14 +104,29 @@ void HandleFirmwareEvent(const Uevent& uevent) {
|
|||
if (uevent.subsystem != "firmware" || uevent.action != "add") return;
|
||||
|
||||
// Loading the firmware in a child means we can do that in parallel...
|
||||
// (We ignore SIGCHLD rather than wait for our children.)
|
||||
// We double fork instead of waiting for these processes.
|
||||
pid_t pid = fork();
|
||||
if (pid == 0) {
|
||||
Timer t;
|
||||
ProcessFirmwareEvent(uevent);
|
||||
LOG(INFO) << "loading " << uevent.path << " took " << t;
|
||||
_exit(EXIT_SUCCESS);
|
||||
} else if (pid == -1) {
|
||||
if (pid == -1) {
|
||||
PLOG(ERROR) << "could not fork to process firmware event for " << uevent.firmware;
|
||||
return;
|
||||
}
|
||||
|
||||
if (pid == 0) {
|
||||
pid = fork();
|
||||
if (pid == -1) {
|
||||
PLOG(ERROR) << "could not fork a sceond time to process firmware event for "
|
||||
<< uevent.firmware;
|
||||
_exit(EXIT_FAILURE);
|
||||
}
|
||||
if (pid == 0) {
|
||||
Timer t;
|
||||
ProcessFirmwareEvent(uevent);
|
||||
LOG(INFO) << "loading " << uevent.path << " took " << t;
|
||||
_exit(EXIT_SUCCESS);
|
||||
}
|
||||
|
||||
_exit(EXIT_SUCCESS);
|
||||
}
|
||||
|
||||
waitpid(pid, nullptr, 0);
|
||||
}
|
||||
|
|
|
@ -165,7 +165,7 @@ RegenerationAction UeventListener::RegenerateUeventsForPath(const std::string& p
|
|||
return RegenerateUeventsForDir(d.get(), callback);
|
||||
}
|
||||
|
||||
static const char* kRegenerationPaths[] = {"/sys/class", "/sys/block", "/sys/devices"};
|
||||
const char* kRegenerationPaths[] = {"/sys/class", "/sys/block", "/sys/devices"};
|
||||
|
||||
void UeventListener::RegenerateUevents(RegenerateCallback callback) const {
|
||||
for (const auto path : kRegenerationPaths) {
|
||||
|
|
|
@ -35,6 +35,8 @@ enum class RegenerationAction {
|
|||
using RegenerateCallback = std::function<RegenerationAction(const Uevent&)>;
|
||||
using PollCallback = std::function<void(const Uevent&)>;
|
||||
|
||||
extern const char* kRegenerationPaths[3];
|
||||
|
||||
class UeventListener {
|
||||
public:
|
||||
UeventListener();
|
||||
|
|
217
init/ueventd.cpp
217
init/ueventd.cpp
|
@ -22,10 +22,15 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <sys/wait.h>
|
||||
|
||||
#include <set>
|
||||
#include <thread>
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android-base/properties.h>
|
||||
#include <android-base/stringprintf.h>
|
||||
#include <selinux/android.h>
|
||||
#include <selinux/selinux.h>
|
||||
|
||||
#include "devices.h"
|
||||
|
@ -35,6 +40,194 @@
|
|||
#include "ueventd_parser.h"
|
||||
#include "util.h"
|
||||
|
||||
// At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
|
||||
// socket. When ueventd receives such a message it handles it by taking appropriate actions,
|
||||
// which can typically be creating a device node in /dev, setting file permissions, setting selinux
|
||||
// labels, etc.
|
||||
// Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
|
||||
// and character devices.
|
||||
|
||||
// When ueventd starts, it regenerates uevents for all currently registered devices by traversing
|
||||
// /sys and writing 'add' to each 'uevent' file that it finds. This causes the kernel to generate
|
||||
// and resend uevent messages for all of the currently registered devices. This is done, because
|
||||
// ueventd would not have been running when these devices were registered and therefore was unable
|
||||
// to receive their uevent messages and handle them appropriately. This process is known as
|
||||
// 'cold boot'.
|
||||
|
||||
// 'init' currently waits synchronously on the cold boot process of ueventd before it continues
|
||||
// its boot process. For this reason, cold boot should be as quick as possible. One way to achieve
|
||||
// a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
|
||||
// time during cold boot.
|
||||
|
||||
// Handling of uevent messages has two unique properties:
|
||||
// 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
|
||||
// 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
|
||||
// that no file system operations are done while the uevent process has an abnormal egid or
|
||||
// fscreatecon or this handling must happen in a separate process.
|
||||
// Given the above two properties, it is best to fork() subprocesses to handle the uevents. This
|
||||
// reduces the overhead and complexity that would be required in a solution with threads and locks.
|
||||
// In testing, a racy multithreaded solution has the same performance as the fork() solution, so
|
||||
// there is no reason to deal with the complexity of the former.
|
||||
|
||||
// One other important caveat during the boot process is the handling of SELinux restorecon.
|
||||
// Since many devices have child devices, calling selinux_android_restorecon() recursively for each
|
||||
// device when its uevent is handled, results in multiple restorecon operations being done on a
|
||||
// given file. It is more efficient to simply do restorecon recursively on /sys during cold boot,
|
||||
// than to do restorecon on each device as its uevent is handled. This only applies to cold boot;
|
||||
// once that has completed, restorecon is done for each device as its uevent is handled.
|
||||
|
||||
// With all of the above considered, the cold boot process has the below steps:
|
||||
// 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
|
||||
// the generated uevents. It writes these uevents into a queue represented by a vector.
|
||||
//
|
||||
// 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
|
||||
// uevents in the queue based on a starting offset (their process number) and a stride (the total
|
||||
// number of processes). Note that no IPC happens at this point and only const functions from
|
||||
// DeviceHandler should be called from this context.
|
||||
//
|
||||
// 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
|
||||
// selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
|
||||
//
|
||||
// 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
|
||||
// subprocess handlers to complete and exit. Once this happens, it marks coldboot as having
|
||||
// completed.
|
||||
//
|
||||
// At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
|
||||
|
||||
// Lastly, it should be noted that uevents that occur during the coldboot process are handled
|
||||
// without issue after the coldboot process completes. This is because the uevent listener is
|
||||
// paused while the uevent handler and restorecon actions take place. Once coldboot completes,
|
||||
// the uevent listener resumes in polling mode and will handle the uevents that occurred during
|
||||
// coldboot.
|
||||
|
||||
class ColdBoot {
|
||||
public:
|
||||
ColdBoot(UeventListener& uevent_listener, DeviceHandler& device_handler)
|
||||
: uevent_listener_(uevent_listener),
|
||||
device_handler_(device_handler),
|
||||
num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4) {}
|
||||
|
||||
void Run();
|
||||
|
||||
private:
|
||||
void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
|
||||
void RegenerateUevents();
|
||||
void ForkSubProcesses();
|
||||
void DoRestoreCon();
|
||||
void WaitForSubProcesses();
|
||||
|
||||
UeventListener& uevent_listener_;
|
||||
DeviceHandler& device_handler_;
|
||||
|
||||
unsigned int num_handler_subprocesses_;
|
||||
std::vector<Uevent> uevent_queue_;
|
||||
|
||||
std::set<pid_t> subprocess_pids_;
|
||||
};
|
||||
|
||||
void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
|
||||
for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
|
||||
auto& uevent = uevent_queue_[i];
|
||||
if (uevent.action == "add" || uevent.action == "change" || uevent.action == "online") {
|
||||
device_handler_.FixupSysPermissions(uevent.path, uevent.subsystem);
|
||||
}
|
||||
|
||||
if (uevent.subsystem == "block") {
|
||||
device_handler_.HandleBlockDeviceEvent(uevent);
|
||||
} else {
|
||||
device_handler_.HandleGenericDeviceEvent(uevent);
|
||||
}
|
||||
}
|
||||
_exit(EXIT_SUCCESS);
|
||||
}
|
||||
|
||||
void ColdBoot::RegenerateUevents() {
|
||||
uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
|
||||
HandleFirmwareEvent(uevent);
|
||||
|
||||
// This is the one mutable part of DeviceHandler, in which platform devices are
|
||||
// added to a vector for later reference. Since there is no communication after
|
||||
// fork()'ing subprocess handlers, all platform devices must be in the vector before
|
||||
// we fork, and therefore they must be handled in this loop.
|
||||
if (uevent.subsystem == "platform") {
|
||||
device_handler_.HandlePlatformDeviceEvent(uevent);
|
||||
}
|
||||
|
||||
uevent_queue_.emplace_back(std::move(uevent));
|
||||
return RegenerationAction::kContinue;
|
||||
});
|
||||
}
|
||||
|
||||
void ColdBoot::ForkSubProcesses() {
|
||||
for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
|
||||
auto pid = fork();
|
||||
if (pid < 0) {
|
||||
PLOG(FATAL) << "fork() failed!";
|
||||
}
|
||||
|
||||
if (pid == 0) {
|
||||
UeventHandlerMain(i, num_handler_subprocesses_);
|
||||
}
|
||||
|
||||
subprocess_pids_.emplace(pid);
|
||||
}
|
||||
}
|
||||
|
||||
void ColdBoot::DoRestoreCon() {
|
||||
for (const char* path : kRegenerationPaths) {
|
||||
selinux_android_restorecon(path, SELINUX_ANDROID_RESTORECON_RECURSE);
|
||||
}
|
||||
device_handler_.set_skip_restorecon(false);
|
||||
}
|
||||
|
||||
void ColdBoot::WaitForSubProcesses() {
|
||||
// Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
|
||||
// stuck.
|
||||
//
|
||||
// When a subprocess crashes, we fatally abort from ueventd. init will restart ueventd when
|
||||
// init reaps it, and the cold boot process will start again. If this continues to fail, then
|
||||
// since ueventd is marked as a critical service, init will reboot to recovery.
|
||||
//
|
||||
// When a subprocess gets stuck, keep ueventd spinning waiting for it. init has a timeout for
|
||||
// cold boot and will reboot to the bootloader if ueventd does not complete in time.
|
||||
while (!subprocess_pids_.empty()) {
|
||||
int status;
|
||||
pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
|
||||
if (pid == -1) {
|
||||
PLOG(ERROR) << "waitpid() failed";
|
||||
continue;
|
||||
}
|
||||
|
||||
auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
|
||||
if (it == subprocess_pids_.end()) continue;
|
||||
|
||||
if (WIFEXITED(status)) {
|
||||
if (WEXITSTATUS(status) == EXIT_SUCCESS) {
|
||||
subprocess_pids_.erase(it);
|
||||
} else {
|
||||
LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
|
||||
}
|
||||
} else if (WIFSIGNALED(status)) {
|
||||
LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ColdBoot::Run() {
|
||||
Timer cold_boot_timer;
|
||||
|
||||
RegenerateUevents();
|
||||
|
||||
ForkSubProcesses();
|
||||
|
||||
DoRestoreCon();
|
||||
|
||||
WaitForSubProcesses();
|
||||
|
||||
close(open(COLDBOOT_DONE, O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
|
||||
LOG(INFO) << "Coldboot took " << cold_boot_timer;
|
||||
}
|
||||
|
||||
DeviceHandler CreateDeviceHandler() {
|
||||
Parser parser;
|
||||
|
||||
|
@ -64,11 +257,10 @@ DeviceHandler CreateDeviceHandler() {
|
|||
parser.ParseConfig("/ueventd." + hardware + ".rc");
|
||||
|
||||
return DeviceHandler(std::move(dev_permissions), std::move(sysfs_permissions),
|
||||
std::move(subsystems));
|
||||
std::move(subsystems), true);
|
||||
}
|
||||
|
||||
int ueventd_main(int argc, char **argv)
|
||||
{
|
||||
int ueventd_main(int argc, char** argv) {
|
||||
/*
|
||||
* init sets the umask to 077 for forked processes. We need to
|
||||
* create files with exact permissions, without modification by
|
||||
|
@ -76,13 +268,6 @@ int ueventd_main(int argc, char **argv)
|
|||
*/
|
||||
umask(000);
|
||||
|
||||
/* Prevent fire-and-forget children from becoming zombies.
|
||||
* If we should need to wait() for some children in the future
|
||||
* (as opposed to none right now), double-forking here instead
|
||||
* of ignoring SIGCHLD may be the better solution.
|
||||
*/
|
||||
signal(SIGCHLD, SIG_IGN);
|
||||
|
||||
InitKernelLogging(argv);
|
||||
|
||||
LOG(INFO) << "ueventd started!";
|
||||
|
@ -95,16 +280,8 @@ int ueventd_main(int argc, char **argv)
|
|||
UeventListener uevent_listener;
|
||||
|
||||
if (access(COLDBOOT_DONE, F_OK) != 0) {
|
||||
Timer t;
|
||||
|
||||
uevent_listener.RegenerateUevents([&device_handler](const Uevent& uevent) {
|
||||
HandleFirmwareEvent(uevent);
|
||||
device_handler.HandleDeviceEvent(uevent);
|
||||
return RegenerationAction::kContinue;
|
||||
});
|
||||
|
||||
close(open(COLDBOOT_DONE, O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
|
||||
LOG(INFO) << "Coldboot took " << t;
|
||||
ColdBoot cold_boot(uevent_listener, device_handler);
|
||||
cold_boot.Run();
|
||||
}
|
||||
|
||||
uevent_listener.DoPolling([&device_handler](const Uevent& uevent) {
|
||||
|
|
Loading…
Reference in New Issue