Merge changes from topic 'avb-early-mount' into oc-dev

* changes:
  fs_mgr: support AVB in fs_mgr_update_verity_state()
  init: support early_mount with vboot 2.0 (external/avb/libavb)
  fs_mgr: adds/changes some public APIs for early mount in init
  fs_mgr_avb: refactors how vbmeta is loaded
  fs_mgr: adding fs_mgr_get_slot_suffix() public API
This commit is contained in:
TreeHugger Robot 2017-04-15 01:12:32 +00:00 committed by Android (Google) Code Review
commit cc23327951
15 changed files with 714 additions and 598 deletions

View File

@ -31,7 +31,10 @@
#include <time.h>
#include <unistd.h>
#include <memory>
#include <android-base/file.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/unique_fd.h>
#include <cutils/android_reboot.h>
@ -47,8 +50,10 @@
#include <logwrap/logwrap.h>
#include <private/android_logger.h> // for __android_log_is_debuggable()
#include "fs_mgr.h"
#include "fs_mgr_avb.h"
#include "fs_mgr_priv.h"
#include "fs_mgr_priv_avb.h"
#include "fs_mgr_priv_dm_ioctl.h"
#define KEY_LOC_PROP "ro.crypto.keyfile.userdata"
#define KEY_IN_FOOTER "footer"
@ -707,6 +712,23 @@ static int handle_encryptable(const struct fstab_rec* rec)
}
}
static std::string extract_by_name_prefix(struct fstab* fstab) {
// We assume that there's an entry for the /misc mount point in the
// fstab file and use that to get the device file by-name prefix.
// The device needs not to have an actual /misc partition.
// e.g.,
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/misc ->
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/
struct fstab_rec* fstab_entry = fs_mgr_get_entry_for_mount_point(fstab, "/misc");
if (fstab_entry == nullptr) {
LERROR << "/misc mount point not found in fstab";
return "";
}
std::string full_path(fstab_entry->blk_device);
size_t end_slash = full_path.find_last_of("/");
return full_path.substr(0, end_slash + 1);
}
// TODO: add ueventd notifiers if they don't exist.
// This is just doing a wait_for_device for maximum of 1s
int fs_mgr_test_access(const char *device) {
@ -750,17 +772,12 @@ int fs_mgr_mount_all(struct fstab *fstab, int mount_mode)
int mret = -1;
int mount_errno = 0;
int attempted_idx = -1;
int avb_ret = FS_MGR_SETUP_AVB_FAIL;
FsManagerAvbUniquePtr avb_handle(nullptr);
if (!fstab) {
return -1;
}
if (fs_mgr_is_avb_used() &&
(avb_ret = fs_mgr_load_vbmeta_images(fstab)) == FS_MGR_SETUP_AVB_FAIL) {
return -1;
}
for (i = 0; i < fstab->num_entries; i++) {
/* Don't mount entries that are managed by vold or not for the mount mode*/
if ((fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) ||
@ -799,16 +816,15 @@ int fs_mgr_mount_all(struct fstab *fstab, int mount_mode)
wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
}
if (fs_mgr_is_avb_used() && (fstab->recs[i].fs_mgr_flags & MF_AVB)) {
/* If HASHTREE_DISABLED is set (cf. 'adb disable-verity'), we
* should set up the device without using dm-verity.
* The actual mounting still take place in the following
* mount_with_alternatives().
*/
if (avb_ret == FS_MGR_SETUP_AVB_HASHTREE_DISABLED) {
LINFO << "AVB HASHTREE disabled";
} else if (fs_mgr_setup_avb(&fstab->recs[i]) !=
FS_MGR_SETUP_AVB_SUCCESS) {
if (fstab->recs[i].fs_mgr_flags & MF_AVB) {
if (!avb_handle) {
avb_handle = FsManagerAvbHandle::Open(extract_by_name_prefix(fstab));
if (!avb_handle) {
LERROR << "Failed to open FsManagerAvbHandle";
return -1;
}
}
if (!avb_handle->SetUpAvb(&fstab->recs[i], true /* wait_for_verity_dev */)) {
LERROR << "Failed to set up AVB on partition: "
<< fstab->recs[i].mount_point << ", skipping!";
/* Skips mounting the device. */
@ -934,10 +950,6 @@ int fs_mgr_mount_all(struct fstab *fstab, int mount_mode)
}
}
if (fs_mgr_is_avb_used()) {
fs_mgr_unload_vbmeta_images();
}
if (error_count) {
return -1;
} else {
@ -976,17 +988,12 @@ int fs_mgr_do_mount(struct fstab *fstab, const char *n_name, char *n_blk_device,
int mount_errors = 0;
int first_mount_errno = 0;
char *m;
int avb_ret = FS_MGR_SETUP_AVB_FAIL;
FsManagerAvbUniquePtr avb_handle(nullptr);
if (!fstab) {
return ret;
}
if (fs_mgr_is_avb_used() &&
(avb_ret = fs_mgr_load_vbmeta_images(fstab)) == FS_MGR_SETUP_AVB_FAIL) {
return ret;
}
for (i = 0; i < fstab->num_entries; i++) {
if (!fs_match(fstab->recs[i].mount_point, n_name)) {
continue;
@ -1021,16 +1028,15 @@ int fs_mgr_do_mount(struct fstab *fstab, const char *n_name, char *n_blk_device,
do_reserved_size(n_blk_device, fstab->recs[i].fs_type, &fstab->recs[i], &fs_stat);
}
if (fs_mgr_is_avb_used() && (fstab->recs[i].fs_mgr_flags & MF_AVB)) {
/* If HASHTREE_DISABLED is set (cf. 'adb disable-verity'), we
* should set up the device without using dm-verity.
* The actual mounting still take place in the following
* mount_with_alternatives().
*/
if (avb_ret == FS_MGR_SETUP_AVB_HASHTREE_DISABLED) {
LINFO << "AVB HASHTREE disabled";
} else if (fs_mgr_setup_avb(&fstab->recs[i]) !=
FS_MGR_SETUP_AVB_SUCCESS) {
if (fstab->recs[i].fs_mgr_flags & MF_AVB) {
if (!avb_handle) {
avb_handle = FsManagerAvbHandle::Open(extract_by_name_prefix(fstab));
if (!avb_handle) {
LERROR << "Failed to open FsManagerAvbHandle";
return -1;
}
}
if (!avb_handle->SetUpAvb(&fstab->recs[i], true /* wait_for_verity_dev */)) {
LERROR << "Failed to set up AVB on partition: "
<< fstab->recs[i].mount_point << ", skipping!";
/* Skips mounting the device. */
@ -1079,9 +1085,6 @@ int fs_mgr_do_mount(struct fstab *fstab, const char *n_name, char *n_blk_device,
}
out:
if (fs_mgr_is_avb_used()) {
fs_mgr_unload_vbmeta_images();
}
return ret;
}
@ -1259,3 +1262,97 @@ int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc, char *real_blk_dev
return 0;
}
bool fs_mgr_load_verity_state(int* mode) {
/* return the default mode, unless any of the verified partitions are in
* logging mode, in which case return that */
*mode = VERITY_MODE_DEFAULT;
std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(),
fs_mgr_free_fstab);
if (!fstab) {
LERROR << "Failed to read default fstab";
return false;
}
for (int i = 0; i < fstab->num_entries; i++) {
if (fs_mgr_is_avb(&fstab->recs[i])) {
*mode = VERITY_MODE_RESTART; // avb only supports restart mode.
break;
} else if (!fs_mgr_is_verified(&fstab->recs[i])) {
continue;
}
int current;
if (load_verity_state(&fstab->recs[i], &current) < 0) {
continue;
}
if (current != VERITY_MODE_DEFAULT) {
*mode = current;
break;
}
}
return true;
}
bool fs_mgr_update_verity_state(fs_mgr_verity_state_callback callback) {
if (!callback) {
return false;
}
int mode;
if (!fs_mgr_load_verity_state(&mode)) {
return false;
}
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open("/dev/device-mapper", O_RDWR | O_CLOEXEC)));
if (fd == -1) {
PERROR << "Error opening device mapper";
return false;
}
std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(),
fs_mgr_free_fstab);
if (!fstab) {
LERROR << "Failed to read default fstab";
return false;
}
alignas(dm_ioctl) char buffer[DM_BUF_SIZE];
struct dm_ioctl* io = (struct dm_ioctl*)buffer;
bool system_root = android::base::GetProperty("ro.build.system_root_image", "") == "true";
for (int i = 0; i < fstab->num_entries; i++) {
if (!fs_mgr_is_verified(&fstab->recs[i]) && !fs_mgr_is_avb(&fstab->recs[i])) {
continue;
}
std::string mount_point;
if (system_root && !strcmp(fstab->recs[i].mount_point, "/")) {
mount_point = "system";
} else {
mount_point = basename(fstab->recs[i].mount_point);
}
fs_mgr_verity_ioctl_init(io, mount_point, 0);
const char* status;
if (ioctl(fd, DM_TABLE_STATUS, io)) {
if (fstab->recs[i].fs_mgr_flags & MF_VERIFYATBOOT) {
status = "V";
} else {
PERROR << "Failed to query DM_TABLE_STATUS for " << mount_point.c_str();
continue;
}
}
status = &buffer[io->data_start + sizeof(struct dm_target_spec)];
if (*status == 'C' || *status == 'V') {
callback(&fstab->recs[i], mount_point.c_str(), mode, *status);
}
}
return true;
}

View File

@ -28,6 +28,7 @@
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <cutils/properties.h>
@ -37,9 +38,9 @@
#include <utils/Compat.h>
#include "fs_mgr.h"
#include "fs_mgr_avb.h"
#include "fs_mgr_avb_ops.h"
#include "fs_mgr_priv.h"
#include "fs_mgr_priv_avb.h"
#include "fs_mgr_priv_dm_ioctl.h"
#include "fs_mgr_priv_sha.h"
@ -85,24 +86,6 @@
hashtree_desc.fec_offset / hashtree_desc.data_block_size, /* fec_start */ \
VERITY_TABLE_OPT_IGNZERO, VERITY_TABLE_OPT_RESTART
AvbSlotVerifyData* fs_mgr_avb_verify_data = nullptr;
AvbOps* fs_mgr_avb_ops = nullptr;
enum HashAlgorithm {
kInvalid = 0,
kSHA256 = 1,
kSHA512 = 2,
};
struct androidboot_vbmeta {
HashAlgorithm hash_alg;
uint8_t digest[SHA512_DIGEST_LENGTH];
size_t vbmeta_size;
bool allow_verification_error;
};
androidboot_vbmeta fs_mgr_vbmeta_prop;
static inline bool nibble_value(const char& c, uint8_t* value) {
FS_MGR_CHECK(value != nullptr);
@ -159,27 +142,78 @@ static std::string bytes_to_hex(const uint8_t* bytes, size_t bytes_len) {
return hex;
}
static bool load_vbmeta_prop(androidboot_vbmeta* vbmeta_prop) {
FS_MGR_CHECK(vbmeta_prop != nullptr);
template <typename Hasher>
static std::pair<size_t, bool> verify_vbmeta_digest(const AvbSlotVerifyData& verify_data,
const uint8_t* expected_digest) {
size_t total_size = 0;
Hasher hasher;
for (size_t n = 0; n < verify_data.num_vbmeta_images; n++) {
hasher.update(verify_data.vbmeta_images[n].vbmeta_data,
verify_data.vbmeta_images[n].vbmeta_size);
total_size += verify_data.vbmeta_images[n].vbmeta_size;
}
bool matched = (memcmp(hasher.finalize(), expected_digest, Hasher::DIGEST_SIZE) == 0);
return std::make_pair(total_size, matched);
}
// Reads the following values from kernel cmdline and provides the
// VerifyVbmetaImages() to verify AvbSlotVerifyData.
// - androidboot.vbmeta.device_state
// - androidboot.vbmeta.hash_alg
// - androidboot.vbmeta.size
// - androidboot.vbmeta.digest
class FsManagerAvbVerifier {
public:
// The factory method to return a unique_ptr<FsManagerAvbVerifier>
static std::unique_ptr<FsManagerAvbVerifier> Create();
bool VerifyVbmetaImages(const AvbSlotVerifyData& verify_data);
bool IsDeviceUnlocked() { return is_device_unlocked_; }
protected:
FsManagerAvbVerifier() = default;
private:
enum HashAlgorithm {
kInvalid = 0,
kSHA256 = 1,
kSHA512 = 2,
};
HashAlgorithm hash_alg_;
uint8_t digest_[SHA512_DIGEST_LENGTH];
size_t vbmeta_size_;
bool is_device_unlocked_;
};
std::unique_ptr<FsManagerAvbVerifier> FsManagerAvbVerifier::Create() {
std::string cmdline;
android::base::ReadFileToString("/proc/cmdline", &cmdline);
if (!android::base::ReadFileToString("/proc/cmdline", &cmdline)) {
LERROR << "Failed to read /proc/cmdline";
return nullptr;
}
std::unique_ptr<FsManagerAvbVerifier> avb_verifier(new FsManagerAvbVerifier());
if (!avb_verifier) {
LERROR << "Failed to create unique_ptr<FsManagerAvbVerifier>";
return nullptr;
}
std::string hash_alg;
std::string digest;
std::string hash_alg;
for (const auto& entry : android::base::Split(android::base::Trim(cmdline), " ")) {
std::vector<std::string> pieces = android::base::Split(entry, "=");
const std::string& key = pieces[0];
const std::string& value = pieces[1];
if (key == "androidboot.vbmeta.device_state") {
vbmeta_prop->allow_verification_error = (value == "unlocked");
avb_verifier->is_device_unlocked_ = (value == "unlocked");
} else if (key == "androidboot.vbmeta.hash_alg") {
hash_alg = value;
} else if (key == "androidboot.vbmeta.size") {
if (!android::base::ParseUint(value.c_str(), &vbmeta_prop->vbmeta_size)) {
return false;
if (!android::base::ParseUint(value.c_str(), &avb_verifier->vbmeta_size_)) {
return nullptr;
}
} else if (key == "androidboot.vbmeta.digest") {
digest = value;
@ -190,48 +224,31 @@ static bool load_vbmeta_prop(androidboot_vbmeta* vbmeta_prop) {
size_t expected_digest_size = 0;
if (hash_alg == "sha256") {
expected_digest_size = SHA256_DIGEST_LENGTH * 2;
vbmeta_prop->hash_alg = kSHA256;
avb_verifier->hash_alg_ = kSHA256;
} else if (hash_alg == "sha512") {
expected_digest_size = SHA512_DIGEST_LENGTH * 2;
vbmeta_prop->hash_alg = kSHA512;
avb_verifier->hash_alg_ = kSHA512;
} else {
LERROR << "Unknown hash algorithm: " << hash_alg.c_str();
return false;
return nullptr;
}
// Reads digest.
if (digest.size() != expected_digest_size) {
LERROR << "Unexpected digest size: " << digest.size()
<< " (expected: " << expected_digest_size << ")";
return false;
return nullptr;
}
if (!hex_to_bytes(vbmeta_prop->digest, sizeof(vbmeta_prop->digest), digest)) {
if (!hex_to_bytes(avb_verifier->digest_, sizeof(avb_verifier->digest_), digest)) {
LERROR << "Hash digest contains non-hexidecimal character: " << digest.c_str();
return false;
return nullptr;
}
return true;
return avb_verifier;
}
template <typename Hasher>
static std::pair<size_t, bool> verify_vbmeta_digest(const AvbSlotVerifyData& verify_data,
const androidboot_vbmeta& vbmeta_prop) {
size_t total_size = 0;
Hasher hasher;
for (size_t n = 0; n < verify_data.num_vbmeta_images; n++) {
hasher.update(verify_data.vbmeta_images[n].vbmeta_data,
verify_data.vbmeta_images[n].vbmeta_size);
total_size += verify_data.vbmeta_images[n].vbmeta_size;
}
bool matched = (memcmp(hasher.finalize(), vbmeta_prop.digest, Hasher::DIGEST_SIZE) == 0);
return std::make_pair(total_size, matched);
}
static bool verify_vbmeta_images(const AvbSlotVerifyData& verify_data,
const androidboot_vbmeta& vbmeta_prop) {
bool FsManagerAvbVerifier::VerifyVbmetaImages(const AvbSlotVerifyData& verify_data) {
if (verify_data.num_vbmeta_images == 0) {
LERROR << "No vbmeta images";
return false;
@ -240,17 +257,17 @@ static bool verify_vbmeta_images(const AvbSlotVerifyData& verify_data,
size_t total_size = 0;
bool digest_matched = false;
if (vbmeta_prop.hash_alg == kSHA256) {
if (hash_alg_ == kSHA256) {
std::tie(total_size, digest_matched) =
verify_vbmeta_digest<SHA256Hasher>(verify_data, vbmeta_prop);
} else if (vbmeta_prop.hash_alg == kSHA512) {
verify_vbmeta_digest<SHA256Hasher>(verify_data, digest_);
} else if (hash_alg_ == kSHA512) {
std::tie(total_size, digest_matched) =
verify_vbmeta_digest<SHA512Hasher>(verify_data, vbmeta_prop);
verify_vbmeta_digest<SHA512Hasher>(verify_data, digest_);
}
if (total_size != vbmeta_prop.vbmeta_size) {
LERROR << "total vbmeta size mismatch: " << total_size
<< " (expected: " << vbmeta_prop.vbmeta_size << ")";
if (total_size != vbmeta_size_) {
LERROR << "total vbmeta size mismatch: " << total_size << " (expected: " << vbmeta_size_
<< ")";
return false;
}
@ -319,7 +336,8 @@ static bool hashtree_load_verity_table(struct dm_ioctl* io, const std::string& d
static bool hashtree_dm_verity_setup(struct fstab_rec* fstab_entry,
const AvbHashtreeDescriptor& hashtree_desc,
const std::string& salt, const std::string& root_digest) {
const std::string& salt, const std::string& root_digest,
bool wait_for_verity_dev) {
// Gets the device mapper fd.
android::base::unique_fd fd(open("/dev/device-mapper", O_RDWR));
if (fd < 0) {
@ -358,13 +376,12 @@ static bool hashtree_dm_verity_setup(struct fstab_rec* fstab_entry,
// Marks the underlying block device as read-only.
fs_mgr_set_blk_ro(fstab_entry->blk_device);
// TODO(bowgotsai): support verified all partition at boot.
// Updates fstab_rec->blk_device to verity device name.
free(fstab_entry->blk_device);
fstab_entry->blk_device = strdup(verity_blk_name.c_str());
// Makes sure we've set everything up properly.
if (fs_mgr_test_access(verity_blk_name.c_str()) < 0) {
if (wait_for_verity_dev && fs_mgr_test_access(verity_blk_name.c_str()) < 0) {
return false;
}
@ -408,8 +425,7 @@ static bool get_hashtree_descriptor(const std::string& partition_name,
continue;
}
if (desc.tag == AVB_DESCRIPTOR_TAG_HASHTREE) {
desc_partition_name =
(const uint8_t*)descriptors[j] + sizeof(AvbHashtreeDescriptor);
desc_partition_name = (const uint8_t*)descriptors[j] + sizeof(AvbHashtreeDescriptor);
if (!avb_hashtree_descriptor_validate_and_byteswap(
(AvbHashtreeDescriptor*)descriptors[j], out_hashtree_desc)) {
continue;
@ -441,140 +457,97 @@ static bool get_hashtree_descriptor(const std::string& partition_name,
return true;
}
static bool init_is_avb_used() {
// When AVB is used, boot loader should set androidboot.vbmeta.{hash_alg,
// size, digest} in kernel cmdline or in device tree. They will then be
// imported by init process to system properties: ro.boot.vbmeta.{hash_alg, size, digest}.
//
// In case of early mount, init properties are not initialized, so we also
// ensure we look into kernel command line and device tree if the property is
// not found
//
// Checks hash_alg as an indicator for whether AVB is used.
// We don't have to parse and check all of them here. The check will
// be done in fs_mgr_load_vbmeta_images() and FS_MGR_SETUP_AVB_FAIL will
// be returned when there is an error.
std::string hash_alg;
if (!fs_mgr_get_boot_config("vbmeta.hash_alg", &hash_alg)) {
return false;
}
if (hash_alg == "sha256" || hash_alg == "sha512") {
return true;
}
return false;
}
bool fs_mgr_is_avb_used() {
static bool result = init_is_avb_used();
return result;
}
int fs_mgr_load_vbmeta_images(struct fstab* fstab) {
FS_MGR_CHECK(fstab != nullptr);
// Gets the expected hash value of vbmeta images from
// kernel cmdline.
if (!load_vbmeta_prop(&fs_mgr_vbmeta_prop)) {
return FS_MGR_SETUP_AVB_FAIL;
FsManagerAvbUniquePtr FsManagerAvbHandle::Open(const std::string& device_file_by_name_prefix) {
if (device_file_by_name_prefix.empty()) {
LERROR << "Missing device file by-name prefix";
return nullptr;
}
fs_mgr_avb_ops = fs_mgr_dummy_avb_ops_new(fstab);
if (fs_mgr_avb_ops == nullptr) {
LERROR << "Failed to allocate dummy avb_ops";
return FS_MGR_SETUP_AVB_FAIL;
// Gets the expected hash value of vbmeta images from kernel cmdline.
std::unique_ptr<FsManagerAvbVerifier> avb_verifier = FsManagerAvbVerifier::Create();
if (!avb_verifier) {
LERROR << "Failed to create FsManagerAvbVerifier";
return nullptr;
}
// Invokes avb_slot_verify() to load and verify all vbmeta images.
// Sets requested_partitions to nullptr as it's to copy the contents
// of HASH partitions into fs_mgr_avb_verify_data, which is not required as
// fs_mgr only deals with HASHTREE partitions.
const char *requested_partitions[] = {nullptr};
std::string ab_suffix;
std::string slot;
if (fs_mgr_get_boot_config("slot", &slot)) {
ab_suffix = "_" + slot;
} else {
// remove slot_suffix once bootloaders update to new androidboot.slot param
fs_mgr_get_boot_config("slot_suffix", &ab_suffix);
FsManagerAvbUniquePtr avb_handle(new FsManagerAvbHandle());
if (!avb_handle) {
LERROR << "Failed to allocate FsManagerAvbHandle";
return nullptr;
}
AvbSlotVerifyResult verify_result =
avb_slot_verify(fs_mgr_avb_ops, requested_partitions, ab_suffix.c_str(),
fs_mgr_vbmeta_prop.allow_verification_error, &fs_mgr_avb_verify_data);
FsManagerAvbOps avb_ops(device_file_by_name_prefix);
AvbSlotVerifyResult verify_result = avb_ops.AvbSlotVerify(
fs_mgr_get_slot_suffix(), avb_verifier->IsDeviceUnlocked(), &avb_handle->avb_slot_data_);
// Only allow two verify results:
// - AVB_SLOT_VERIFY_RESULT_OK.
// - AVB_SLOT_VERIFY_RESULT_ERROR_VERIFICATION (for UNLOCKED state).
if (verify_result == AVB_SLOT_VERIFY_RESULT_ERROR_VERIFICATION) {
if (!fs_mgr_vbmeta_prop.allow_verification_error) {
if (!avb_verifier->IsDeviceUnlocked()) {
LERROR << "ERROR_VERIFICATION isn't allowed";
goto fail;
return nullptr;
}
} else if (verify_result != AVB_SLOT_VERIFY_RESULT_OK) {
LERROR << "avb_slot_verify failed, result: " << verify_result;
goto fail;
return nullptr;
}
// Verifies vbmeta images against the digest passed from bootloader.
if (!verify_vbmeta_images(*fs_mgr_avb_verify_data, fs_mgr_vbmeta_prop)) {
LERROR << "verify_vbmeta_images failed";
goto fail;
if (!avb_verifier->VerifyVbmetaImages(*avb_handle->avb_slot_data_)) {
LERROR << "VerifyVbmetaImages failed";
return nullptr;
} else {
// Checks whether FLAGS_HASHTREE_DISABLED is set.
AvbVBMetaImageHeader vbmeta_header;
avb_vbmeta_image_header_to_host_byte_order(
(AvbVBMetaImageHeader*)fs_mgr_avb_verify_data->vbmeta_images[0].vbmeta_data,
(AvbVBMetaImageHeader*)avb_handle->avb_slot_data_->vbmeta_images[0].vbmeta_data,
&vbmeta_header);
bool hashtree_disabled =
((AvbVBMetaImageFlags)vbmeta_header.flags & AVB_VBMETA_IMAGE_FLAGS_HASHTREE_DISABLED);
if (hashtree_disabled) {
return FS_MGR_SETUP_AVB_HASHTREE_DISABLED;
avb_handle->status_ = kFsManagerAvbHandleHashtreeDisabled;
return avb_handle;
}
}
if (verify_result == AVB_SLOT_VERIFY_RESULT_OK) {
return FS_MGR_SETUP_AVB_SUCCESS;
avb_handle->status_ = kFsManagerAvbHandleSuccess;
return avb_handle;
}
fail:
fs_mgr_unload_vbmeta_images();
return FS_MGR_SETUP_AVB_FAIL;
return nullptr;
}
void fs_mgr_unload_vbmeta_images() {
if (fs_mgr_avb_verify_data != nullptr) {
avb_slot_verify_data_free(fs_mgr_avb_verify_data);
bool FsManagerAvbHandle::SetUpAvb(struct fstab_rec* fstab_entry, bool wait_for_verity_dev) {
if (!fstab_entry) return false;
if (!avb_slot_data_ || avb_slot_data_->num_vbmeta_images < 1) {
return false;
}
if (fs_mgr_avb_ops != nullptr) {
fs_mgr_dummy_avb_ops_free(fs_mgr_avb_ops);
}
}
int fs_mgr_setup_avb(struct fstab_rec* fstab_entry) {
if (!fstab_entry || !fs_mgr_avb_verify_data || fs_mgr_avb_verify_data->num_vbmeta_images < 1) {
return FS_MGR_SETUP_AVB_FAIL;
if (status_ == kFsManagerAvbHandleHashtreeDisabled) {
LINFO << "AVB HASHTREE disabled on:" << fstab_entry->mount_point;
return true;
}
if (status_ != kFsManagerAvbHandleSuccess) return false;
std::string partition_name(basename(fstab_entry->mount_point));
if (!avb_validate_utf8((const uint8_t*)partition_name.c_str(), partition_name.length())) {
LERROR << "Partition name: " << partition_name.c_str() << " is not valid UTF-8.";
return FS_MGR_SETUP_AVB_FAIL;
return false;
}
AvbHashtreeDescriptor hashtree_descriptor;
std::string salt;
std::string root_digest;
if (!get_hashtree_descriptor(partition_name, *fs_mgr_avb_verify_data, &hashtree_descriptor,
&salt, &root_digest)) {
return FS_MGR_SETUP_AVB_FAIL;
if (!get_hashtree_descriptor(partition_name, *avb_slot_data_, &hashtree_descriptor, &salt,
&root_digest)) {
return false;
}
// Converts HASHTREE descriptor to verity_table_params.
if (!hashtree_dm_verity_setup(fstab_entry, hashtree_descriptor, salt, root_digest)) {
return FS_MGR_SETUP_AVB_FAIL;
if (!hashtree_dm_verity_setup(fstab_entry, hashtree_descriptor, salt, root_digest,
wait_for_verity_dev)) {
return false;
}
return FS_MGR_SETUP_AVB_SUCCESS;
return true;
}

View File

@ -39,91 +39,10 @@
#include "fs_mgr_avb_ops.h"
#include "fs_mgr_priv.h"
static std::string fstab_by_name_prefix;
static std::string extract_by_name_prefix(struct fstab* fstab) {
// In AVB, we can assume that there's an entry for the /misc mount
// point in the fstab file and use that to get the device file for
// the misc partition. The device needs not to have an actual /misc
// partition. Then returns the prefix by removing the trailing "misc":
//
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/misc ->
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/
struct fstab_rec* fstab_entry = fs_mgr_get_entry_for_mount_point(fstab, "/misc");
if (fstab_entry == nullptr) {
LERROR << "/misc mount point not found in fstab";
return "";
}
std::string full_path(fstab_entry->blk_device);
size_t end_slash = full_path.find_last_of("/");
return full_path.substr(0, end_slash + 1);
}
static AvbIOResult read_from_partition(AvbOps* ops ATTRIBUTE_UNUSED, const char* partition,
int64_t offset, size_t num_bytes, void* buffer,
size_t* out_num_read) {
// The input |partition| name is with ab_suffix, e.g. system_a.
// Slot suffix (e.g. _a) will be appended to the device file path
// for partitions having 'slotselect' optin in fstab file, but it
// won't be appended to the mount point.
//
// Appends |partition| to the fstab_by_name_prefix, which is obtained
// by removing the trailing "misc" from the device file of /misc mount
// point. e.g.,
//
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/ ->
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/system_a
std::string path = fstab_by_name_prefix + partition;
// Ensures the device path (a symlink created by init) is ready to
// access. fs_mgr_test_access() will test a few iterations if the
// path doesn't exist yet.
if (fs_mgr_test_access(path.c_str()) < 0) {
return AVB_IO_RESULT_ERROR_NO_SUCH_PARTITION;
}
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_CLOEXEC)));
if (fd < 0) {
PERROR << "Failed to open " << path.c_str();
return AVB_IO_RESULT_ERROR_IO;
}
// If offset is negative, interprets its absolute value as the
// number of bytes from the end of the partition.
if (offset < 0) {
off64_t total_size = lseek64(fd, 0, SEEK_END);
if (total_size == -1) {
LERROR << "Failed to lseek64 to end of the partition";
return AVB_IO_RESULT_ERROR_IO;
}
offset = total_size + offset;
// Repositions the offset to the beginning.
if (lseek64(fd, 0, SEEK_SET) == -1) {
LERROR << "Failed to lseek64 to the beginning of the partition";
return AVB_IO_RESULT_ERROR_IO;
}
}
// On Linux, we never get partial reads from block devices (except
// for EOF).
ssize_t num_read = TEMP_FAILURE_RETRY(pread64(fd, buffer, num_bytes, offset));
if (num_read < 0 || (size_t)num_read != num_bytes) {
PERROR << "Failed to read " << num_bytes << " bytes from " << path.c_str() << " offset "
<< offset;
return AVB_IO_RESULT_ERROR_IO;
}
if (out_num_read != nullptr) {
*out_num_read = num_read;
}
return AVB_IO_RESULT_OK;
static AvbIOResult read_from_partition(AvbOps* ops, const char* partition, int64_t offset,
size_t num_bytes, void* buffer, size_t* out_num_read) {
return FsManagerAvbOps::GetInstanceFromAvbOps(ops)->ReadFromPartition(
partition, offset, num_bytes, buffer, out_num_read);
}
static AvbIOResult dummy_read_rollback_index(AvbOps* ops ATTRIBUTE_UNUSED,
@ -145,7 +64,6 @@ static AvbIOResult dummy_validate_vbmeta_public_key(
// Addtionally, user-space should check
// androidboot.vbmeta.{hash_alg, size, digest} against the digest
// of all vbmeta images after invoking avb_slot_verify().
*out_is_trusted = true;
return AVB_IO_RESULT_OK;
}
@ -170,28 +88,86 @@ static AvbIOResult dummy_get_unique_guid_for_partition(AvbOps* ops ATTRIBUTE_UNU
return AVB_IO_RESULT_OK;
}
AvbOps* fs_mgr_dummy_avb_ops_new(struct fstab* fstab) {
AvbOps* ops;
fstab_by_name_prefix = extract_by_name_prefix(fstab);
if (fstab_by_name_prefix.empty()) return nullptr;
ops = (AvbOps*)calloc(1, sizeof(AvbOps));
if (ops == nullptr) {
LERROR << "Error allocating memory for AvbOps";
return nullptr;
FsManagerAvbOps::FsManagerAvbOps(const std::string& device_file_by_name_prefix)
: device_file_by_name_prefix_(device_file_by_name_prefix) {
if (device_file_by_name_prefix_.back() != '/') {
device_file_by_name_prefix_ += '/';
}
// We only need to provide the implementation of read_from_partition()
// operation since that's all what is being used by the avb_slot_verify().
// Other I/O operations are only required in bootloader but not in
// user-space so we set them as dummy operations.
avb_ops_.read_from_partition = read_from_partition;
avb_ops_.read_rollback_index = dummy_read_rollback_index;
avb_ops_.validate_vbmeta_public_key = dummy_validate_vbmeta_public_key;
avb_ops_.read_is_device_unlocked = dummy_read_is_device_unlocked;
avb_ops_.get_unique_guid_for_partition = dummy_get_unique_guid_for_partition;
// We only need these operations since that's all what is being used
// by the avb_slot_verify(); Most of them are dummy operations because
// they're only required in bootloader but not required in user-space.
ops->read_from_partition = read_from_partition;
ops->read_rollback_index = dummy_read_rollback_index;
ops->validate_vbmeta_public_key = dummy_validate_vbmeta_public_key;
ops->read_is_device_unlocked = dummy_read_is_device_unlocked;
ops->get_unique_guid_for_partition = dummy_get_unique_guid_for_partition;
return ops;
// Sets user_data for GetInstanceFromAvbOps() to convert it back to FsManagerAvbOps.
avb_ops_.user_data = this;
}
void fs_mgr_dummy_avb_ops_free(AvbOps* ops) { free(ops); }
AvbIOResult FsManagerAvbOps::ReadFromPartition(const char* partition, int64_t offset,
size_t num_bytes, void* buffer,
size_t* out_num_read) {
// Appends |partition| to the device_file_by_name_prefix_, e.g.,
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/ ->
// - /dev/block/platform/soc.0/7824900.sdhci/by-name/system_a
std::string path = device_file_by_name_prefix_ + partition;
// Ensures the device path (a symlink created by init) is ready to
// access. fs_mgr_test_access() will test a few iterations if the
// path doesn't exist yet.
if (fs_mgr_test_access(path.c_str()) < 0) {
return AVB_IO_RESULT_ERROR_NO_SUCH_PARTITION;
}
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_CLOEXEC)));
if (fd < 0) {
PERROR << "Failed to open " << path.c_str();
return AVB_IO_RESULT_ERROR_IO;
}
// If offset is negative, interprets its absolute value as the
// number of bytes from the end of the partition.
if (offset < 0) {
off64_t total_size = lseek64(fd, 0, SEEK_END);
if (total_size == -1) {
LERROR << "Failed to lseek64 to end of the partition";
return AVB_IO_RESULT_ERROR_IO;
}
offset = total_size + offset;
// Repositions the offset to the beginning.
if (lseek64(fd, 0, SEEK_SET) == -1) {
LERROR << "Failed to lseek64 to the beginning of the partition";
return AVB_IO_RESULT_ERROR_IO;
}
}
// On Linux, we never get partial reads from block devices (except
// for EOF).
ssize_t num_read = TEMP_FAILURE_RETRY(pread64(fd, buffer, num_bytes, offset));
if (num_read < 0 || (size_t)num_read != num_bytes) {
PERROR << "Failed to read " << num_bytes << " bytes from " << path.c_str() << " offset "
<< offset;
return AVB_IO_RESULT_ERROR_IO;
}
if (out_num_read != nullptr) {
*out_num_read = num_read;
}
return AVB_IO_RESULT_OK;
}
AvbSlotVerifyResult FsManagerAvbOps::AvbSlotVerify(const std::string& ab_suffix,
bool allow_verification_error,
AvbSlotVerifyData** out_data) {
// Invokes avb_slot_verify() to load and verify all vbmeta images.
// Sets requested_partitions to nullptr as it's to copy the contents
// of HASH partitions into handle>avb_slot_data_, which is not required as
// fs_mgr only deals with HASHTREE partitions.
const char* requested_partitions[] = {nullptr};
return avb_slot_verify(&avb_ops_, requested_partitions, ab_suffix.c_str(),
allow_verification_error, out_data);
}

View File

@ -29,31 +29,34 @@
#include "fs_mgr.h"
__BEGIN_DECLS
// This class provides C++ bindings to interact with libavb, a small
// self-contained piece of code that's intended to be used in bootloaders.
// It mainly contains two functions:
// - ReadFromPartition(): to read AVB metadata from a given partition.
// It provides the implementation of AvbOps.read_from_partition() when
// reading metadata through libavb.
// - AvbSlotVerify(): the C++ binding of libavb->avb_slot_verify() to
// read and verify the metadata and store it into the out_data parameter.
// The caller MUST check the integrity of metadata against the
// androidboot.vbmeta.{hash_alg, size, digest} values from /proc/cmdline.
// e.g., see class FsManagerAvbVerifier for more details.
//
class FsManagerAvbOps {
public:
FsManagerAvbOps(const std::string& device_file_by_name_prefix);
/* Allocates a "dummy" AvbOps instance solely for use in user-space.
* Returns nullptr on OOM.
*
* It mainly provides read_from_partitions() for user-space to get
* AvbSlotVerifyData.vbmeta_images[] and the caller MUST check their
* integrity against the androidboot.vbmeta.{hash_alg, size, digest}
* values from /proc/cmdline, e.g. verify_vbmeta_images()
* in fs_mgr_avb.cpp.
*
* Other I/O operations are only required in boot loader so we set
* them as dummy operations here.
* - Will allow any public key for signing.
* - returns 0 for any rollback index location.
* - returns device is unlocked regardless of the actual state.
* - returns a dummy guid for any partition.
*
* Frees with fs_mgr_dummy_avb_ops_free().
*/
AvbOps* fs_mgr_dummy_avb_ops_new(struct fstab* fstab);
static FsManagerAvbOps* GetInstanceFromAvbOps(AvbOps* ops) {
return reinterpret_cast<FsManagerAvbOps*>(ops->user_data);
}
/* Frees an AvbOps instance previously allocated with fs_mgr_avb_ops_new(). */
void fs_mgr_dummy_avb_ops_free(AvbOps* ops);
AvbIOResult ReadFromPartition(const char* partition, int64_t offset, size_t num_bytes,
void* buffer, size_t* out_num_read);
__END_DECLS
AvbSlotVerifyResult AvbSlotVerify(const std::string& ab_suffix, bool allow_verification_error,
AvbSlotVerifyData** out_data);
private:
AvbOps avb_ops_;
std::string device_file_by_name_prefix_;
};
#endif /* __CORE_FS_MGR_AVB_OPS_H */

View File

@ -572,7 +572,7 @@ static struct fstab *fs_mgr_read_fstab_file(FILE *fstab_file)
cnt++;
}
/* If an A/B partition, modify block device to be the real block device */
if (fs_mgr_update_for_slotselect(fstab) != 0) {
if (!fs_mgr_update_for_slotselect(fstab)) {
LERROR << "Error updating for slotselect";
goto err;
}
@ -814,6 +814,11 @@ int fs_mgr_is_verified(const struct fstab_rec *fstab)
return fstab->fs_mgr_flags & MF_VERIFY;
}
int fs_mgr_is_avb(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_AVB;
}
int fs_mgr_is_verifyatboot(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_VERIFYATBOOT;

View File

@ -41,8 +41,6 @@
#define PWARNING PLOG(WARNING) << FS_MGR_TAG
#define PERROR PLOG(ERROR) << FS_MGR_TAG
__BEGIN_DECLS
#define CRYPTO_TMPFS_OPTIONS "size=256m,mode=0771,uid=1000,gid=1000"
#define WAIT_TIMEOUT 20
@ -114,10 +112,9 @@ __BEGIN_DECLS
int fs_mgr_set_blk_ro(const char *blockdev);
int fs_mgr_test_access(const char *device);
int fs_mgr_update_for_slotselect(struct fstab *fstab);
bool fs_mgr_update_for_slotselect(struct fstab *fstab);
bool is_dt_compatible();
bool is_device_secure();
__END_DECLS
int load_verity_state(struct fstab_rec* fstab, int* mode);
#endif /* __CORE_FS_MGR_PRIV_H */

View File

@ -1,56 +0,0 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CORE_FS_MGR_PRIV_AVB_H
#define __CORE_FS_MGR_PRIV_AVB_H
#ifndef __cplusplus
#include <stdbool.h>
#endif
#include "fs_mgr.h"
__BEGIN_DECLS
#define FS_MGR_SETUP_AVB_HASHTREE_DISABLED (-2)
#define FS_MGR_SETUP_AVB_FAIL (-1)
#define FS_MGR_SETUP_AVB_SUCCESS 0
bool fs_mgr_is_avb_used();
/* Gets AVB metadata through external/avb/libavb for all partitions:
* AvbSlotVerifyData.vbmeta_images[] and checks their integrity
* against the androidboot.vbmeta.{hash_alg, size, digest} values
* from /proc/cmdline.
*
* Return values:
* - FS_MGR_SETUP_AVB_SUCCESS: the metadata cab be trusted.
* - FS_MGR_SETUP_AVB_FAIL: any error when reading and verifying the
* metadata, e.g. I/O error, digest value mismatch, size mismatch.
* - FS_MGR_SETUP_AVB_HASHTREE_DISABLED: to support the existing
* 'adb disable-verity' feature in Android. It's very helpful for
* developers to make the filesystem writable to allow replacing
* binaries on the device.
*/
int fs_mgr_load_vbmeta_images(struct fstab* fstab);
void fs_mgr_unload_vbmeta_images();
int fs_mgr_setup_avb(struct fstab_rec* fstab_entry);
__END_DECLS
#endif /* __CORE_FS_MGR_PRIV_AVB_H */

View File

@ -20,16 +20,18 @@
#include <openssl/sha.h>
class SHA256Hasher {
private:
private:
SHA256_CTX sha256_ctx;
uint8_t hash[SHA256_DIGEST_LENGTH];
public:
public:
enum { DIGEST_SIZE = SHA256_DIGEST_LENGTH };
SHA256Hasher() { SHA256_Init(&sha256_ctx); }
void update(const void* data, size_t data_size) { SHA256_Update(&sha256_ctx, data, data_size); }
void update(const uint8_t* data, size_t data_size) {
SHA256_Update(&sha256_ctx, data, data_size);
}
const uint8_t* finalize() {
SHA256_Final(hash, &sha256_ctx);
@ -38,11 +40,11 @@ class SHA256Hasher {
};
class SHA512Hasher {
private:
private:
SHA512_CTX sha512_ctx;
uint8_t hash[SHA512_DIGEST_LENGTH];
public:
public:
enum { DIGEST_SIZE = SHA512_DIGEST_LENGTH };
SHA512Hasher() { SHA512_Init(&sha512_ctx); }

View File

@ -16,37 +16,47 @@
#include <stdio.h>
#include <string>
#include "fs_mgr.h"
#include "fs_mgr_priv.h"
// Updates |fstab| for slot_suffix. Returns 0 on success, -1 on error.
int fs_mgr_update_for_slotselect(struct fstab *fstab)
{
// Returns "_a" or "_b" based on two possible values in kernel cmdline:
// - androidboot.slot = a or b OR
// - androidboot.slot_suffix = _a or _b
// TODO: remove slot_suffix once it's deprecated.
std::string fs_mgr_get_slot_suffix() {
std::string slot;
std::string ab_suffix;
if (fs_mgr_get_boot_config("slot", &slot)) {
ab_suffix = "_" + slot;
} else if (!fs_mgr_get_boot_config("slot_suffix", &ab_suffix)) {
ab_suffix = "";
}
return ab_suffix;
}
// Updates |fstab| for slot_suffix. Returns true on success, false on error.
bool fs_mgr_update_for_slotselect(struct fstab *fstab) {
int n;
int got_suffix = 0;
std::string suffix;
std::string ab_suffix;
for (n = 0; n < fstab->num_entries; n++) {
if (fstab->recs[n].fs_mgr_flags & MF_SLOTSELECT) {
char *tmp;
if (!got_suffix) {
std::string slot;
if (fs_mgr_get_boot_config("slot", &slot)) {
suffix = "_" + slot;
} else if (!fs_mgr_get_boot_config("slot_suffix", &suffix)) {
// remove slot_suffix once bootloaders update to new androidboot.slot param
return -1;
}
if (ab_suffix.empty()) {
ab_suffix = fs_mgr_get_slot_suffix();
// Returns false as non A/B devices should not have MF_SLOTSELECT.
if (ab_suffix.empty()) return false;
}
if (asprintf(&tmp, "%s%s", fstab->recs[n].blk_device, suffix.c_str()) > 0) {
if (asprintf(&tmp, "%s%s", fstab->recs[n].blk_device, ab_suffix.c_str()) > 0) {
free(fstab->recs[n].blk_device);
fstab->recs[n].blk_device = tmp;
} else {
return -1;
return false;
}
}
}
return 0;
return true;
}

View File

@ -653,8 +653,7 @@ static int get_verity_state_offset(struct fstab_rec *fstab, off64_t *offset)
offset);
}
static int load_verity_state(struct fstab_rec *fstab, int *mode)
{
int load_verity_state(struct fstab_rec* fstab, int* mode) {
int match = 0;
off64_t offset = 0;
@ -690,129 +689,6 @@ static int load_verity_state(struct fstab_rec *fstab, int *mode)
return read_verity_state(fstab->verity_loc, offset, mode);
}
int fs_mgr_load_verity_state(int *mode)
{
int rc = -1;
int i;
int current;
struct fstab *fstab = NULL;
/* return the default mode, unless any of the verified partitions are in
* logging mode, in which case return that */
*mode = VERITY_MODE_DEFAULT;
fstab = fs_mgr_read_fstab_default();
if (!fstab) {
LERROR << "Failed to read default fstab";
goto out;
}
for (i = 0; i < fstab->num_entries; i++) {
if (!fs_mgr_is_verified(&fstab->recs[i])) {
continue;
}
rc = load_verity_state(&fstab->recs[i], &current);
if (rc < 0) {
continue;
}
if (current != VERITY_MODE_DEFAULT) {
*mode = current;
break;
}
}
rc = 0;
out:
if (fstab) {
fs_mgr_free_fstab(fstab);
}
return rc;
}
int fs_mgr_update_verity_state(fs_mgr_verity_state_callback callback)
{
alignas(dm_ioctl) char buffer[DM_BUF_SIZE];
bool system_root = false;
std::string mount_point;
char propbuf[PROPERTY_VALUE_MAX];
const char *status;
int fd = -1;
int i;
int mode;
int rc = -1;
struct dm_ioctl *io = (struct dm_ioctl *) buffer;
struct fstab *fstab = NULL;
if (!callback) {
return -1;
}
if (fs_mgr_load_verity_state(&mode) == -1) {
return -1;
}
fd = TEMP_FAILURE_RETRY(open("/dev/device-mapper", O_RDWR | O_CLOEXEC));
if (fd == -1) {
PERROR << "Error opening device mapper";
goto out;
}
property_get("ro.build.system_root_image", propbuf, "");
system_root = !strcmp(propbuf, "true");
fstab = fs_mgr_read_fstab_default();
if (!fstab) {
LERROR << "Failed to read default fstab";
goto out;
}
for (i = 0; i < fstab->num_entries; i++) {
if (!fs_mgr_is_verified(&fstab->recs[i])) {
continue;
}
if (system_root && !strcmp(fstab->recs[i].mount_point, "/")) {
mount_point = "system";
} else {
mount_point = basename(fstab->recs[i].mount_point);
}
fs_mgr_verity_ioctl_init(io, mount_point, 0);
if (ioctl(fd, DM_TABLE_STATUS, io)) {
if (fstab->recs[i].fs_mgr_flags & MF_VERIFYATBOOT) {
status = "V";
} else {
PERROR << "Failed to query DM_TABLE_STATUS for "
<< mount_point.c_str();
continue;
}
}
status = &buffer[io->data_start + sizeof(struct dm_target_spec)];
if (*status == 'C' || *status == 'V') {
callback(&fstab->recs[i], mount_point.c_str(), mode, *status);
}
}
rc = 0;
out:
if (fstab) {
fs_mgr_free_fstab(fstab);
}
if (fd) {
close(fd);
}
return rc;
}
static void update_verity_table_blk_device(char *blk_device, char **table)
{
std::string result, word;

View File

@ -22,6 +22,12 @@
#include <stdbool.h>
#include <linux/dm-ioctl.h>
// C++ only headers
// TODO: move this into separate header files under include/fs_mgr/*.h
#ifdef __cplusplus
#include <string>
#endif
// Magic number at start of verity metadata
#define VERITY_METADATA_MAGIC_NUMBER 0xb001b001
@ -29,9 +35,7 @@
// turn verity off in userdebug builds.
#define VERITY_METADATA_MAGIC_DISABLE 0x46464f56 // "VOFF"
#ifdef __cplusplus
extern "C" {
#endif
__BEGIN_DECLS
// Verity modes
enum verity_mode {
@ -110,8 +114,8 @@ int fs_mgr_do_tmpfs_mount(const char *n_name);
int fs_mgr_unmount_all(struct fstab *fstab);
int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc,
char *real_blk_device, int size);
int fs_mgr_load_verity_state(int *mode);
int fs_mgr_update_verity_state(fs_mgr_verity_state_callback callback);
bool fs_mgr_load_verity_state(int* mode);
bool fs_mgr_update_verity_state(fs_mgr_verity_state_callback callback);
int fs_mgr_add_entry(struct fstab *fstab,
const char *mount_point, const char *fs_type,
const char *blk_device);
@ -120,6 +124,7 @@ int fs_mgr_is_voldmanaged(const struct fstab_rec *fstab);
int fs_mgr_is_nonremovable(const struct fstab_rec *fstab);
int fs_mgr_is_verified(const struct fstab_rec *fstab);
int fs_mgr_is_verifyatboot(const struct fstab_rec *fstab);
int fs_mgr_is_avb(const struct fstab_rec *fstab);
int fs_mgr_is_encryptable(const struct fstab_rec *fstab);
int fs_mgr_is_file_encrypted(const struct fstab_rec *fstab);
void fs_mgr_get_file_encryption_modes(const struct fstab_rec *fstab,
@ -142,8 +147,12 @@ int fs_mgr_do_format(struct fstab_rec *fstab, bool reserve_footer);
#define FS_MGR_SETUP_VERITY_SUCCESS 0
int fs_mgr_setup_verity(struct fstab_rec *fstab, bool wait_for_verity_dev);
__END_DECLS
// C++ only functions
// TODO: move this into separate header files under include/fs_mgr/*.h
#ifdef __cplusplus
}
std::string fs_mgr_get_slot_suffix();
#endif
#endif /* __CORE_FS_MGR_H */

View File

@ -0,0 +1,97 @@
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CORE_FS_MGR_AVB_H
#define __CORE_FS_MGR_AVB_H
#include <memory>
#include <string>
#include <libavb/libavb.h>
#include "fs_mgr.h"
enum FsManagerAvbHandleStatus {
kFsManagerAvbHandleSuccess = 0,
kFsManagerAvbHandleHashtreeDisabled = 1,
kFsManagerAvbHandleFail = 2,
};
class FsManagerAvbHandle;
using FsManagerAvbUniquePtr = std::unique_ptr<FsManagerAvbHandle>;
// Provides a factory method to return a unique_ptr pointing to itself and the
// SetUpAvb() function to extract dm-verity parameters from AVB metadata to
// load verity table into kernel through ioctl.
class FsManagerAvbHandle {
public:
// The factory method to return a FsManagerAvbUniquePtr that holds
// the verified AVB (external/avb) metadata of all verified partitions
// in avb_slot_data_.vbmeta_images[].
//
// The metadata is checked against the following values from /proc/cmdline.
// - androidboot.vbmeta.{hash_alg, size, digest}.
//
// A typical usage will be:
// - FsManagerAvbUniquePtr handle = FsManagerAvbHandle::Open();
//
// Possible return values:
// - nullptr: any error when reading and verifying the metadata,
// e.g., I/O error, digest value mismatch, size mismatch, etc.
//
// - a valid unique_ptr with status kFsMgrAvbHandleHashtreeDisabled:
// to support the existing 'adb disable-verity' feature in Android.
// It's very helpful for developers to make the filesystem writable to
// allow replacing binaries on the device.
//
// - a valid unique_ptr with status kFsMgrAvbHandleSuccess: the metadata
// is verified and can be trusted.
//
static FsManagerAvbUniquePtr Open(const std::string& device_file_by_name_prefix);
// Sets up dm-verity on the given fstab entry.
// The 'wait_for_verity_dev' parameter makes this function wait for the
// verity device to get created before return.
// Returns true if the mount point is eligible to mount, it includes:
// - status_ is kFsMgrAvbHandleHashtreeDisabled or
// - status_ is kFsMgrAvbHandleSuccess and sending ioctl DM_TABLE_LOAD
// to load verity table is success.
// Otherwise, returns false.
bool SetUpAvb(fstab_rec* fstab_entry, bool wait_for_verity_dev);
bool AvbHashtreeDisabled() { return status_ == kFsManagerAvbHandleHashtreeDisabled; }
FsManagerAvbHandle(const FsManagerAvbHandle&) = delete; // no copy
FsManagerAvbHandle& operator=(const FsManagerAvbHandle&) = delete; // no assignment
FsManagerAvbHandle(FsManagerAvbHandle&&) noexcept = delete; // no move
FsManagerAvbHandle& operator=(FsManagerAvbHandle&&) noexcept = delete; // no move assignment
~FsManagerAvbHandle() {
if (avb_slot_data_) {
avb_slot_verify_data_free(avb_slot_data_);
}
};
protected:
FsManagerAvbHandle() : avb_slot_data_(nullptr), status_(kFsManagerAvbHandleFail) {}
private:
AvbSlotVerifyData* avb_slot_data_;
FsManagerAvbHandleStatus status_;
};
#endif /* __CORE_FS_MGR_AVB_H */

View File

@ -109,8 +109,8 @@ LOCAL_STATIC_LIBRARIES := \
libfec_rs \
libsquashfs_utils \
liblogwrap \
libcutils \
libext4_utils \
libcutils \
libbase \
libc \
libselinux \

View File

@ -678,11 +678,11 @@ static int do_sysclktz(const std::vector<std::string>& args) {
static int do_verity_load_state(const std::vector<std::string>& args) {
int mode = -1;
int rc = fs_mgr_load_verity_state(&mode);
if (rc == 0 && mode != VERITY_MODE_DEFAULT) {
bool loaded = fs_mgr_load_verity_state(&mode);
if (loaded && mode != VERITY_MODE_DEFAULT) {
ActionManager::GetInstance().QueueEventTrigger("verity-logging");
}
return rc;
return loaded ? 0 : 1;
}
static void verity_update_property(fstab_rec *fstab, const char *mount_point,
@ -692,7 +692,7 @@ static void verity_update_property(fstab_rec *fstab, const char *mount_point,
}
static int do_verity_update_state(const std::vector<std::string>& args) {
return fs_mgr_update_verity_state(verity_update_property);
return fs_mgr_update_verity_state(verity_update_property) ? 0 : 1;
}
static int do_write(const std::vector<std::string>& args) {

View File

@ -57,6 +57,7 @@
#include "bootchart.h"
#include "devices.h"
#include "fs_mgr.h"
#include "fs_mgr_avb.h"
#include "import_parser.h"
#include "init.h"
#include "init_parser.h"
@ -478,42 +479,73 @@ static void export_kernel_boot_props() {
}
}
static constexpr char android_dt_dir[] = "/proc/device-tree/firmware/android";
static bool is_dt_compatible() {
std::string dt_value;
std::string file_name = StringPrintf("%s/compatible", android_dt_dir);
if (android::base::ReadFileToString(file_name, &dt_value)) {
// trim the trailing '\0' out, otherwise the comparison
// will produce false-negatives.
dt_value.resize(dt_value.size() - 1);
if (dt_value == "android,firmware") {
/* Reads the content of device tree file into dt_value.
* Returns true if the read is success, false otherwise.
*/
static bool read_dt_file(const std::string& file_name, std::string* dt_value) {
if (android::base::ReadFileToString(file_name, dt_value)) {
if (!dt_value->empty()) {
dt_value->pop_back(); // Trim the trailing '\0' out.
return true;
}
}
return false;
}
static bool is_dt_fstab_compatible() {
std::string dt_value;
std::string file_name = StringPrintf("%s/%s/compatible", android_dt_dir, "fstab");
static const std::string kAndroidDtDir("/proc/device-tree/firmware/android/");
if (android::base::ReadFileToString(file_name, &dt_value)) {
dt_value.resize(dt_value.size() - 1);
if (dt_value == "android,fstab") {
static bool is_dt_value_expected(const std::string& dt_file_suffix,
const std::string& expected_value) {
std::string dt_value;
std::string file_name = kAndroidDtDir + dt_file_suffix;
if (read_dt_file(file_name, &dt_value)) {
if (dt_value == expected_value) {
return true;
}
}
return false;
}
static inline bool is_dt_compatible() {
return is_dt_value_expected("compatible", "android,firmware");
}
static inline bool is_dt_fstab_compatible() {
return is_dt_value_expected("fstab/compatible", "android,fstab");
}
static inline bool is_dt_vbmeta_compatible() {
return is_dt_value_expected("vbmeta/compatible", "android,vbmeta");
}
// Gets the vbmeta config from device tree. Specifically, the 'parts' and 'by_name_prefix'.
// /{
// firmware {
// android {
// vbmeta {
// compatible = "android,vbmeta";
// parts = "vbmeta,boot,system,vendor"
// by_name_prefix="/dev/block/platform/soc.0/f9824900.sdhci/by-name/"
// };
// };
// };
// }
static bool get_vbmeta_config_from_dt(std::string* vbmeta_partitions,
std::string* device_file_by_name_prefix) {
std::string file_name = kAndroidDtDir + "vbmeta/parts";
if (!read_dt_file(file_name, vbmeta_partitions)) return false;
file_name = kAndroidDtDir + "vbmeta/by_name_prefix";
if (!read_dt_file(file_name, device_file_by_name_prefix)) return false;
return true;
}
static void process_kernel_dt() {
if (!is_dt_compatible()) return;
std::unique_ptr<DIR, int(*)(DIR*)>dir(opendir(android_dt_dir), closedir);
std::unique_ptr<DIR, int (*)(DIR*)> dir(opendir(kAndroidDtDir.c_str()), closedir);
if (!dir) return;
std::string dt_file;
@ -523,7 +555,7 @@ static void process_kernel_dt() {
continue;
}
std::string file_name = StringPrintf("%s/%s", android_dt_dir, dp->d_name);
std::string file_name = kAndroidDtDir + dp->d_name;
android::base::ReadFileToString(file_name, &dt_file);
std::replace(dt_file.begin(), dt_file.end(), ',', '.');
@ -944,38 +976,100 @@ static void set_usb_controller() {
}
}
static bool early_mount_one(struct fstab_rec* rec) {
if (rec && fs_mgr_is_verified(rec)) {
// setup verity and create the dm-XX block device
// needed to mount this partition
int ret = fs_mgr_setup_verity(rec, false);
if (ret == FS_MGR_SETUP_VERITY_FAIL) {
PLOG(ERROR) << "early_mount: Failed to setup verity for '" << rec->mount_point << "'";
// Creates "/dev/block/dm-XX" for dm-verity by running coldboot on /sys/block/dm-XX.
static void device_init_dm_device(const std::string& dm_device) {
const std::string device_name(basename(dm_device.c_str()));
const std::string syspath = "/sys/block/" + device_name;
device_init(syspath.c_str(), [&](uevent* uevent) -> coldboot_action_t {
if (uevent->device_name && device_name == uevent->device_name) {
LOG(VERBOSE) << "early_mount: creating dm-verity device : " << dm_device;
return COLDBOOT_STOP;
}
return COLDBOOT_CONTINUE;
});
device_close();
}
static bool vboot_1_0_mount_partitions(const std::vector<fstab_rec*>& fstab_recs) {
if (fstab_recs.empty()) return false;
for (auto rec : fstab_recs) {
bool need_create_dm_device = false;
if (fs_mgr_is_verified(rec)) {
// setup verity and create the dm-XX block device
// needed to mount this partition
int ret = fs_mgr_setup_verity(rec, false /* wait_for_verity_dev */);
if (ret == FS_MGR_SETUP_VERITY_DISABLED) {
LOG(INFO) << "verity disabled for '" << rec->mount_point << "'";
} else if (ret == FS_MGR_SETUP_VERITY_SUCCESS) {
need_create_dm_device = true;
} else {
PLOG(ERROR) << "early_mount: failed to setup verity for '" << rec->mount_point
<< "'";
return false;
}
}
if (need_create_dm_device) {
// The exact block device name (rec->blk_device) is changed to "/dev/block/dm-XX".
// Need to create it because ueventd isn't started during early mount.
device_init_dm_device(rec->blk_device);
}
if (fs_mgr_do_mount_one(rec)) {
PLOG(ERROR) << "early_mount: failed to mount '" << rec->mount_point << "'";
return false;
}
// The exact block device name is added as a mount source by
// fs_mgr_setup_verity() in ->blk_device as "/dev/block/dm-XX"
// We create that device by running coldboot on /sys/block/dm-XX
std::string dm_device(basename(rec->blk_device));
std::string syspath = StringPrintf("/sys/block/%s", dm_device.c_str());
device_init(syspath.c_str(), [&](uevent* uevent) -> coldboot_action_t {
if (uevent->device_name && !strcmp(dm_device.c_str(), uevent->device_name)) {
LOG(VERBOSE) << "early_mount: creating dm-verity device : " << dm_device;
return COLDBOOT_STOP;
}
return COLDBOOT_CONTINUE;
});
}
if (rec && fs_mgr_do_mount_one(rec)) {
PLOG(ERROR) << "early_mount: Failed to mount '" << rec->mount_point << "'";
return false;
}
return true;
}
static bool vboot_2_0_mount_partitions(const std::vector<fstab_rec*>& fstab_recs,
const std::string& device_file_by_name_prefix) {
if (fstab_recs.empty()) return false;
FsManagerAvbUniquePtr avb_handle = FsManagerAvbHandle::Open(device_file_by_name_prefix);
if (!avb_handle) {
LOG(INFO) << "Failed to Open FsManagerAvbHandle";
return false;
}
for (auto rec : fstab_recs) {
bool need_create_dm_device = false;
if (fs_mgr_is_avb(rec)) {
if (avb_handle->AvbHashtreeDisabled()) {
LOG(INFO) << "avb hashtree disabled for '" << rec->mount_point << "'";
} else if (avb_handle->SetUpAvb(rec, false /* wait_for_verity_dev */)) {
need_create_dm_device = true;
} else {
PLOG(ERROR) << "early_mount: failed to set up AVB on partition: '"
<< rec->mount_point << "'";
return false;
}
}
if (need_create_dm_device) {
// The exact block device name (rec->blk_device) is changed to "/dev/block/dm-XX".
// Need to create it because ueventd isn't started during early mount.
device_init_dm_device(rec->blk_device);
}
if (fs_mgr_do_mount_one(rec)) {
PLOG(ERROR) << "early_mount: failed to mount '" << rec->mount_point << "'";
return false;
}
}
return true;
}
static bool mount_early_partitions(const std::vector<fstab_rec*>& fstab_recs,
const std::string& device_file_by_name_prefix) {
if (is_dt_vbmeta_compatible()) { // AVB (external/avb) is used to setup dm-verity.
return vboot_2_0_mount_partitions(fstab_recs, device_file_by_name_prefix);
} else {
return vboot_1_0_mount_partitions(fstab_recs);
}
}
// Creates devices with uevent->partition_name matching one in the in/out
// partition_names. Note that the partition_names MUST have A/B suffix
// when A/B is used. Found partitions will then be removed from the
@ -1018,12 +1112,10 @@ static void early_device_init(std::set<std::string>* partition_names) {
});
}
static bool get_early_partitions(const std::vector<fstab_rec*>& early_fstab_recs,
std::set<std::string>* out_partitions, bool* out_need_verity) {
static bool vboot_1_0_early_partitions(const std::vector<fstab_rec*>& early_fstab_recs,
std::set<std::string>* out_partitions,
bool* out_need_verity) {
std::string meta_partition;
out_partitions->clear();
*out_need_verity = false;
for (auto fstab_rec : early_fstab_recs) {
// don't allow verifyatboot for early mounted partitions
if (fs_mgr_is_verifyatboot(fstab_rec)) {
@ -1062,6 +1154,40 @@ static bool get_early_partitions(const std::vector<fstab_rec*>& early_fstab_recs
return true;
}
// a.k.a. AVB (external/avb)
static bool vboot_2_0_early_partitions(std::set<std::string>* out_partitions, bool* out_need_verity,
std::string* out_device_file_by_name_prefix) {
std::string vbmeta_partitions;
if (!get_vbmeta_config_from_dt(&vbmeta_partitions, out_device_file_by_name_prefix)) {
return false;
}
// libavb verifies AVB metadata on all verified partitions at once.
// e.g., The vbmeta_partitions will be "vbmeta,boot,system,vendor"
// for libavb to verify metadata, even if we only need to early mount /vendor.
std::vector<std::string> partitions = android::base::Split(vbmeta_partitions, ",");
std::string ab_suffix = fs_mgr_get_slot_suffix();
for (const auto& partition : partitions) {
out_partitions->emplace(partition + ab_suffix);
}
*out_need_verity = true;
return true;
}
static bool get_early_partitions(const std::vector<fstab_rec*>& early_fstab_recs,
std::set<std::string>* out_partitions, bool* out_need_verity,
std::string* out_device_file_by_name_prefix) {
*out_need_verity = false;
out_partitions->clear();
out_device_file_by_name_prefix->clear();
if (is_dt_vbmeta_compatible()) { // AVB (external/avb) is used to setup dm-verity.
return vboot_2_0_early_partitions(out_partitions, out_need_verity,
out_device_file_by_name_prefix);
} else {
return vboot_1_0_early_partitions(early_fstab_recs, out_partitions, out_need_verity);
}
}
/* Early mount vendor and ODM partitions. The fstab is read from device-tree. */
static bool early_mount() {
// skip early mount if we're in recovery mode
@ -1096,9 +1222,11 @@ static bool early_mount() {
if (early_fstab_recs.empty()) return true;
bool need_verity;
std::string device_file_by_name_prefix;
std::set<std::string> partition_names;
// partition_names MUST have A/B suffix when A/B is used
if (!get_early_partitions(early_fstab_recs, &partition_names, &need_verity)) {
if (!get_early_partitions(early_fstab_recs, &partition_names, &need_verity,
&device_file_by_name_prefix)) {
return false;
}
@ -1121,10 +1249,9 @@ static bool early_mount() {
[&](uevent* uevent) -> coldboot_action_t { return COLDBOOT_STOP; });
}
for (auto fstab_rec : early_fstab_recs) {
if (!early_mount_one(fstab_rec)) goto done;
if (mount_early_partitions(early_fstab_recs, device_file_by_name_prefix)) {
success = true;
}
success = true;
done:
device_close();