am 09bd79c1: am d068e5ae: Merge "pixelflinger: Provide more scanline shortcut functions."

* commit '09bd79c1c9f66f4b77969c3ec14bf62b29911ff5':
  pixelflinger: Provide more scanline shortcut functions.
This commit is contained in:
David 'Digit' Turner 2011-04-26 10:24:18 -07:00 committed by Android Git Automerger
commit f315896f17
1 changed files with 844 additions and 42 deletions

View File

@ -1,6 +1,6 @@
/* libs/pixelflinger/scanline.cpp
**
** Copyright 2006, The Android Open Source Project
** Copyright 2006-2011, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
@ -57,6 +57,11 @@
#define DEBUG__CODEGEN_ONLY 0
/* Set to 1 to dump to the log the states that need a new
* code-generated scanline callback, i.e. those that don't
* have a corresponding shortcut function.
*/
#define DEBUG_NEEDS 0
#define ASSEMBLY_SCRATCH_SIZE 2048
@ -79,8 +84,21 @@ static void scanline(context_t* c);
static void scanline_perspective(context_t* c);
static void scanline_perspective_single(context_t* c);
static void scanline_t32cb16blend(context_t* c);
static void scanline_t32cb16blend_dither(context_t* c);
static void scanline_t32cb16blend_srca(context_t* c);
static void scanline_t32cb16blend_clamp(context_t* c);
static void scanline_t32cb16blend_clamp_dither(context_t* c);
static void scanline_t32cb16blend_clamp_mod(context_t* c);
static void scanline_x32cb16blend_clamp_mod(context_t* c);
static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
static void scanline_t32cb16(context_t* c);
static void scanline_t32cb16_dither(context_t* c);
static void scanline_t32cb16_clamp(context_t* c);
static void scanline_t32cb16_clamp_dither(context_t* c);
static void scanline_col32cb16blend(context_t* c);
static void scanline_t16cb16_clamp(context_t* c);
static void scanline_t16cb16blend_clamp_mod(context_t* c);
static void scanline_memcpy(context_t* c);
static void scanline_memset8(context_t* c);
static void scanline_memset16(context_t* c);
@ -99,6 +117,13 @@ extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t
// ----------------------------------------------------------------------------
static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix)
{
return uint16_t( ((pix << 8) & 0xf800) |
((pix >> 5) & 0x07e0) |
((pix >> 19) & 0x001f) );
}
struct shortcut_t {
needs_filter_t filter;
const char* desc;
@ -107,13 +132,95 @@ struct shortcut_t {
};
// Keep in sync with needs
/* To understand the values here, have a look at:
* system/core/include/private/pixelflinger/ggl_context.h
*
* Especially the lines defining and using GGL_RESERVE_NEEDS
*
* Quick reminders:
* - the last nibble of the first value is the destination buffer format.
* - the last nibble of the third value is the source texture format
* - formats: 4=rgb565 1=abgr8888 2=xbgr8888
*
* In the descriptions below:
*
* SRC means we copy the source pixels to the destination
*
* SRC_OVER means we blend the source pixels to the destination
* with dstFactor = 1-srcA, srcFactor=1 (premultiplied source).
* This mode is otherwise called 'blend'.
*
* SRCA_OVER means we blend the source pixels to the destination
* with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
* This mode is otherwise called 'blend_srca'
*
* clamp means we fetch source pixels from a texture with u/v clamping
*
* mod means the source pixels are modulated (multiplied) by the
* a/r/g/b of the current context's color. Typically used for
* fade-in / fade-out.
*
* dither means we dither 32 bit values to 16 bits
*/
static shortcut_t shortcuts[] = {
{ { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, blend", scanline_t32cb16blend, init_y_noop },
"565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
{ { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx", scanline_t32cb16, init_y_noop },
"565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop },
/* same as first entry, but with dithering */
{ { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
/* same as second entry, but with dithering */
{ { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop },
/* this is used during the boot animation - CHEAT: ignore dithering */
{ { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
/* special case for arbitrary texture coordinates (think scaling) */
{ { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
{ { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
/* another case used during emulation */
{ { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
/* and this */
{ { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
{ { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
{ { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
{ { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
{ { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
{ { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
{ { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
{ { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y },
{ { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y },
{ { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
"565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed },
@ -243,6 +350,12 @@ static void pick_scanline(context_t* c)
}
}
#ifdef DEBUG_NEEDS
LOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
c->state.needs.n, c->state.needs.p,
c->state.needs.t[0], c->state.needs.t[1]);
#endif
#endif // DEBUG__CODEGEN_ONLY
c->init_y = init_y;
@ -797,6 +910,678 @@ discard:
#pragma mark Scanline
#endif
/* Used to parse a 32-bit source texture linearly. Usage is:
*
* horz_iterator32 hi(context);
* while (...) {
* uint32_t src_pixel = hi.get_pixel32();
* ...
* }
*
* Use only for one-to-one texture mapping.
*/
struct horz_iterator32 {
horz_iterator32(context_t* c) {
const int x = c->iterators.xl;
const int y = c->iterators.y;
texture_t& tx = c->state.texture[0];
const int32_t u = (tx.shade.is0>>16) + x;
const int32_t v = (tx.shade.it0>>16) + y;
m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
}
uint32_t get_pixel32() {
return *m_src++;
}
protected:
uint32_t* m_src;
};
/* A variant for 16-bit source textures. */
struct horz_iterator16 {
horz_iterator16(context_t* c) {
const int x = c->iterators.xl;
const int y = c->iterators.y;
texture_t& tx = c->state.texture[0];
const int32_t u = (tx.shade.is0>>16) + x;
const int32_t v = (tx.shade.it0>>16) + y;
m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
}
uint16_t get_pixel16() {
return *m_src++;
}
protected:
uint16_t* m_src;
};
/* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
* After initialization, call get_src16() or get_src32() to get the current
* texture pixel value.
*/
struct clamp_iterator {
clamp_iterator(context_t* c) {
const int xs = c->iterators.xl;
texture_t& tx = c->state.texture[0];
texture_iterators_t& ti = tx.iterators;
m_s = (xs * ti.dsdx) + ti.ydsdy;
m_t = (xs * ti.dtdx) + ti.ydtdy;
m_ds = ti.dsdx;
m_dt = ti.dtdx;
m_width_m1 = tx.surface.width - 1;
m_height_m1 = tx.surface.height - 1;
m_data = tx.surface.data;
m_stride = tx.surface.stride;
}
uint16_t get_pixel16() {
int u, v;
get_uv(u, v);
uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
return src[0];
}
uint32_t get_pixel32() {
int u, v;
get_uv(u, v);
uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
return src[0];
}
private:
void get_uv(int& u, int& v) {
int uu = m_s >> 16;
int vv = m_t >> 16;
if (uu < 0)
uu = 0;
if (uu > m_width_m1)
uu = m_width_m1;
if (vv < 0)
vv = 0;
if (vv > m_height_m1)
vv = m_height_m1;
u = uu;
v = vv;
m_s += m_ds;
m_t += m_dt;
}
GGLfixed m_s, m_t;
GGLfixed m_ds, m_dt;
int m_width_m1, m_height_m1;
uint8_t* m_data;
int m_stride;
};
/*
* The 'horizontal clamp iterator' variant corresponds to the case where
* the 'v' coordinate doesn't change. This is useful to avoid one mult and
* extra adds / checks per pixels, if the blending/processing operation after
* this is very fast.
*/
static int is_context_horizontal(const context_t* c) {
return (c->state.texture[0].iterators.dtdx == 0);
}
struct horz_clamp_iterator {
uint16_t get_pixel16() {
int u = m_s >> 16;
m_s += m_ds;
if (u < 0)
u = 0;
if (u > m_width_m1)
u = m_width_m1;
const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
return src[u];
}
uint32_t get_pixel32() {
int u = m_s >> 16;
m_s += m_ds;
if (u < 0)
u = 0;
if (u > m_width_m1)
u = m_width_m1;
const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
return src[u];
}
protected:
void init(const context_t* c, int shift);
GGLfixed m_s;
GGLfixed m_ds;
int m_width_m1;
const uint8_t* m_data;
};
void horz_clamp_iterator::init(const context_t* c, int shift)
{
const int xs = c->iterators.xl;
const texture_t& tx = c->state.texture[0];
const texture_iterators_t& ti = tx.iterators;
m_s = (xs * ti.dsdx) + ti.ydsdy;
m_ds = ti.dsdx;
m_width_m1 = tx.surface.width-1;
m_data = tx.surface.data;
GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
int v = t >> 16;
if (v < 0)
v = 0;
else if (v >= (int)tx.surface.height)
v = (int)tx.surface.height-1;
m_data += (tx.surface.stride*v) << shift;
}
struct horz_clamp_iterator16 : horz_clamp_iterator {
horz_clamp_iterator16(const context_t* c) {
init(c,1);
};
};
struct horz_clamp_iterator32 : horz_clamp_iterator {
horz_clamp_iterator32(context_t* c) {
init(c,2);
};
};
/* This is used to perform dithering operations.
*/
struct ditherer {
ditherer(const context_t* c) {
const int x = c->iterators.xl;
const int y = c->iterators.y;
m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
m_index = x & GGL_DITHER_MASK;
}
void step(void) {
m_index++;
}
int get_value(void) {
int ret = m_line[m_index & GGL_DITHER_MASK];
m_index++;
return ret;
}
uint16_t abgr8888ToRgb565(uint32_t s) {
uint32_t r = s & 0xff;
uint32_t g = (s >> 8) & 0xff;
uint32_t b = (s >> 16) & 0xff;
return rgb888ToRgb565(r,g,b);
}
/* The following assumes that r/g/b are in the 0..255 range each */
uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
int threshold = get_value();
/* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
r += (threshold >> (GGL_DITHER_BITS-8 +5));
g += (threshold >> (GGL_DITHER_BITS-8 +6));
b += (threshold >> (GGL_DITHER_BITS-8 +5));
if (r > 0xff)
r = 0xff;
if (g > 0xff)
g = 0xff;
if (b > 0xff)
b = 0xff;
return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
}
protected:
const uint8_t* m_line;
int m_index;
};
/* This structure is used to blend (SRC_OVER) 32-bit source pixels
* onto 16-bit destination ones. Usage is simply:
*
* blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
*/
struct blender_32to16 {
blender_32to16(context_t* c) { }
void write(uint32_t s, uint16_t* dst) {
if (s == 0)
return;
s = GGL_RGBA_TO_HOST(s);
int sA = (s>>24);
if (sA == 0xff) {
*dst = convertAbgr8888ToRgb565(s);
} else {
int f = 0x100 - (sA + (sA>>7));
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR += (f*dR)>>8;
sG += (f*dG)>>8;
sB += (f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
}
void write(uint32_t s, uint16_t* dst, ditherer& di) {
if (s == 0) {
di.step();
return;
}
s = GGL_RGBA_TO_HOST(s);
int sA = (s>>24);
if (sA == 0xff) {
*dst = di.abgr8888ToRgb565(s);
} else {
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
int f = 0x100 - (sA + (sA>>7));
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = ((sR << 8) + f*dR + threshold)>>8;
sG = ((sG << 8) + f*dG + threshold)>>8;
sB = ((sB << 8) + f*dB + threshold)>>8;
if (sR > 0x1f) sR = 0x1f;
if (sG > 0x3f) sG = 0x3f;
if (sB > 0x1f) sB = 0x1f;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
}
};
/* This blender does the same for the 'blend_srca' operation.
* where dstFactor=srcA*(1-srcA) srcFactor=srcA
*/
struct blender_32to16_srcA {
blender_32to16_srcA(const context_t* c) { }
void write(uint32_t s, uint16_t* dst) {
if (!s) {
return;
}
uint16_t d = *dst;
s = GGL_RGBA_TO_HOST(s);
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
int sA = (s>>24);
int f1 = (sA + (sA>>7));
int f2 = 0x100-f1;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (f1*sR + f2*dR)>>8;
sG = (f1*sG + f2*dG)>>8;
sB = (f1*sB + f2*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* Common init code the modulating blenders */
struct blender_modulate {
void init(const context_t* c) {
const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
m_r = r + (r >> 7);
m_g = g + (g >> 7);
m_b = b + (b >> 7);
m_a = a + (a >> 7);
}
protected:
int m_r, m_g, m_b, m_a;
};
/* This blender does a normal blend after modulation.
*/
struct blender_32to16_modulate : blender_modulate {
blender_32to16_modulate(const context_t* c) {
init(c);
}
void write(uint32_t s, uint16_t* dst) {
// blend source and destination
if (!s) {
return;
}
s = GGL_RGBA_TO_HOST(s);
/* We need to modulate s */
uint32_t sA = (s >> 24);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
sA = (sA*m_a) >> 8;
/* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
/* Now do a normal blend */
int f = 0x100 - (sA + (sA>>7));
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR)>>8;
sG = (sG + f*dG)>>8;
sB = (sB + f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
void write(uint32_t s, uint16_t* dst, ditherer& di) {
// blend source and destination
if (!s) {
di.step();
return;
}
s = GGL_RGBA_TO_HOST(s);
/* We need to modulate s */
uint32_t sA = (s >> 24);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
sA = (sA*m_a) >> 8;
/* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
/* Scale threshold to 0.8 fixed float format */
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
int f = 0x100 - (sA + (sA>>7));
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR + threshold)>>8;
sG = (sG + f*dG + threshold)>>8;
sB = (sB + f*dB + threshold)>>8;
if (sR > 0x1f) sR = 0x1f;
if (sG > 0x3f) sG = 0x3f;
if (sB > 0x1f) sB = 0x1f;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
struct blender_x32to16_modulate : blender_modulate {
blender_x32to16_modulate(const context_t* c) {
init(c);
}
void write(uint32_t s, uint16_t* dst) {
s = GGL_RGBA_TO_HOST(s);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
/* Keep R/G/B in 5.8 or 6.8 format */
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
int f = 0x100 - m_a;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR)>>8;
sG = (sG + f*dG)>>8;
sB = (sB + f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
void write(uint32_t s, uint16_t* dst, ditherer& di) {
s = GGL_RGBA_TO_HOST(s);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
/* Now do a normal blend */
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
int f = 0x100 - m_a;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR + threshold)>>8;
sG = (sG + f*dG + threshold)>>8;
sB = (sB + f*dB + threshold)>>8;
if (sR > 0x1f) sR = 0x1f;
if (sG > 0x3f) sG = 0x3f;
if (sB > 0x1f) sB = 0x1f;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* Same as above, but source is 16bit rgb565 */
struct blender_16to16_modulate : blender_modulate {
blender_16to16_modulate(const context_t* c) {
init(c);
}
void write(uint16_t s16, uint16_t* dst) {
uint32_t s = s16;
uint32_t sR = s >> 11;
uint32_t sG = (s >> 5) & 0x3f;
uint32_t sB = s & 0x1f;
sR = (sR*m_r);
sG = (sG*m_g);
sB = (sB*m_b);
int f = 0x100 - m_a;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR)>>8;
sG = (sG + f*dG)>>8;
sB = (sB + f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* This is used to iterate over a 16-bit destination color buffer.
* Usage is:
*
* dst_iterator16 di(context);
* while (di.count--) {
* <do stuff with dest pixel at di.dst>
* di.dst++;
* }
*/
struct dst_iterator16 {
dst_iterator16(const context_t* c) {
const int x = c->iterators.xl;
const int width = c->iterators.xr - x;
const int32_t y = c->iterators.y;
const surface_t* cb = &(c->state.buffers.color);
count = width;
dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
}
int count;
uint16_t* dst;
};
static void scanline_t32cb16_clamp(context_t* c)
{
dst_iterator16 di(c);
if (is_context_horizontal(c)) {
/* Special case for simple horizontal scaling */
horz_clamp_iterator32 ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = convertAbgr8888ToRgb565(s);
}
} else {
/* General case */
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = convertAbgr8888ToRgb565(s);
}
}
}
static void scanline_t32cb16_dither(context_t* c)
{
horz_iterator32 si(c);
dst_iterator16 di(c);
ditherer dither(c);
while (di.count--) {
uint32_t s = si.get_pixel32();
*di.dst++ = dither.abgr8888ToRgb565(s);
}
}
static void scanline_t32cb16_clamp_dither(context_t* c)
{
dst_iterator16 di(c);
ditherer dither(c);
if (is_context_horizontal(c)) {
/* Special case for simple horizontal scaling */
horz_clamp_iterator32 ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = dither.abgr8888ToRgb565(s);
}
} else {
/* General case */
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = dither.abgr8888ToRgb565(s);
}
}
}
static void scanline_t32cb16blend_dither(context_t* c)
{
dst_iterator16 di(c);
ditherer dither(c);
blender_32to16 bl(c);
horz_iterator32 hi(c);
while (di.count--) {
uint32_t s = hi.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
static void scanline_t32cb16blend_clamp(context_t* c)
{
dst_iterator16 di(c);
blender_32to16 bl(c);
if (is_context_horizontal(c)) {
horz_clamp_iterator32 ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
} else {
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
}
}
static void scanline_t32cb16blend_clamp_dither(context_t* c)
{
dst_iterator16 di(c);
ditherer dither(c);
blender_32to16 bl(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
void scanline_t32cb16blend_clamp_mod(context_t* c)
{
dst_iterator16 di(c);
blender_32to16_modulate bl(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
}
void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
{
dst_iterator16 di(c);
blender_32to16_modulate bl(c);
ditherer dither(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
/* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
void scanline_x32cb16blend_clamp_mod(context_t* c)
{
dst_iterator16 di(c);
blender_x32to16_modulate bl(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
}
void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
{
dst_iterator16 di(c);
blender_x32to16_modulate bl(c);
ditherer dither(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
void scanline_t16cb16_clamp(context_t* c)
{
dst_iterator16 di(c);
/* Special case for simple horizontal scaling */
if (is_context_horizontal(c)) {
horz_clamp_iterator16 ci(c);
while (di.count--) {
*di.dst++ = ci.get_pixel16();
}
} else {
clamp_iterator ci(c);
while (di.count--) {
*di.dst++ = ci.get_pixel16();
}
}
}
template <typename T, typename U>
static inline __attribute__((const))
T interpolate(int y, T v0, U dvdx, U dvdy) {
@ -1322,30 +2107,24 @@ void scanline_t32cb16(context_t* c)
if (ct==1 || uint32_t(dst)&2) {
last_one:
s = GGL_RGBA_TO_HOST( *src++ );
sR = (s >> ( 3))&0x1F;
sG = (s >> ( 8+2))&0x3F;
sB = (s >> (16+3))&0x1F;
*dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
*dst++ = convertAbgr8888ToRgb565(s);
ct--;
}
while (ct >= 2) {
s = GGL_RGBA_TO_HOST( *src++ );
sR = (s >> ( 3))&0x1F;
sG = (s >> ( 8+2))&0x3F;
sB = (s >> (16+3))&0x1F;
d = (sR<<11)|(sG<<5)|sB;
s = GGL_RGBA_TO_HOST( *src++ );
sR = (s >> ( 3))&0x1F;
sG = (s >> ( 8+2))&0x3F;
sB = (s >> (16+3))&0x1F;
d |= ((sR<<11)|(sG<<5)|sB)<<16;
#if BYTE_ORDER == BIG_ENDIAN
d = (d>>16) | (d<<16);
#endif
s = GGL_RGBA_TO_HOST( *src++ );
d = convertAbgr8888ToRgb565_hi16(s);
s = GGL_RGBA_TO_HOST( *src++ );
d |= convertAbgr8888ToRgb565(s);
#else
s = GGL_RGBA_TO_HOST( *src++ );
d = convertAbgr8888ToRgb565(s);
s = GGL_RGBA_TO_HOST( *src++ );
d |= convertAbgr8888ToRgb565(s) << 16;
#endif
*dst32++ = d;
ct -= 2;
}
@ -1357,6 +2136,7 @@ last_one:
void scanline_t32cb16blend(context_t* c)
{
#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
@ -1368,33 +2148,55 @@ void scanline_t32cb16blend(context_t* c)
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
scanline_t32cb16blend_arm(dst, src, ct);
#else
while (ct--) {
uint32_t s = *src++;
if (!s) {
dst++;
continue;
}
uint16_t d = *dst;
s = GGL_RGBA_TO_HOST(s);
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
int sA = (s>>24);
int f = 0x100 - (sA + (sA>>7));
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR += (f*dR)>>8;
sG += (f*dG)>>8;
sB += (f*dB)>>8;
*dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
dst_iterator16 di(c);
horz_iterator32 hi(c);
blender_32to16 bl(c);
while (di.count--) {
uint32_t s = hi.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
#endif
}
void scanline_t32cb16blend_srca(context_t* c)
{
dst_iterator16 di(c);
horz_iterator32 hi(c);
blender_32to16_srcA blender(c);
while (di.count--) {
uint32_t s = hi.get_pixel32();
blender.write(s,di.dst);
di.dst++;
}
}
void scanline_t16cb16blend_clamp_mod(context_t* c)
{
const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
if (a == 0) {
return;
}
if (a == 255) {
scanline_t16cb16_clamp(c);
return;
}
dst_iterator16 di(c);
blender_16to16_modulate blender(c);
clamp_iterator ci(c);
while (di.count--) {
uint16_t s = ci.get_pixel16();
blender.write(s, di.dst);
di.dst++;
}
}
void scanline_memcpy(context_t* c)
{
int32_t x = c->iterators.xl;