/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "action.h" #include "bootchart.h" #include "devices.h" #include "import_parser.h" #include "init.h" #include "init_parser.h" #include "keychords.h" #include "log.h" #include "property_service.h" #include "service.h" #include "signal_handler.h" #include "ueventd.h" #include "util.h" #include "watchdogd.h" struct selabel_handle *sehandle; struct selabel_handle *sehandle_prop; static int property_triggers_enabled = 0; static char qemu[32]; int have_console; std::string console_name = "/dev/console"; static time_t process_needs_restart; const char *ENV[32]; bool waiting_for_exec = false; static int epoll_fd = -1; void register_epoll_handler(int fd, void (*fn)()) { epoll_event ev; ev.events = EPOLLIN; ev.data.ptr = reinterpret_cast(fn); if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) { ERROR("epoll_ctl failed: %s\n", strerror(errno)); } } /* add_environment - add "key=value" to the current environment */ int add_environment(const char *key, const char *val) { size_t n; size_t key_len = strlen(key); /* The last environment entry is reserved to terminate the list */ for (n = 0; n < (ARRAY_SIZE(ENV) - 1); n++) { /* Delete any existing entry for this key */ if (ENV[n] != NULL) { size_t entry_key_len = strcspn(ENV[n], "="); if ((entry_key_len == key_len) && (strncmp(ENV[n], key, entry_key_len) == 0)) { free((char*)ENV[n]); ENV[n] = NULL; } } /* Add entry if a free slot is available */ if (ENV[n] == NULL) { char* entry; asprintf(&entry, "%s=%s", key, val); ENV[n] = entry; return 0; } } ERROR("No env. room to store: '%s':'%s'\n", key, val); return -1; } void property_changed(const char *name, const char *value) { if (property_triggers_enabled) ActionManager::GetInstance().QueuePropertyTrigger(name, value); } static void restart_processes() { process_needs_restart = 0; ServiceManager::GetInstance(). ForEachServiceWithFlags(SVC_RESTARTING, [] (Service* s) { s->RestartIfNeeded(process_needs_restart); }); } static void msg_start(const std::string& name) { Service* svc = nullptr; std::vector vargs; size_t colon_pos = name.find(':'); if (colon_pos == std::string::npos) { svc = ServiceManager::GetInstance().FindServiceByName(name); } else { std::string service_name(name.substr(0, colon_pos)); std::string args(name.substr(colon_pos + 1)); vargs = android::base::Split(args, " "); svc = ServiceManager::GetInstance().FindServiceByName(service_name); } if (svc) { svc->Start(vargs); } else { ERROR("no such service '%s'\n", name.c_str()); } } static void msg_stop(const std::string& name) { Service* svc = ServiceManager::GetInstance().FindServiceByName(name); if (svc) { svc->Stop(); } else { ERROR("no such service '%s'\n", name.c_str()); } } static void msg_restart(const std::string& name) { Service* svc = ServiceManager::GetInstance().FindServiceByName(name); if (svc) { svc->Restart(); } else { ERROR("no such service '%s'\n", name.c_str()); } } void handle_control_message(const std::string& msg, const std::string& arg) { if (msg == "start") { msg_start(arg); } else if (msg == "stop") { msg_stop(arg); } else if (msg == "restart") { msg_restart(arg); } else { ERROR("unknown control msg '%s'\n", msg.c_str()); } } static int wait_for_coldboot_done_action(const std::vector& args) { Timer t; NOTICE("Waiting for %s...\n", COLDBOOT_DONE); // Any longer than 1s is an unreasonable length of time to delay booting. // If you're hitting this timeout, check that you didn't make your // sepolicy regular expressions too expensive (http://b/19899875). if (wait_for_file(COLDBOOT_DONE, 1)) { ERROR("Timed out waiting for %s\n", COLDBOOT_DONE); } NOTICE("Waiting for %s took %.2fs.\n", COLDBOOT_DONE, t.duration()); return 0; } /* * Writes 512 bytes of output from Hardware RNG (/dev/hw_random, backed * by Linux kernel's hw_random framework) into Linux RNG's via /dev/urandom. * Does nothing if Hardware RNG is not present. * * Since we don't yet trust the quality of Hardware RNG, these bytes are not * mixed into the primary pool of Linux RNG and the entropy estimate is left * unmodified. * * If the HW RNG device /dev/hw_random is present, we require that at least * 512 bytes read from it are written into Linux RNG. QA is expected to catch * devices/configurations where these I/O operations are blocking for a long * time. We do not reboot or halt on failures, as this is a best-effort * attempt. */ static int mix_hwrng_into_linux_rng_action(const std::vector& args) { int result = -1; int hwrandom_fd = -1; int urandom_fd = -1; char buf[512]; ssize_t chunk_size; size_t total_bytes_written = 0; hwrandom_fd = TEMP_FAILURE_RETRY( open("/dev/hw_random", O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); if (hwrandom_fd == -1) { if (errno == ENOENT) { ERROR("/dev/hw_random not found\n"); /* It's not an error to not have a Hardware RNG. */ result = 0; } else { ERROR("Failed to open /dev/hw_random: %s\n", strerror(errno)); } goto ret; } urandom_fd = TEMP_FAILURE_RETRY( open("/dev/urandom", O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); if (urandom_fd == -1) { ERROR("Failed to open /dev/urandom: %s\n", strerror(errno)); goto ret; } while (total_bytes_written < sizeof(buf)) { chunk_size = TEMP_FAILURE_RETRY( read(hwrandom_fd, buf, sizeof(buf) - total_bytes_written)); if (chunk_size == -1) { ERROR("Failed to read from /dev/hw_random: %s\n", strerror(errno)); goto ret; } else if (chunk_size == 0) { ERROR("Failed to read from /dev/hw_random: EOF\n"); goto ret; } chunk_size = TEMP_FAILURE_RETRY(write(urandom_fd, buf, chunk_size)); if (chunk_size == -1) { ERROR("Failed to write to /dev/urandom: %s\n", strerror(errno)); goto ret; } total_bytes_written += chunk_size; } INFO("Mixed %zu bytes from /dev/hw_random into /dev/urandom", total_bytes_written); result = 0; ret: if (hwrandom_fd != -1) { close(hwrandom_fd); } if (urandom_fd != -1) { close(urandom_fd); } return result; } static int keychord_init_action(const std::vector& args) { keychord_init(); return 0; } static int console_init_action(const std::vector& args) { std::string console = property_get("ro.boot.console"); if (!console.empty()) { console_name = "/dev/" + console; } int fd = open(console_name.c_str(), O_RDWR | O_CLOEXEC); if (fd >= 0) have_console = 1; close(fd); fd = open("/dev/tty0", O_WRONLY | O_CLOEXEC); if (fd >= 0) { const char *msg; msg = "\n" "\n" "\n" "\n" "\n" "\n" "\n" // console is 40 cols x 30 lines "\n" "\n" "\n" "\n" "\n" "\n" "\n" " A N D R O I D "; write(fd, msg, strlen(msg)); close(fd); } return 0; } static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) { if (key.empty()) return; if (for_emulator) { // In the emulator, export any kernel option with the "ro.kernel." prefix. property_set(android::base::StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str()); return; } if (key == "qemu") { strlcpy(qemu, value.c_str(), sizeof(qemu)); } else if (android::base::StartsWith(key, "androidboot.")) { property_set(android::base::StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(), value.c_str()); } } static void export_kernel_boot_props() { struct { const char *src_prop; const char *dst_prop; const char *default_value; } prop_map[] = { { "ro.boot.serialno", "ro.serialno", "", }, { "ro.boot.mode", "ro.bootmode", "unknown", }, { "ro.boot.baseband", "ro.baseband", "unknown", }, { "ro.boot.bootloader", "ro.bootloader", "unknown", }, { "ro.boot.hardware", "ro.hardware", "unknown", }, { "ro.boot.revision", "ro.revision", "0", }, }; for (size_t i = 0; i < ARRAY_SIZE(prop_map); i++) { std::string value = property_get(prop_map[i].src_prop); property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value); } } static void process_kernel_dt() { static const char android_dir[] = "/proc/device-tree/firmware/android"; std::string file_name = android::base::StringPrintf("%s/compatible", android_dir); std::string dt_file; android::base::ReadFileToString(file_name, &dt_file); if (!dt_file.compare("android,firmware")) { ERROR("firmware/android is not compatible with 'android,firmware'\n"); return; } std::unique_ptrdir(opendir(android_dir), closedir); if (!dir) return; struct dirent *dp; while ((dp = readdir(dir.get())) != NULL) { if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) { continue; } file_name = android::base::StringPrintf("%s/%s", android_dir, dp->d_name); android::base::ReadFileToString(file_name, &dt_file); std::replace(dt_file.begin(), dt_file.end(), ',', '.'); std::string property_name = android::base::StringPrintf("ro.boot.%s", dp->d_name); property_set(property_name.c_str(), dt_file.c_str()); } } static void process_kernel_cmdline() { // Don't expose the raw commandline to unprivileged processes. chmod("/proc/cmdline", 0440); // The first pass does the common stuff, and finds if we are in qemu. // The second pass is only necessary for qemu to export all kernel params // as properties. import_kernel_cmdline(false, import_kernel_nv); if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv); } static int queue_property_triggers_action(const std::vector& args) { ActionManager::GetInstance().QueueAllPropertyTriggers(); /* enable property triggers */ property_triggers_enabled = 1; return 0; } static void selinux_init_all_handles(void) { sehandle = selinux_android_file_context_handle(); selinux_android_set_sehandle(sehandle); sehandle_prop = selinux_android_prop_context_handle(); } enum selinux_enforcing_status { SELINUX_PERMISSIVE, SELINUX_ENFORCING }; static selinux_enforcing_status selinux_status_from_cmdline() { selinux_enforcing_status status = SELINUX_ENFORCING; import_kernel_cmdline(false, [&](const std::string& key, const std::string& value, bool in_qemu) { if (key == "androidboot.selinux" && value == "permissive") { status = SELINUX_PERMISSIVE; } }); return status; } static bool selinux_is_enforcing(void) { if (ALLOW_PERMISSIVE_SELINUX) { return selinux_status_from_cmdline() == SELINUX_ENFORCING; } return true; } int selinux_reload_policy(void) { INFO("SELinux: Attempting to reload policy files\n"); if (selinux_android_reload_policy() == -1) { return -1; } if (sehandle) selabel_close(sehandle); if (sehandle_prop) selabel_close(sehandle_prop); selinux_init_all_handles(); return 0; } static int audit_callback(void *data, security_class_t /*cls*/, char *buf, size_t len) { property_audit_data *d = reinterpret_cast(data); if (!d || !d->name || !d->cr) { ERROR("audit_callback invoked with null data arguments!"); return 0; } snprintf(buf, len, "property=%s pid=%d uid=%d gid=%d", d->name, d->cr->pid, d->cr->uid, d->cr->gid); return 0; } static void security_failure() { ERROR("Security failure; rebooting into recovery mode...\n"); android_reboot(ANDROID_RB_RESTART2, 0, "recovery"); while (true) { pause(); } // never reached } static void selinux_initialize(bool in_kernel_domain) { Timer t; selinux_callback cb; cb.func_log = selinux_klog_callback; selinux_set_callback(SELINUX_CB_LOG, cb); cb.func_audit = audit_callback; selinux_set_callback(SELINUX_CB_AUDIT, cb); if (in_kernel_domain) { INFO("Loading SELinux policy...\n"); if (selinux_android_load_policy() < 0) { ERROR("failed to load policy: %s\n", strerror(errno)); security_failure(); } bool kernel_enforcing = (security_getenforce() == 1); bool is_enforcing = selinux_is_enforcing(); if (kernel_enforcing != is_enforcing) { if (security_setenforce(is_enforcing)) { ERROR("security_setenforce(%s) failed: %s\n", is_enforcing ? "true" : "false", strerror(errno)); security_failure(); } } if (write_file("/sys/fs/selinux/checkreqprot", "0") == -1) { security_failure(); } NOTICE("(Initializing SELinux %s took %.2fs.)\n", is_enforcing ? "enforcing" : "non-enforcing", t.duration()); } else { selinux_init_all_handles(); } } int main(int argc, char** argv) { if (!strcmp(basename(argv[0]), "ueventd")) { return ueventd_main(argc, argv); } if (!strcmp(basename(argv[0]), "watchdogd")) { return watchdogd_main(argc, argv); } // Clear the umask. umask(0); add_environment("PATH", _PATH_DEFPATH); bool is_first_stage = (argc == 1) || (strcmp(argv[1], "--second-stage") != 0); // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. if (is_first_stage) { mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); #define MAKE_STR(x) __STRING(x) mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); mount("sysfs", "/sys", "sysfs", 0, NULL); } // We must have some place other than / to create the device nodes for // kmsg and null, otherwise we won't be able to remount / read-only // later on. Now that tmpfs is mounted on /dev, we can actually talk // to the outside world. open_devnull_stdio(); klog_init(); klog_set_level(KLOG_NOTICE_LEVEL); NOTICE("init %s started!\n", is_first_stage ? "first stage" : "second stage"); if (!is_first_stage) { // Indicate that booting is in progress to background fw loaders, etc. close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); property_init(); // If arguments are passed both on the command line and in DT, // properties set in DT always have priority over the command-line ones. process_kernel_dt(); process_kernel_cmdline(); // Propagate the kernel variables to internal variables // used by init as well as the current required properties. export_kernel_boot_props(); } // Set up SELinux, including loading the SELinux policy if we're in the kernel domain. selinux_initialize(is_first_stage); // If we're in the kernel domain, re-exec init to transition to the init domain now // that the SELinux policy has been loaded. if (is_first_stage) { if (restorecon("/init") == -1) { ERROR("restorecon failed: %s\n", strerror(errno)); security_failure(); } char* path = argv[0]; char* args[] = { path, const_cast("--second-stage"), nullptr }; if (execv(path, args) == -1) { ERROR("execv(\"%s\") failed: %s\n", path, strerror(errno)); security_failure(); } } // These directories were necessarily created before initial policy load // and therefore need their security context restored to the proper value. // This must happen before /dev is populated by ueventd. NOTICE("Running restorecon...\n"); restorecon("/dev"); restorecon("/dev/socket"); restorecon("/dev/__properties__"); restorecon("/property_contexts"); restorecon_recursive("/sys"); epoll_fd = epoll_create1(EPOLL_CLOEXEC); if (epoll_fd == -1) { ERROR("epoll_create1 failed: %s\n", strerror(errno)); exit(1); } signal_handler_init(); property_load_boot_defaults(); start_property_service(); const BuiltinFunctionMap function_map; Action::set_function_map(&function_map); Parser& parser = Parser::GetInstance(); parser.AddSectionParser("service",std::make_unique()); parser.AddSectionParser("on", std::make_unique()); parser.AddSectionParser("import", std::make_unique()); parser.ParseConfig("/init.rc"); ActionManager& am = ActionManager::GetInstance(); am.QueueEventTrigger("early-init"); // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev... am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done"); // ... so that we can start queuing up actions that require stuff from /dev. am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); am.QueueBuiltinAction(keychord_init_action, "keychord_init"); am.QueueBuiltinAction(console_init_action, "console_init"); // Trigger all the boot actions to get us started. am.QueueEventTrigger("init"); // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random // wasn't ready immediately after wait_for_coldboot_done am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); // Don't mount filesystems or start core system services in charger mode. std::string bootmode = property_get("ro.bootmode"); if (bootmode == "charger") { am.QueueEventTrigger("charger"); } else { am.QueueEventTrigger("late-init"); } // Run all property triggers based on current state of the properties. am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers"); while (true) { if (!waiting_for_exec) { am.ExecuteOneCommand(); restart_processes(); } int timeout = -1; if (process_needs_restart) { timeout = (process_needs_restart - gettime()) * 1000; if (timeout < 0) timeout = 0; } if (am.HasMoreCommands()) { timeout = 0; } bootchart_sample(&timeout); epoll_event ev; int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, timeout)); if (nr == -1) { ERROR("epoll_wait failed: %s\n", strerror(errno)); } else if (nr == 1) { ((void (*)()) ev.data.ptr)(); } } return 0; }