/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "action.h" #include "bootchart.h" #include "devices.h" #include "fs_mgr.h" #include "import_parser.h" #include "init.h" #include "init_parser.h" #include "keychords.h" #include "log.h" #include "property_service.h" #include "service.h" #include "signal_handler.h" #include "ueventd.h" #include "util.h" #include "watchdogd.h" struct selabel_handle *sehandle; struct selabel_handle *sehandle_prop; static int property_triggers_enabled = 0; static char qemu[32]; std::string default_console = "/dev/console"; static time_t process_needs_restart; const char *ENV[32]; bool waiting_for_exec = false; static int epoll_fd = -1; void register_epoll_handler(int fd, void (*fn)()) { epoll_event ev; ev.events = EPOLLIN; ev.data.ptr = reinterpret_cast(fn); if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) { PLOG(ERROR) << "epoll_ctl failed"; } } /* add_environment - add "key=value" to the current environment */ int add_environment(const char *key, const char *val) { size_t n; size_t key_len = strlen(key); /* The last environment entry is reserved to terminate the list */ for (n = 0; n < (arraysize(ENV) - 1); n++) { /* Delete any existing entry for this key */ if (ENV[n] != NULL) { size_t entry_key_len = strcspn(ENV[n], "="); if ((entry_key_len == key_len) && (strncmp(ENV[n], key, entry_key_len) == 0)) { free((char*)ENV[n]); ENV[n] = NULL; } } /* Add entry if a free slot is available */ if (ENV[n] == NULL) { char* entry; asprintf(&entry, "%s=%s", key, val); ENV[n] = entry; return 0; } } LOG(ERROR) << "No env. room to store: '" << key << "':'" << val << "'"; return -1; } void property_changed(const char *name, const char *value) { if (property_triggers_enabled) ActionManager::GetInstance().QueuePropertyTrigger(name, value); } static void restart_processes() { process_needs_restart = 0; ServiceManager::GetInstance(). ForEachServiceWithFlags(SVC_RESTARTING, [] (Service* s) { s->RestartIfNeeded(process_needs_restart); }); } void handle_control_message(const std::string& msg, const std::string& name) { Service* svc = ServiceManager::GetInstance().FindServiceByName(name); if (svc == nullptr) { LOG(ERROR) << "no such service '" << name << "'"; return; } if (msg == "start") { svc->Start(); } else if (msg == "stop") { svc->Stop(); } else if (msg == "restart") { svc->Restart(); } else { LOG(ERROR) << "unknown control msg '" << msg << "'"; } } static int wait_for_coldboot_done_action(const std::vector& args) { Timer t; LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE "..."; // Any longer than 1s is an unreasonable length of time to delay booting. // If you're hitting this timeout, check that you didn't make your // sepolicy regular expressions too expensive (http://b/19899875). if (wait_for_file(COLDBOOT_DONE, 1)) { LOG(ERROR) << "Timed out waiting for " COLDBOOT_DONE; } LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE " took " << t.duration() << "s."; return 0; } /* * Writes 512 bytes of output from Hardware RNG (/dev/hw_random, backed * by Linux kernel's hw_random framework) into Linux RNG's via /dev/urandom. * Does nothing if Hardware RNG is not present. * * Since we don't yet trust the quality of Hardware RNG, these bytes are not * mixed into the primary pool of Linux RNG and the entropy estimate is left * unmodified. * * If the HW RNG device /dev/hw_random is present, we require that at least * 512 bytes read from it are written into Linux RNG. QA is expected to catch * devices/configurations where these I/O operations are blocking for a long * time. We do not reboot or halt on failures, as this is a best-effort * attempt. */ static int mix_hwrng_into_linux_rng_action(const std::vector& args) { int result = -1; int hwrandom_fd = -1; int urandom_fd = -1; char buf[512]; ssize_t chunk_size; size_t total_bytes_written = 0; hwrandom_fd = TEMP_FAILURE_RETRY( open("/dev/hw_random", O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); if (hwrandom_fd == -1) { if (errno == ENOENT) { LOG(ERROR) << "/dev/hw_random not found"; // It's not an error to not have a Hardware RNG. result = 0; } else { PLOG(ERROR) << "Failed to open /dev/hw_random"; } goto ret; } urandom_fd = TEMP_FAILURE_RETRY( open("/dev/urandom", O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); if (urandom_fd == -1) { PLOG(ERROR) << "Failed to open /dev/urandom"; goto ret; } while (total_bytes_written < sizeof(buf)) { chunk_size = TEMP_FAILURE_RETRY( read(hwrandom_fd, buf, sizeof(buf) - total_bytes_written)); if (chunk_size == -1) { PLOG(ERROR) << "Failed to read from /dev/hw_random"; goto ret; } else if (chunk_size == 0) { LOG(ERROR) << "Failed to read from /dev/hw_random: EOF"; goto ret; } chunk_size = TEMP_FAILURE_RETRY(write(urandom_fd, buf, chunk_size)); if (chunk_size == -1) { PLOG(ERROR) << "Failed to write to /dev/urandom"; goto ret; } total_bytes_written += chunk_size; } LOG(INFO) << "Mixed " << total_bytes_written << " bytes from /dev/hw_random into /dev/urandom"; result = 0; ret: if (hwrandom_fd != -1) { close(hwrandom_fd); } if (urandom_fd != -1) { close(urandom_fd); } return result; } static int keychord_init_action(const std::vector& args) { keychord_init(); return 0; } static int console_init_action(const std::vector& args) { std::string console = property_get("ro.boot.console"); if (!console.empty()) { default_console = "/dev/" + console; } return 0; } static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) { if (key.empty()) return; if (for_emulator) { // In the emulator, export any kernel option with the "ro.kernel." prefix. property_set(android::base::StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str()); return; } if (key == "qemu") { strlcpy(qemu, value.c_str(), sizeof(qemu)); } else if (android::base::StartsWith(key, "androidboot.")) { property_set(android::base::StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(), value.c_str()); } } static void export_oem_lock_status() { if (property_get("ro.oem_unlock_supported") != "1") { return; } std::string value = property_get("ro.boot.verifiedbootstate"); if (!value.empty()) { property_set("ro.boot.flash.locked", value == "orange" ? "0" : "1"); } } static void export_kernel_boot_props() { struct { const char *src_prop; const char *dst_prop; const char *default_value; } prop_map[] = { { "ro.boot.serialno", "ro.serialno", "", }, { "ro.boot.mode", "ro.bootmode", "unknown", }, { "ro.boot.baseband", "ro.baseband", "unknown", }, { "ro.boot.bootloader", "ro.bootloader", "unknown", }, { "ro.boot.hardware", "ro.hardware", "unknown", }, { "ro.boot.revision", "ro.revision", "0", }, }; for (size_t i = 0; i < arraysize(prop_map); i++) { std::string value = property_get(prop_map[i].src_prop); property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value); } } static void process_kernel_dt() { static const char android_dir[] = "/proc/device-tree/firmware/android"; std::string file_name = android::base::StringPrintf("%s/compatible", android_dir); std::string dt_file; android::base::ReadFileToString(file_name, &dt_file); if (!dt_file.compare("android,firmware")) { LOG(ERROR) << "firmware/android is not compatible with 'android,firmware'"; return; } std::unique_ptrdir(opendir(android_dir), closedir); if (!dir) return; struct dirent *dp; while ((dp = readdir(dir.get())) != NULL) { if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) { continue; } file_name = android::base::StringPrintf("%s/%s", android_dir, dp->d_name); android::base::ReadFileToString(file_name, &dt_file); std::replace(dt_file.begin(), dt_file.end(), ',', '.'); std::string property_name = android::base::StringPrintf("ro.boot.%s", dp->d_name); property_set(property_name.c_str(), dt_file.c_str()); } } static void process_kernel_cmdline() { // The first pass does the common stuff, and finds if we are in qemu. // The second pass is only necessary for qemu to export all kernel params // as properties. import_kernel_cmdline(false, import_kernel_nv); if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv); } static int queue_property_triggers_action(const std::vector& args) { ActionManager::GetInstance().QueueAllPropertyTriggers(); /* enable property triggers */ property_triggers_enabled = 1; return 0; } static void selinux_init_all_handles(void) { sehandle = selinux_android_file_context_handle(); selinux_android_set_sehandle(sehandle); sehandle_prop = selinux_android_prop_context_handle(); } enum selinux_enforcing_status { SELINUX_PERMISSIVE, SELINUX_ENFORCING }; static selinux_enforcing_status selinux_status_from_cmdline() { selinux_enforcing_status status = SELINUX_ENFORCING; import_kernel_cmdline(false, [&](const std::string& key, const std::string& value, bool in_qemu) { if (key == "androidboot.selinux" && value == "permissive") { status = SELINUX_PERMISSIVE; } }); return status; } static bool selinux_is_enforcing(void) { if (ALLOW_PERMISSIVE_SELINUX) { return selinux_status_from_cmdline() == SELINUX_ENFORCING; } return true; } static int audit_callback(void *data, security_class_t /*cls*/, char *buf, size_t len) { property_audit_data *d = reinterpret_cast(data); if (!d || !d->name || !d->cr) { LOG(ERROR) << "audit_callback invoked with null data arguments!"; return 0; } snprintf(buf, len, "property=%s pid=%d uid=%d gid=%d", d->name, d->cr->pid, d->cr->uid, d->cr->gid); return 0; } static void security_failure() { LOG(ERROR) << "Security failure; rebooting into recovery mode..."; android_reboot(ANDROID_RB_RESTART2, 0, "recovery"); while (true) { pause(); } // never reached } static void selinux_initialize(bool in_kernel_domain) { Timer t; selinux_callback cb; cb.func_log = selinux_klog_callback; selinux_set_callback(SELINUX_CB_LOG, cb); cb.func_audit = audit_callback; selinux_set_callback(SELINUX_CB_AUDIT, cb); if (in_kernel_domain) { LOG(INFO) << "Loading SELinux policy..."; if (selinux_android_load_policy() < 0) { PLOG(ERROR) << "failed to load policy"; security_failure(); } bool kernel_enforcing = (security_getenforce() == 1); bool is_enforcing = selinux_is_enforcing(); if (kernel_enforcing != is_enforcing) { if (security_setenforce(is_enforcing)) { PLOG(ERROR) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false"); security_failure(); } } if (write_file("/sys/fs/selinux/checkreqprot", "0") == -1) { security_failure(); } LOG(INFO) << "(Initializing SELinux " << (is_enforcing ? "enforcing" : "non-enforcing") << " took " << t.duration() << "s.)"; } else { selinux_init_all_handles(); } } // Set the UDC controller for the ConfigFS USB Gadgets. // Read the UDC controller in use from "/sys/class/udc". // In case of multiple UDC controllers select the first one. static void set_usb_controller() { std::unique_ptrdir(opendir("/sys/class/udc"), closedir); if (!dir) return; dirent* dp; while ((dp = readdir(dir.get())) != nullptr) { if (dp->d_name[0] == '.') continue; property_set("sys.usb.controller", dp->d_name); break; } } /* Returns a new path consisting of base_path and the file name in reference_path. */ static std::string get_path(const std::string& base_path, const std::string& reference_path) { std::string::size_type pos = reference_path.rfind('/'); if (pos == std::string::npos) { return base_path + '/' + reference_path; } else { return base_path + reference_path.substr(pos); } } /* Imports the fstab info from cmdline. */ static std::string import_cmdline_fstab() { std::string prefix, fstab, fstab_full; import_kernel_cmdline(false, [&](const std::string& key, const std::string& value, bool in_qemu __attribute__((__unused__))) { if (key == "android.early.prefix") { prefix = value; } else if (key == "android.early.fstab") { fstab = value; } }); if (!fstab.empty()) { // Convert "mmcblk0p09+/odm+ext4+ro+verify" to "mmcblk0p09 /odm ext4 ro verify" std::replace(fstab.begin(), fstab.end(), '+', ' '); for (const auto& entry : android::base::Split(fstab, "\n")) { fstab_full += prefix + entry + '\n'; } } return fstab_full; } /* Early mount vendor and ODM partitions. The fstab info is read from kernel cmdline. */ static void early_mount() { std::string fstab_string = import_cmdline_fstab(); if (fstab_string.empty()) { LOG(INFO) << "Failed to load vendor fstab from kernel cmdline"; return; } FILE *fstab_file = fmemopen((void *)fstab_string.c_str(), fstab_string.length(), "r"); if (!fstab_file) { PLOG(ERROR) << "Failed to open fstab string as FILE"; return; } std::unique_ptr fstab(fs_mgr_read_fstab_file(fstab_file), fs_mgr_free_fstab); fclose(fstab_file); if (!fstab) { LOG(ERROR) << "Failed to parse fstab string: " << fstab_string; return; } LOG(INFO) << "Loaded vendor fstab from cmdline"; if (early_device_socket_open()) { LOG(ERROR) << "Failed to open device uevent socket"; return; } /* Create /dev/device-mapper for dm-verity */ early_create_dev("/sys/devices/virtual/misc/device-mapper", EARLY_CHAR_DEV); for (int i = 0; i < fstab->num_entries; ++i) { struct fstab_rec *rec = &fstab->recs[i]; std::string mount_point = rec->mount_point; std::string syspath = rec->blk_device; if (mount_point != "/vendor" && mount_point != "/odm") continue; /* Create mount target under /dev/block/ from sysfs via uevent */ LOG(INFO) << "Mounting " << mount_point << " from " << syspath << "..."; char *devpath = strdup(get_path("/dev/block", syspath).c_str()); if (!devpath) { PLOG(ERROR) << "Failed to strdup dev path in early mount " << syspath; continue; } rec->blk_device = devpath; early_create_dev(syspath, EARLY_BLOCK_DEV); int rc = fs_mgr_early_setup_verity(rec); if (rc == FS_MGR_EARLY_SETUP_VERITY_SUCCESS) { /* Mount target is changed to /dev/block/dm-; initiate its creation from sysfs counterpart */ early_create_dev(get_path("/sys/devices/virtual/block", rec->blk_device), EARLY_BLOCK_DEV); } else if (rc == FS_MGR_EARLY_SETUP_VERITY_FAIL) { LOG(ERROR) << "Failed to set up dm-verity on " << rec->blk_device; continue; } else { /* FS_MGR_EARLY_SETUP_VERITY_NO_VERITY */ LOG(INFO) << "dm-verity disabled on debuggable device; mount directly on " << rec->blk_device; } mkdir(mount_point.c_str(), 0755); rc = mount(rec->blk_device, mount_point.c_str(), rec->fs_type, rec->flags, rec->fs_options); if (rc) { PLOG(ERROR) << "Failed to mount on " << rec->blk_device; } } early_device_socket_close(); } int main(int argc, char** argv) { if (!strcmp(basename(argv[0]), "ueventd")) { return ueventd_main(argc, argv); } if (!strcmp(basename(argv[0]), "watchdogd")) { return watchdogd_main(argc, argv); } // Clear the umask. umask(0); add_environment("PATH", _PATH_DEFPATH); bool is_first_stage = (argc == 1) || (strcmp(argv[1], "--second-stage") != 0); // Don't expose the raw commandline to unprivileged processes. chmod("/proc/cmdline", 0440); // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. if (is_first_stage) { mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); #define MAKE_STR(x) __STRING(x) mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); mount("sysfs", "/sys", "sysfs", 0, NULL); mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL); mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)); early_mount(); } // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually // talk to the outside world... InitKernelLogging(argv); LOG(INFO) << "init " << (is_first_stage ? "first stage" : "second stage") << " started!"; if (!is_first_stage) { // Indicate that booting is in progress to background fw loaders, etc. close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); property_init(); // If arguments are passed both on the command line and in DT, // properties set in DT always have priority over the command-line ones. process_kernel_dt(); process_kernel_cmdline(); // Propagate the kernel variables to internal variables // used by init as well as the current required properties. export_kernel_boot_props(); } // Set up SELinux, including loading the SELinux policy if we're in the kernel domain. selinux_initialize(is_first_stage); // If we're in the kernel domain, re-exec init to transition to the init domain now // that the SELinux policy has been loaded. if (is_first_stage) { if (restorecon("/init") == -1) { PLOG(ERROR) << "restorecon failed"; security_failure(); } char* path = argv[0]; char* args[] = { path, const_cast("--second-stage"), nullptr }; if (execv(path, args) == -1) { PLOG(ERROR) << "execv(\"" << path << "\") failed"; security_failure(); } } // These directories were necessarily created before initial policy load // and therefore need their security context restored to the proper value. // This must happen before /dev is populated by ueventd. LOG(INFO) << "Running restorecon..."; restorecon("/dev"); restorecon("/dev/kmsg"); restorecon("/dev/socket"); restorecon("/dev/__properties__"); restorecon("/property_contexts"); restorecon_recursive("/sys"); restorecon_recursive("/dev/block"); restorecon("/dev/device-mapper"); epoll_fd = epoll_create1(EPOLL_CLOEXEC); if (epoll_fd == -1) { PLOG(ERROR) << "epoll_create1 failed"; exit(1); } signal_handler_init(); property_load_boot_defaults(); export_oem_lock_status(); start_property_service(); set_usb_controller(); const BuiltinFunctionMap function_map; Action::set_function_map(&function_map); Parser& parser = Parser::GetInstance(); parser.AddSectionParser("service",std::make_unique()); parser.AddSectionParser("on", std::make_unique()); parser.AddSectionParser("import", std::make_unique()); parser.ParseConfig("/init.rc"); ActionManager& am = ActionManager::GetInstance(); am.QueueEventTrigger("early-init"); // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev... am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done"); // ... so that we can start queuing up actions that require stuff from /dev. am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); am.QueueBuiltinAction(keychord_init_action, "keychord_init"); am.QueueBuiltinAction(console_init_action, "console_init"); // Trigger all the boot actions to get us started. am.QueueEventTrigger("init"); // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random // wasn't ready immediately after wait_for_coldboot_done am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); // Don't mount filesystems or start core system services in charger mode. std::string bootmode = property_get("ro.bootmode"); if (bootmode == "charger") { am.QueueEventTrigger("charger"); } else { am.QueueEventTrigger("late-init"); } // Run all property triggers based on current state of the properties. am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers"); while (true) { if (!waiting_for_exec) { am.ExecuteOneCommand(); restart_processes(); } int timeout = -1; if (process_needs_restart) { timeout = (process_needs_restart - gettime()) * 1000; if (timeout < 0) timeout = 0; } if (am.HasMoreCommands()) { timeout = 0; } bootchart_sample(&timeout); epoll_event ev; int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, timeout)); if (nr == -1) { PLOG(ERROR) << "epoll_wait failed"; } else if (nr == 1) { ((void (*)()) ev.data.ptr)(); } } return 0; }