/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "service.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "init.h" #include "property_service.h" #include "util.h" using android::base::boot_clock; using android::base::GetProperty; using android::base::Join; using android::base::make_scope_guard; using android::base::ParseInt; using android::base::StartsWith; using android::base::StringPrintf; using android::base::WriteStringToFile; namespace android { namespace init { static std::string ComputeContextFromExecutable(std::string& service_name, const std::string& service_path) { std::string computed_context; char* raw_con = nullptr; char* raw_filecon = nullptr; if (getcon(&raw_con) == -1) { LOG(ERROR) << "could not get context while starting '" << service_name << "'"; return ""; } std::unique_ptr mycon(raw_con); if (getfilecon(service_path.c_str(), &raw_filecon) == -1) { LOG(ERROR) << "could not get file context while starting '" << service_name << "'"; return ""; } std::unique_ptr filecon(raw_filecon); char* new_con = nullptr; int rc = security_compute_create(mycon.get(), filecon.get(), string_to_security_class("process"), &new_con); if (rc == 0) { computed_context = new_con; free(new_con); } if (rc == 0 && computed_context == mycon.get()) { LOG(ERROR) << "service " << service_name << " does not have a SELinux domain defined"; return ""; } if (rc < 0) { LOG(ERROR) << "could not get context while starting '" << service_name << "'"; return ""; } return computed_context; } static void SetUpPidNamespace(const std::string& service_name) { constexpr unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID; // It's OK to LOG(FATAL) in this function since it's running in the first // child process. if (mount("", "/proc", "proc", kSafeFlags | MS_REMOUNT, "") == -1) { PLOG(FATAL) << "couldn't remount(/proc) for " << service_name; } if (prctl(PR_SET_NAME, service_name.c_str()) == -1) { PLOG(FATAL) << "couldn't set name for " << service_name; } pid_t child_pid = fork(); if (child_pid == -1) { PLOG(FATAL) << "couldn't fork init inside the PID namespace for " << service_name; } if (child_pid > 0) { // So that we exit with the right status. static int init_exitstatus = 0; signal(SIGTERM, [](int) { _exit(init_exitstatus); }); pid_t waited_pid; int status; while ((waited_pid = wait(&status)) > 0) { // This loop will end when there are no processes left inside the // PID namespace or when the init process inside the PID namespace // gets a signal. if (waited_pid == child_pid) { init_exitstatus = status; } } if (!WIFEXITED(init_exitstatus)) { _exit(EXIT_FAILURE); } _exit(WEXITSTATUS(init_exitstatus)); } } static void ExpandArgs(const std::vector& args, std::vector* strs) { std::vector expanded_args; expanded_args.resize(args.size()); strs->push_back(const_cast(args[0].c_str())); for (std::size_t i = 1; i < args.size(); ++i) { if (!expand_props(args[i], &expanded_args[i])) { LOG(FATAL) << args[0] << ": cannot expand '" << args[i] << "'"; } strs->push_back(const_cast(expanded_args[i].c_str())); } strs->push_back(nullptr); } ServiceEnvironmentInfo::ServiceEnvironmentInfo() { } ServiceEnvironmentInfo::ServiceEnvironmentInfo(const std::string& name, const std::string& value) : name(name), value(value) { } Service::Service(const std::string& name, const std::vector& args) : name_(name), classnames_({"default"}), flags_(0), pid_(0), crash_count_(0), uid_(0), gid_(0), namespace_flags_(0), seclabel_(""), onrestart_(false, "", 0), keychord_id_(0), ioprio_class_(IoSchedClass_NONE), ioprio_pri_(0), priority_(0), oom_score_adjust_(-1000), args_(args) { onrestart_.InitSingleTrigger("onrestart"); } Service::Service(const std::string& name, unsigned flags, uid_t uid, gid_t gid, const std::vector& supp_gids, const CapSet& capabilities, unsigned namespace_flags, const std::string& seclabel, const std::vector& args) : name_(name), classnames_({"default"}), flags_(flags), pid_(0), crash_count_(0), uid_(uid), gid_(gid), supp_gids_(supp_gids), capabilities_(capabilities), namespace_flags_(namespace_flags), seclabel_(seclabel), onrestart_(false, "", 0), keychord_id_(0), ioprio_class_(IoSchedClass_NONE), ioprio_pri_(0), priority_(0), oom_score_adjust_(-1000), args_(args) { onrestart_.InitSingleTrigger("onrestart"); } void Service::NotifyStateChange(const std::string& new_state) const { if ((flags_ & SVC_TEMPORARY) != 0) { // Services created by 'exec' are temporary and don't have properties tracking their state. return; } std::string prop_name = "init.svc." + name_; property_set(prop_name, new_state); if (new_state == "running") { uint64_t start_ns = time_started_.time_since_epoch().count(); property_set("ro.boottime." + name_, std::to_string(start_ns)); } } void Service::KillProcessGroup(int signal) { // If we've already seen a successful result from killProcessGroup*(), then we have removed // the cgroup already and calling these functions a second time will simply result in an error. // This is true regardless of which signal was sent. // These functions handle their own logging, so no additional logging is needed. if (!process_cgroup_empty_) { LOG(INFO) << "Sending signal " << signal << " to service '" << name_ << "' (pid " << pid_ << ") process group..."; int r; if (signal == SIGTERM) { r = killProcessGroupOnce(uid_, pid_, signal); } else { r = killProcessGroup(uid_, pid_, signal); } if (r == 0) process_cgroup_empty_ = true; } } void Service::SetProcessAttributes() { // Keep capabilites on uid change. if (capabilities_.any() && uid_) { // If Android is running in a container, some securebits might already // be locked, so don't change those. int64_t securebits = prctl(PR_GET_SECUREBITS); if (securebits == -1) { PLOG(FATAL) << "prctl(PR_GET_SECUREBITS) failed for " << name_; } securebits |= SECBIT_KEEP_CAPS | SECBIT_KEEP_CAPS_LOCKED; if (prctl(PR_SET_SECUREBITS, securebits) != 0) { PLOG(FATAL) << "prctl(PR_SET_SECUREBITS) failed for " << name_; } } // TODO: work out why this fails for `console` then upgrade to FATAL. if (setpgid(0, getpid()) == -1) PLOG(ERROR) << "setpgid failed for " << name_; if (gid_) { if (setgid(gid_) != 0) { PLOG(FATAL) << "setgid failed for " << name_; } } if (setgroups(supp_gids_.size(), &supp_gids_[0]) != 0) { PLOG(FATAL) << "setgroups failed for " << name_; } if (uid_) { if (setuid(uid_) != 0) { PLOG(FATAL) << "setuid failed for " << name_; } } if (!seclabel_.empty()) { if (setexeccon(seclabel_.c_str()) < 0) { PLOG(FATAL) << "cannot setexeccon('" << seclabel_ << "') for " << name_; } } if (priority_ != 0) { if (setpriority(PRIO_PROCESS, 0, priority_) != 0) { PLOG(FATAL) << "setpriority failed for " << name_; } } if (capabilities_.any()) { if (!SetCapsForExec(capabilities_)) { LOG(FATAL) << "cannot set capabilities for " << name_; } } } void Service::Reap() { if (!(flags_ & SVC_ONESHOT) || (flags_ & SVC_RESTART)) { KillProcessGroup(SIGKILL); } // Remove any descriptor resources we may have created. std::for_each(descriptors_.begin(), descriptors_.end(), std::bind(&DescriptorInfo::Clean, std::placeholders::_1)); if (flags_ & SVC_TEMPORARY) { return; } pid_ = 0; flags_ &= (~SVC_RUNNING); // Oneshot processes go into the disabled state on exit, // except when manually restarted. if ((flags_ & SVC_ONESHOT) && !(flags_ & SVC_RESTART)) { flags_ |= SVC_DISABLED; } // Disabled and reset processes do not get restarted automatically. if (flags_ & (SVC_DISABLED | SVC_RESET)) { NotifyStateChange("stopped"); return; } // If we crash > 4 times in 4 minutes, reboot into recovery. boot_clock::time_point now = boot_clock::now(); if ((flags_ & SVC_CRITICAL) && !(flags_ & SVC_RESTART)) { if (now < time_crashed_ + 4min) { if (++crash_count_ > 4) { LOG(ERROR) << "critical process '" << name_ << "' exited 4 times in 4 minutes"; panic(); } } else { time_crashed_ = now; crash_count_ = 1; } } flags_ &= (~SVC_RESTART); flags_ |= SVC_RESTARTING; // Execute all onrestart commands for this service. onrestart_.ExecuteAllCommands(); NotifyStateChange("restarting"); return; } void Service::DumpState() const { LOG(INFO) << "service " << name_; LOG(INFO) << " class '" << Join(classnames_, " ") << "'"; LOG(INFO) << " exec " << Join(args_, " "); std::for_each(descriptors_.begin(), descriptors_.end(), [] (const auto& info) { LOG(INFO) << *info; }); } bool Service::ParseCapabilities(const std::vector& args, std::string* err) { capabilities_ = 0; if (!CapAmbientSupported()) { *err = "capabilities requested but the kernel does not support ambient capabilities"; return false; } unsigned int last_valid_cap = GetLastValidCap(); if (last_valid_cap >= capabilities_.size()) { LOG(WARNING) << "last valid run-time capability is larger than CAP_LAST_CAP"; } for (size_t i = 1; i < args.size(); i++) { const std::string& arg = args[i]; int res = LookupCap(arg); if (res < 0) { *err = StringPrintf("invalid capability '%s'", arg.c_str()); return false; } unsigned int cap = static_cast(res); // |res| is >= 0. if (cap > last_valid_cap) { *err = StringPrintf("capability '%s' not supported by the kernel", arg.c_str()); return false; } capabilities_[cap] = true; } return true; } bool Service::ParseClass(const std::vector& args, std::string* err) { classnames_ = std::set(args.begin() + 1, args.end()); return true; } bool Service::ParseConsole(const std::vector& args, std::string* err) { flags_ |= SVC_CONSOLE; console_ = args.size() > 1 ? "/dev/" + args[1] : ""; return true; } bool Service::ParseCritical(const std::vector& args, std::string* err) { flags_ |= SVC_CRITICAL; return true; } bool Service::ParseDisabled(const std::vector& args, std::string* err) { flags_ |= SVC_DISABLED; flags_ |= SVC_RC_DISABLED; return true; } bool Service::ParseGroup(const std::vector& args, std::string* err) { std::string decode_uid_err; if (!DecodeUid(args[1], &gid_, &decode_uid_err)) { *err = "Unable to find GID for '" + args[1] + "': " + decode_uid_err; return false; } for (std::size_t n = 2; n < args.size(); n++) { gid_t gid; if (!DecodeUid(args[n], &gid, &decode_uid_err)) { *err = "Unable to find GID for '" + args[n] + "': " + decode_uid_err; return false; } supp_gids_.emplace_back(gid); } return true; } bool Service::ParsePriority(const std::vector& args, std::string* err) { priority_ = 0; if (!ParseInt(args[1], &priority_, static_cast(ANDROID_PRIORITY_HIGHEST), // highest is negative static_cast(ANDROID_PRIORITY_LOWEST))) { *err = StringPrintf("process priority value must be range %d - %d", ANDROID_PRIORITY_HIGHEST, ANDROID_PRIORITY_LOWEST); return false; } return true; } bool Service::ParseIoprio(const std::vector& args, std::string* err) { if (!ParseInt(args[2], &ioprio_pri_, 0, 7)) { *err = "priority value must be range 0 - 7"; return false; } if (args[1] == "rt") { ioprio_class_ = IoSchedClass_RT; } else if (args[1] == "be") { ioprio_class_ = IoSchedClass_BE; } else if (args[1] == "idle") { ioprio_class_ = IoSchedClass_IDLE; } else { *err = "ioprio option usage: ioprio <0-7>"; return false; } return true; } bool Service::ParseKeycodes(const std::vector& args, std::string* err) { for (std::size_t i = 1; i < args.size(); i++) { int code; if (ParseInt(args[i], &code)) { keycodes_.emplace_back(code); } else { LOG(WARNING) << "ignoring invalid keycode: " << args[i]; } } return true; } bool Service::ParseOneshot(const std::vector& args, std::string* err) { flags_ |= SVC_ONESHOT; return true; } bool Service::ParseOnrestart(const std::vector& args, std::string* err) { std::vector str_args(args.begin() + 1, args.end()); int line = onrestart_.NumCommands() + 1; onrestart_.AddCommand(str_args, line, err); return true; } bool Service::ParseNamespace(const std::vector& args, std::string* err) { for (size_t i = 1; i < args.size(); i++) { if (args[i] == "pid") { namespace_flags_ |= CLONE_NEWPID; // PID namespaces require mount namespaces. namespace_flags_ |= CLONE_NEWNS; } else if (args[i] == "mnt") { namespace_flags_ |= CLONE_NEWNS; } else { *err = "namespace must be 'pid' or 'mnt'"; return false; } } return true; } bool Service::ParseOomScoreAdjust(const std::vector& args, std::string* err) { if (!ParseInt(args[1], &oom_score_adjust_, -1000, 1000)) { *err = "oom_score_adjust value must be in range -1000 - +1000"; return false; } return true; } bool Service::ParseSeclabel(const std::vector& args, std::string* err) { seclabel_ = args[1]; return true; } bool Service::ParseSetenv(const std::vector& args, std::string* err) { envvars_.emplace_back(args[1], args[2]); return true; } bool Service::ParseShutdown(const std::vector& args, std::string* err) { if (args[1] == "critical") { flags_ |= SVC_SHUTDOWN_CRITICAL; return true; } return false; } template bool Service::AddDescriptor(const std::vector& args, std::string* err) { int perm = args.size() > 3 ? std::strtoul(args[3].c_str(), 0, 8) : -1; uid_t uid = 0; gid_t gid = 0; std::string context = args.size() > 6 ? args[6] : ""; std::string decode_uid_err; if (args.size() > 4) { if (!DecodeUid(args[4], &uid, &decode_uid_err)) { *err = "Unable to find UID for '" + args[4] + "': " + decode_uid_err; return false; } } if (args.size() > 5) { if (!DecodeUid(args[5], &gid, &decode_uid_err)) { *err = "Unable to find GID for '" + args[5] + "': " + decode_uid_err; return false; } } auto descriptor = std::make_unique(args[1], args[2], uid, gid, perm, context); auto old = std::find_if(descriptors_.begin(), descriptors_.end(), [&descriptor] (const auto& other) { return descriptor.get() == other.get(); }); if (old != descriptors_.end()) { *err = "duplicate descriptor " + args[1] + " " + args[2]; return false; } descriptors_.emplace_back(std::move(descriptor)); return true; } // name type perm [ uid gid context ] bool Service::ParseSocket(const std::vector& args, std::string* err) { if (!StartsWith(args[2], "dgram") && !StartsWith(args[2], "stream") && !StartsWith(args[2], "seqpacket")) { *err = "socket type must be 'dgram', 'stream' or 'seqpacket'"; return false; } return AddDescriptor(args, err); } // name type perm [ uid gid context ] bool Service::ParseFile(const std::vector& args, std::string* err) { if (args[2] != "r" && args[2] != "w" && args[2] != "rw") { *err = "file type must be 'r', 'w' or 'rw'"; return false; } if ((args[1][0] != '/') || (args[1].find("../") != std::string::npos)) { *err = "file name must not be relative"; return false; } return AddDescriptor(args, err); } bool Service::ParseUser(const std::vector& args, std::string* err) { std::string decode_uid_err; if (!DecodeUid(args[1], &uid_, &decode_uid_err)) { *err = "Unable to find UID for '" + args[1] + "': " + decode_uid_err; return false; } return true; } bool Service::ParseWritepid(const std::vector& args, std::string* err) { writepid_files_.assign(args.begin() + 1, args.end()); return true; } class Service::OptionParserMap : public KeywordMap { public: OptionParserMap() {} private: const Map& map() const override; }; const Service::OptionParserMap::Map& Service::OptionParserMap::map() const { constexpr std::size_t kMax = std::numeric_limits::max(); // clang-format off static const Map option_parsers = { {"capabilities", {1, kMax, &Service::ParseCapabilities}}, {"class", {1, kMax, &Service::ParseClass}}, {"console", {0, 1, &Service::ParseConsole}}, {"critical", {0, 0, &Service::ParseCritical}}, {"disabled", {0, 0, &Service::ParseDisabled}}, {"group", {1, NR_SVC_SUPP_GIDS + 1, &Service::ParseGroup}}, {"ioprio", {2, 2, &Service::ParseIoprio}}, {"priority", {1, 1, &Service::ParsePriority}}, {"keycodes", {1, kMax, &Service::ParseKeycodes}}, {"oneshot", {0, 0, &Service::ParseOneshot}}, {"onrestart", {1, kMax, &Service::ParseOnrestart}}, {"oom_score_adjust", {1, 1, &Service::ParseOomScoreAdjust}}, {"namespace", {1, 2, &Service::ParseNamespace}}, {"seclabel", {1, 1, &Service::ParseSeclabel}}, {"setenv", {2, 2, &Service::ParseSetenv}}, {"shutdown", {1, 1, &Service::ParseShutdown}}, {"socket", {3, 6, &Service::ParseSocket}}, {"file", {2, 2, &Service::ParseFile}}, {"user", {1, 1, &Service::ParseUser}}, {"writepid", {1, kMax, &Service::ParseWritepid}}, }; // clang-format on return option_parsers; } bool Service::ParseLine(const std::vector& args, std::string* err) { static const OptionParserMap parser_map; auto parser = parser_map.FindFunction(args, err); if (!parser) { return false; } return (this->*parser)(args, err); } bool Service::ExecStart(std::unique_ptr* exec_waiter) { flags_ |= SVC_EXEC | SVC_ONESHOT; exec_waiter->reset(new Timer); if (!Start()) { exec_waiter->reset(); return false; } return true; } bool Service::Start() { // Starting a service removes it from the disabled or reset state and // immediately takes it out of the restarting state if it was in there. flags_ &= (~(SVC_DISABLED|SVC_RESTARTING|SVC_RESET|SVC_RESTART|SVC_DISABLED_START)); // Running processes require no additional work --- if they're in the // process of exiting, we've ensured that they will immediately restart // on exit, unless they are ONESHOT. if (flags_ & SVC_RUNNING) { return false; } bool needs_console = (flags_ & SVC_CONSOLE); if (needs_console) { if (console_.empty()) { console_ = default_console; } // Make sure that open call succeeds to ensure a console driver is // properly registered for the device node int console_fd = open(console_.c_str(), O_RDWR | O_CLOEXEC); if (console_fd < 0) { PLOG(ERROR) << "service '" << name_ << "' couldn't open console '" << console_ << "'"; flags_ |= SVC_DISABLED; return false; } close(console_fd); } struct stat sb; if (stat(args_[0].c_str(), &sb) == -1) { PLOG(ERROR) << "cannot find '" << args_[0] << "', disabling '" << name_ << "'"; flags_ |= SVC_DISABLED; return false; } std::string scon; if (!seclabel_.empty()) { scon = seclabel_; } else { scon = ComputeContextFromExecutable(name_, args_[0]); if (scon == "") { return false; } } LOG(INFO) << "starting service '" << name_ << "'..."; pid_t pid = -1; if (namespace_flags_) { pid = clone(nullptr, nullptr, namespace_flags_ | SIGCHLD, nullptr); } else { pid = fork(); } if (pid == 0) { umask(077); if (namespace_flags_ & CLONE_NEWPID) { // This will fork again to run an init process inside the PID // namespace. SetUpPidNamespace(name_); } for (const auto& ei : envvars_) { add_environment(ei.name.c_str(), ei.value.c_str()); } std::for_each(descriptors_.begin(), descriptors_.end(), std::bind(&DescriptorInfo::CreateAndPublish, std::placeholders::_1, scon)); // See if there were "writepid" instructions to write to files under /dev/cpuset/. auto cpuset_predicate = [](const std::string& path) { return StartsWith(path, "/dev/cpuset/"); }; auto iter = std::find_if(writepid_files_.begin(), writepid_files_.end(), cpuset_predicate); if (iter == writepid_files_.end()) { // There were no "writepid" instructions for cpusets, check if the system default // cpuset is specified to be used for the process. std::string default_cpuset = GetProperty("ro.cpuset.default", ""); if (!default_cpuset.empty()) { // Make sure the cpuset name starts and ends with '/'. // A single '/' means the 'root' cpuset. if (default_cpuset.front() != '/') { default_cpuset.insert(0, 1, '/'); } if (default_cpuset.back() != '/') { default_cpuset.push_back('/'); } writepid_files_.push_back( StringPrintf("/dev/cpuset%stasks", default_cpuset.c_str())); } } std::string pid_str = std::to_string(getpid()); for (const auto& file : writepid_files_) { if (!WriteStringToFile(pid_str, file)) { PLOG(ERROR) << "couldn't write " << pid_str << " to " << file; } } if (ioprio_class_ != IoSchedClass_NONE) { if (android_set_ioprio(getpid(), ioprio_class_, ioprio_pri_)) { PLOG(ERROR) << "failed to set pid " << getpid() << " ioprio=" << ioprio_class_ << "," << ioprio_pri_; } } if (needs_console) { setsid(); OpenConsole(); } else { ZapStdio(); } // As requested, set our gid, supplemental gids, uid, context, and // priority. Aborts on failure. SetProcessAttributes(); std::vector strs; ExpandArgs(args_, &strs); if (execve(strs[0], (char**) &strs[0], (char**) ENV) < 0) { PLOG(ERROR) << "cannot execve('" << strs[0] << "')"; } _exit(127); } if (pid < 0) { PLOG(ERROR) << "failed to fork for '" << name_ << "'"; pid_ = 0; return false; } if (oom_score_adjust_ != -1000) { std::string oom_str = std::to_string(oom_score_adjust_); std::string oom_file = StringPrintf("/proc/%d/oom_score_adj", pid); if (!WriteStringToFile(oom_str, oom_file)) { PLOG(ERROR) << "couldn't write oom_score_adj: " << strerror(errno); } } time_started_ = boot_clock::now(); pid_ = pid; flags_ |= SVC_RUNNING; process_cgroup_empty_ = false; errno = -createProcessGroup(uid_, pid_); if (errno != 0) { PLOG(ERROR) << "createProcessGroup(" << uid_ << ", " << pid_ << ") failed for service '" << name_ << "'"; } if ((flags_ & SVC_EXEC) != 0) { LOG(INFO) << "SVC_EXEC pid " << pid_ << " (uid " << uid_ << " gid " << gid_ << "+" << supp_gids_.size() << " context " << (!seclabel_.empty() ? seclabel_ : "default") << ") started; waiting..."; } NotifyStateChange("running"); return true; } bool Service::StartIfNotDisabled() { if (!(flags_ & SVC_DISABLED)) { return Start(); } else { flags_ |= SVC_DISABLED_START; } return true; } bool Service::Enable() { flags_ &= ~(SVC_DISABLED | SVC_RC_DISABLED); if (flags_ & SVC_DISABLED_START) { return Start(); } return true; } void Service::Reset() { StopOrReset(SVC_RESET); } void Service::Stop() { StopOrReset(SVC_DISABLED); } void Service::Terminate() { flags_ &= ~(SVC_RESTARTING | SVC_DISABLED_START); flags_ |= SVC_DISABLED; if (pid_) { KillProcessGroup(SIGTERM); NotifyStateChange("stopping"); } } void Service::Restart() { if (flags_ & SVC_RUNNING) { /* Stop, wait, then start the service. */ StopOrReset(SVC_RESTART); } else if (!(flags_ & SVC_RESTARTING)) { /* Just start the service since it's not running. */ Start(); } /* else: Service is restarting anyways. */ } void Service::RestartIfNeeded(time_t* process_needs_restart_at) { boot_clock::time_point now = boot_clock::now(); boot_clock::time_point next_start = time_started_ + 5s; if (now > next_start) { flags_ &= (~SVC_RESTARTING); Start(); return; } time_t next_start_time_t = time(nullptr) + time_t(std::chrono::duration_cast(next_start - now).count()); if (next_start_time_t < *process_needs_restart_at || *process_needs_restart_at == 0) { *process_needs_restart_at = next_start_time_t; } } // The how field should be either SVC_DISABLED, SVC_RESET, or SVC_RESTART. void Service::StopOrReset(int how) { // The service is still SVC_RUNNING until its process exits, but if it has // already exited it shoudn't attempt a restart yet. flags_ &= ~(SVC_RESTARTING | SVC_DISABLED_START); if ((how != SVC_DISABLED) && (how != SVC_RESET) && (how != SVC_RESTART)) { // An illegal flag: default to SVC_DISABLED. how = SVC_DISABLED; } // If the service has not yet started, prevent it from auto-starting with its class. if (how == SVC_RESET) { flags_ |= (flags_ & SVC_RC_DISABLED) ? SVC_DISABLED : SVC_RESET; } else { flags_ |= how; } if (pid_) { KillProcessGroup(SIGKILL); NotifyStateChange("stopping"); } else { NotifyStateChange("stopped"); } } void Service::ZapStdio() const { int fd; fd = open("/dev/null", O_RDWR); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } void Service::OpenConsole() const { int fd = open(console_.c_str(), O_RDWR); if (fd == -1) fd = open("/dev/null", O_RDWR); ioctl(fd, TIOCSCTTY, 0); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } int ServiceManager::exec_count_ = 0; ServiceManager::ServiceManager() { } ServiceManager& ServiceManager::GetInstance() { static ServiceManager instance; return instance; } void ServiceManager::AddService(std::unique_ptr service) { services_.emplace_back(std::move(service)); } bool ServiceManager::Exec(const std::vector& args) { Service* svc = MakeExecOneshotService(args); if (!svc) { LOG(ERROR) << "Could not create exec service"; return false; } if (!svc->ExecStart(&exec_waiter_)) { LOG(ERROR) << "Could not start exec service"; ServiceManager::GetInstance().RemoveService(*svc); return false; } return true; } bool ServiceManager::ExecStart(const std::string& name) { Service* svc = FindServiceByName(name); if (!svc) { LOG(ERROR) << "ExecStart(" << name << "): Service not found"; return false; } if (!svc->ExecStart(&exec_waiter_)) { LOG(ERROR) << "ExecStart(" << name << "): Could not start Service"; return false; } return true; } bool ServiceManager::IsWaitingForExec() const { return exec_waiter_ != nullptr; } Service* ServiceManager::MakeExecOneshotService(const std::vector& args) { // Parse the arguments: exec [SECLABEL [UID [GID]*] --] COMMAND ARGS... // SECLABEL can be a - to denote default std::size_t command_arg = 1; for (std::size_t i = 1; i < args.size(); ++i) { if (args[i] == "--") { command_arg = i + 1; break; } } if (command_arg > 4 + NR_SVC_SUPP_GIDS) { LOG(ERROR) << "exec called with too many supplementary group ids"; return nullptr; } if (command_arg >= args.size()) { LOG(ERROR) << "exec called without command"; return nullptr; } std::vector str_args(args.begin() + command_arg, args.end()); exec_count_++; std::string name = "exec " + std::to_string(exec_count_) + " (" + Join(str_args, " ") + ")"; unsigned flags = SVC_EXEC | SVC_ONESHOT | SVC_TEMPORARY; CapSet no_capabilities; unsigned namespace_flags = 0; std::string seclabel = ""; if (command_arg > 2 && args[1] != "-") { seclabel = args[1]; } uid_t uid = 0; if (command_arg > 3) { std::string decode_uid_err; if (!DecodeUid(args[2], &uid, &decode_uid_err)) { LOG(ERROR) << "Unable to find UID for '" << args[2] << "': " << decode_uid_err; return nullptr; } } gid_t gid = 0; std::vector supp_gids; if (command_arg > 4) { std::string decode_uid_err; if (!DecodeUid(args[3], &gid, &decode_uid_err)) { LOG(ERROR) << "Unable to find GID for '" << args[3] << "': " << decode_uid_err; return nullptr; } std::size_t nr_supp_gids = command_arg - 1 /* -- */ - 4 /* exec SECLABEL UID GID */; for (size_t i = 0; i < nr_supp_gids; ++i) { gid_t supp_gid; if (!DecodeUid(args[4 + i], &supp_gid, &decode_uid_err)) { LOG(ERROR) << "Unable to find UID for '" << args[4 + i] << "': " << decode_uid_err; return nullptr; } supp_gids.push_back(supp_gid); } } auto svc_p = std::make_unique(name, flags, uid, gid, supp_gids, no_capabilities, namespace_flags, seclabel, str_args); Service* svc = svc_p.get(); services_.emplace_back(std::move(svc_p)); return svc; } Service* ServiceManager::FindServiceByName(const std::string& name) const { auto svc = std::find_if(services_.begin(), services_.end(), [&name] (const std::unique_ptr& s) { return name == s->name(); }); if (svc != services_.end()) { return svc->get(); } return nullptr; } Service* ServiceManager::FindServiceByPid(pid_t pid) const { auto svc = std::find_if(services_.begin(), services_.end(), [&pid] (const std::unique_ptr& s) { return s->pid() == pid; }); if (svc != services_.end()) { return svc->get(); } return nullptr; } Service* ServiceManager::FindServiceByKeychord(int keychord_id) const { auto svc = std::find_if(services_.begin(), services_.end(), [&keychord_id] (const std::unique_ptr& s) { return s->keychord_id() == keychord_id; }); if (svc != services_.end()) { return svc->get(); } return nullptr; } void ServiceManager::ForEachService(const std::function& callback) const { for (const auto& s : services_) { callback(s.get()); } } void ServiceManager::ForEachServiceInClass(const std::string& classname, void (*func)(Service* svc)) const { for (const auto& s : services_) { if (s->classnames().find(classname) != s->classnames().end()) { func(s.get()); } } } void ServiceManager::ForEachServiceWithFlags(unsigned matchflags, void (*func)(Service* svc)) const { for (const auto& s : services_) { if (s->flags() & matchflags) { func(s.get()); } } } void ServiceManager::RemoveService(const Service& svc) { auto svc_it = std::find_if(services_.begin(), services_.end(), [&svc] (const std::unique_ptr& s) { return svc.name() == s->name(); }); if (svc_it == services_.end()) { return; } services_.erase(svc_it); } void ServiceManager::DumpState() const { for (const auto& s : services_) { s->DumpState(); } } bool ServiceManager::ReapOneProcess() { siginfo_t siginfo = {}; // This returns a zombie pid or informs us that there are no zombies left to be reaped. // It does NOT reap the pid; that is done below. if (TEMP_FAILURE_RETRY(waitid(P_ALL, 0, &siginfo, WEXITED | WNOHANG | WNOWAIT)) != 0) { PLOG(ERROR) << "waitid failed"; return false; } auto pid = siginfo.si_pid; if (pid == 0) return false; // At this point we know we have a zombie pid, so we use this scopeguard to reap the pid // whenever the function returns from this point forward. // We do NOT want to reap the zombie earlier as in Service::Reap(), we kill(-pid, ...) and we // want the pid to remain valid throughout that (and potentially future) usages. auto reaper = make_scope_guard([pid] { TEMP_FAILURE_RETRY(waitpid(pid, nullptr, WNOHANG)); }); if (PropertyChildReap(pid)) { return true; } Service* svc = FindServiceByPid(pid); std::string name; std::string wait_string; if (svc) { name = StringPrintf("Service '%s' (pid %d)", svc->name().c_str(), pid); if (svc->flags() & SVC_EXEC) { wait_string = StringPrintf(" waiting took %f seconds", exec_waiter_->duration_s()); } } else { name = StringPrintf("Untracked pid %d", pid); } auto status = siginfo.si_status; if (WIFEXITED(status)) { LOG(INFO) << name << " exited with status " << WEXITSTATUS(status) << wait_string; } else if (WIFSIGNALED(status)) { LOG(INFO) << name << " killed by signal " << WTERMSIG(status) << wait_string; } if (!svc) { return true; } svc->Reap(); if (svc->flags() & SVC_EXEC) { exec_waiter_.reset(); } if (svc->flags() & SVC_TEMPORARY) { RemoveService(*svc); } return true; } void ServiceManager::ReapAnyOutstandingChildren() { while (ReapOneProcess()) { } } void ServiceManager::ClearExecWait() { // Clear EXEC flag if there is one pending // And clear the wait flag for (const auto& s : services_) { s->UnSetExec(); } exec_waiter_.reset(); } bool ServiceParser::ParseSection(std::vector&& args, const std::string& filename, int line, std::string* err) { if (args.size() < 3) { *err = "services must have a name and a program"; return false; } const std::string& name = args[1]; if (!IsValidName(name)) { *err = StringPrintf("invalid service name '%s'", name.c_str()); return false; } Service* old_service = service_manager_->FindServiceByName(name); if (old_service) { *err = "ignored duplicate definition of service '" + name + "'"; return false; } std::vector str_args(args.begin() + 2, args.end()); service_ = std::make_unique(name, str_args); return true; } bool ServiceParser::ParseLineSection(std::vector&& args, int line, std::string* err) { return service_ ? service_->ParseLine(std::move(args), err) : false; } void ServiceParser::EndSection() { if (service_) { service_manager_->AddService(std::move(service_)); } } bool ServiceParser::IsValidName(const std::string& name) const { // Property names can be any length, but may only contain certain characters. // Property values can contain any characters, but may only be a certain length. // (The latter restriction is needed because `start` and `stop` work by writing // the service name to the "ctl.start" and "ctl.stop" properties.) return is_legal_property_name("init.svc." + name) && name.size() <= PROP_VALUE_MAX; } } // namespace init } // namespace android