/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG TRACE_SYSDEPS #include "sysdeps.h" #include /* winsock.h *must* be included before windows.h. */ #include #include #include #include #include #include #include #include #include #include #include #include "adb.h" extern void fatal(const char *fmt, ...); /* forward declarations */ typedef const struct FHClassRec_* FHClass; typedef struct FHRec_* FH; typedef struct EventHookRec_* EventHook; typedef struct FHClassRec_ { void (*_fh_init)(FH); int (*_fh_close)(FH); int (*_fh_lseek)(FH, int, int); int (*_fh_read)(FH, void*, int); int (*_fh_write)(FH, const void*, int); void (*_fh_hook)(FH, int, EventHook); } FHClassRec; static void _fh_file_init(FH); static int _fh_file_close(FH); static int _fh_file_lseek(FH, int, int); static int _fh_file_read(FH, void*, int); static int _fh_file_write(FH, const void*, int); static void _fh_file_hook(FH, int, EventHook); static const FHClassRec _fh_file_class = { _fh_file_init, _fh_file_close, _fh_file_lseek, _fh_file_read, _fh_file_write, _fh_file_hook }; static void _fh_socket_init(FH); static int _fh_socket_close(FH); static int _fh_socket_lseek(FH, int, int); static int _fh_socket_read(FH, void*, int); static int _fh_socket_write(FH, const void*, int); static void _fh_socket_hook(FH, int, EventHook); static const FHClassRec _fh_socket_class = { _fh_socket_init, _fh_socket_close, _fh_socket_lseek, _fh_socket_read, _fh_socket_write, _fh_socket_hook }; #define assert(cond) do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0) std::string SystemErrorCodeToString(const DWORD error_code) { const int kErrorMessageBufferSize = 256; WCHAR msgbuf[kErrorMessageBufferSize]; DWORD flags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; DWORD len = FormatMessageW(flags, nullptr, error_code, 0, msgbuf, arraysize(msgbuf), nullptr); if (len == 0) { return android::base::StringPrintf( "Error (%lu) while retrieving error. (%lu)", GetLastError(), error_code); } // Convert UTF-16 to UTF-8. std::string msg(narrow(msgbuf)); // Messages returned by the system end with line breaks. msg = android::base::Trim(msg); // There are many Windows error messages compared to POSIX, so include the // numeric error code for easier, quicker, accurate identification. Use // decimal instead of hex because there are decimal ranges like 10000-11999 // for Winsock. android::base::StringAppendF(&msg, " (%lu)", error_code); return msg; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** replaces libs/cutils/load_file.c *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ void *load_file(const char *fn, unsigned *_sz) { HANDLE file; char *data; DWORD file_size; file = CreateFileW( widen(fn).c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL ); if (file == INVALID_HANDLE_VALUE) return NULL; file_size = GetFileSize( file, NULL ); data = NULL; if (file_size > 0) { data = (char*) malloc( file_size + 1 ); if (data == NULL) { D("load_file: could not allocate %ld bytes\n", file_size ); file_size = 0; } else { DWORD out_bytes; if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) || out_bytes != file_size ) { D("load_file: could not read %ld bytes from '%s'\n", file_size, fn); free(data); data = NULL; file_size = 0; } } } CloseHandle( file ); *_sz = (unsigned) file_size; return data; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** common file descriptor handling *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ /* used to emulate unix-domain socket pairs */ typedef struct SocketPairRec_* SocketPair; typedef struct FHRec_ { FHClass clazz; int used; int eof; union { HANDLE handle; SOCKET socket; SocketPair pair; } u; HANDLE event; int mask; char name[32]; } FHRec; #define fh_handle u.handle #define fh_socket u.socket #define fh_pair u.pair #define WIN32_FH_BASE 100 #define WIN32_MAX_FHS 128 static adb_mutex_t _win32_lock; static FHRec _win32_fhs[ WIN32_MAX_FHS ]; static int _win32_fh_next; // where to start search for free FHRec static FH _fh_from_int( int fd, const char* func ) { FH f; fd -= WIN32_FH_BASE; if (fd < 0 || fd >= WIN32_MAX_FHS) { D( "_fh_from_int: invalid fd %d passed to %s\n", fd + WIN32_FH_BASE, func ); errno = EBADF; return NULL; } f = &_win32_fhs[fd]; if (f->used == 0) { D( "_fh_from_int: invalid fd %d passed to %s\n", fd + WIN32_FH_BASE, func ); errno = EBADF; return NULL; } return f; } static int _fh_to_int( FH f ) { if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS) return (int)(f - _win32_fhs) + WIN32_FH_BASE; return -1; } static FH _fh_alloc( FHClass clazz ) { FH f = NULL; adb_mutex_lock( &_win32_lock ); // Search entire array, starting from _win32_fh_next. for (int nn = 0; nn < WIN32_MAX_FHS; nn++) { // Keep incrementing _win32_fh_next to avoid giving out an index that // was recently closed, to try to avoid use-after-free. const int index = _win32_fh_next++; // Handle wrap-around of _win32_fh_next. if (_win32_fh_next == WIN32_MAX_FHS) { _win32_fh_next = 0; } if (_win32_fhs[index].clazz == NULL) { f = &_win32_fhs[index]; goto Exit; } } D( "_fh_alloc: no more free file descriptors\n" ); errno = EMFILE; // Too many open files Exit: if (f) { f->clazz = clazz; f->used = 1; f->eof = 0; f->name[0] = '\0'; clazz->_fh_init(f); } adb_mutex_unlock( &_win32_lock ); return f; } static int _fh_close( FH f ) { // Use lock so that closing only happens once and so that _fh_alloc can't // allocate a FH that we're in the middle of closing. adb_mutex_lock(&_win32_lock); if (f->used) { f->clazz->_fh_close( f ); f->name[0] = '\0'; f->eof = 0; f->used = 0; f->clazz = NULL; } adb_mutex_unlock(&_win32_lock); return 0; } // Deleter for unique_fh. class fh_deleter { public: void operator()(struct FHRec_* fh) { // We're called from a destructor and destructors should not overwrite // errno because callers may do: // errno = EBLAH; // return -1; // calls destructor, which should not overwrite errno const int saved_errno = errno; _fh_close(fh); errno = saved_errno; } }; // Like std::unique_ptr, but calls _fh_close() instead of operator delete(). typedef std::unique_ptr unique_fh; /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** file-based descriptor handling *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ static void _fh_file_init( FH f ) { f->fh_handle = INVALID_HANDLE_VALUE; } static int _fh_file_close( FH f ) { CloseHandle( f->fh_handle ); f->fh_handle = INVALID_HANDLE_VALUE; return 0; } static int _fh_file_read( FH f, void* buf, int len ) { DWORD read_bytes; if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) { D( "adb_read: could not read %d bytes from %s\n", len, f->name ); errno = EIO; return -1; } else if (read_bytes < (DWORD)len) { f->eof = 1; } return (int)read_bytes; } static int _fh_file_write( FH f, const void* buf, int len ) { DWORD wrote_bytes; if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) { D( "adb_file_write: could not write %d bytes from %s\n", len, f->name ); errno = EIO; return -1; } else if (wrote_bytes < (DWORD)len) { f->eof = 1; } return (int)wrote_bytes; } static int _fh_file_lseek( FH f, int pos, int origin ) { DWORD method; DWORD result; switch (origin) { case SEEK_SET: method = FILE_BEGIN; break; case SEEK_CUR: method = FILE_CURRENT; break; case SEEK_END: method = FILE_END; break; default: errno = EINVAL; return -1; } result = SetFilePointer( f->fh_handle, pos, NULL, method ); if (result == INVALID_SET_FILE_POINTER) { errno = EIO; return -1; } else { f->eof = 0; } return (int)result; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** file-based descriptor handling *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ int adb_open(const char* path, int options) { FH f; DWORD desiredAccess = 0; DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; switch (options) { case O_RDONLY: desiredAccess = GENERIC_READ; break; case O_WRONLY: desiredAccess = GENERIC_WRITE; break; case O_RDWR: desiredAccess = GENERIC_READ | GENERIC_WRITE; break; default: D("adb_open: invalid options (0x%0x)\n", options); errno = EINVAL; return -1; } f = _fh_alloc( &_fh_file_class ); if ( !f ) { return -1; } f->fh_handle = CreateFileW( widen(path).c_str(), desiredAccess, shareMode, NULL, OPEN_EXISTING, 0, NULL ); if ( f->fh_handle == INVALID_HANDLE_VALUE ) { const DWORD err = GetLastError(); _fh_close(f); D( "adb_open: could not open '%s': ", path ); switch (err) { case ERROR_FILE_NOT_FOUND: D( "file not found\n" ); errno = ENOENT; return -1; case ERROR_PATH_NOT_FOUND: D( "path not found\n" ); errno = ENOTDIR; return -1; default: D( "unknown error: %s\n", SystemErrorCodeToString( err ).c_str() ); errno = ENOENT; return -1; } } snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); D( "adb_open: '%s' => fd %d\n", path, _fh_to_int(f) ); return _fh_to_int(f); } /* ignore mode on Win32 */ int adb_creat(const char* path, int mode) { FH f; f = _fh_alloc( &_fh_file_class ); if ( !f ) { return -1; } f->fh_handle = CreateFileW( widen(path).c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL ); if ( f->fh_handle == INVALID_HANDLE_VALUE ) { const DWORD err = GetLastError(); _fh_close(f); D( "adb_creat: could not open '%s': ", path ); switch (err) { case ERROR_FILE_NOT_FOUND: D( "file not found\n" ); errno = ENOENT; return -1; case ERROR_PATH_NOT_FOUND: D( "path not found\n" ); errno = ENOTDIR; return -1; default: D( "unknown error: %s\n", SystemErrorCodeToString( err ).c_str() ); errno = ENOENT; return -1; } } snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); D( "adb_creat: '%s' => fd %d\n", path, _fh_to_int(f) ); return _fh_to_int(f); } int adb_read(int fd, void* buf, int len) { FH f = _fh_from_int(fd, __func__); if (f == NULL) { return -1; } return f->clazz->_fh_read( f, buf, len ); } int adb_write(int fd, const void* buf, int len) { FH f = _fh_from_int(fd, __func__); if (f == NULL) { return -1; } return f->clazz->_fh_write(f, buf, len); } int adb_lseek(int fd, int pos, int where) { FH f = _fh_from_int(fd, __func__); if (!f) { return -1; } return f->clazz->_fh_lseek(f, pos, where); } int adb_close(int fd) { FH f = _fh_from_int(fd, __func__); if (!f) { return -1; } D( "adb_close: %s\n", f->name); _fh_close(f); return 0; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** socket-based file descriptors *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ #undef setsockopt static void _socket_set_errno( const DWORD err ) { // The Windows C Runtime (MSVCRT.DLL) strerror() does not support a lot of // POSIX and socket error codes, so this can only meaningfully map so much. switch ( err ) { case 0: errno = 0; break; // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and // callers check specifically for EAGAIN. case WSAEWOULDBLOCK: errno = EAGAIN; break; case WSAEINTR: errno = EINTR; break; case WSAEFAULT: errno = EFAULT; break; case WSAEINVAL: errno = EINVAL; break; case WSAEMFILE: errno = EMFILE; break; default: errno = EINVAL; D( "_socket_set_errno: mapping Windows error code %lu to errno %d\n", err, errno ); } } static void _fh_socket_init( FH f ) { f->fh_socket = INVALID_SOCKET; f->event = WSACreateEvent(); if (f->event == WSA_INVALID_EVENT) { D("WSACreateEvent failed: %s\n", SystemErrorCodeToString(WSAGetLastError()).c_str()); // _event_socket_start assumes that this field is INVALID_HANDLE_VALUE // on failure, instead of NULL which is what Windows really returns on // error. It might be better to change all the other code to look for // NULL, but that is a much riskier change. f->event = INVALID_HANDLE_VALUE; } f->mask = 0; } static int _fh_socket_close( FH f ) { if (f->fh_socket != INVALID_SOCKET) { /* gently tell any peer that we're closing the socket */ if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { // If the socket is not connected, this returns an error. We want to // minimize logging spam, so don't log these errors for now. #if 0 D("socket shutdown failed: %s\n", SystemErrorCodeToString(WSAGetLastError()).c_str()); #endif } if (closesocket(f->fh_socket) == SOCKET_ERROR) { D("closesocket failed: %s\n", SystemErrorCodeToString(WSAGetLastError()).c_str()); } f->fh_socket = INVALID_SOCKET; } if (f->event != NULL) { if (!CloseHandle(f->event)) { D("CloseHandle failed: %s\n", SystemErrorCodeToString(GetLastError()).c_str()); } f->event = NULL; } f->mask = 0; return 0; } static int _fh_socket_lseek( FH f, int pos, int origin ) { errno = EPIPE; return -1; } static int _fh_socket_read(FH f, void* buf, int len) { int result = recv(f->fh_socket, reinterpret_cast(buf), len, 0); if (result == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace // that to reduce spam and confusion. if (err != WSAEWOULDBLOCK) { D("recv fd %d failed: %s\n", _fh_to_int(f), SystemErrorCodeToString(err).c_str()); } _socket_set_errno(err); result = -1; } return result; } static int _fh_socket_write(FH f, const void* buf, int len) { int result = send(f->fh_socket, reinterpret_cast(buf), len, 0); if (result == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); D("send fd %d failed: %s\n", _fh_to_int(f), SystemErrorCodeToString(err).c_str()); _socket_set_errno(err); result = -1; } return result; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** replacement for libs/cutils/socket_xxxx.c *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ #include static int _winsock_init; static void _init_winsock( void ) { // TODO: Multiple threads calling this may potentially cause multiple calls // to WSAStartup() which offers no real benefit. if (!_winsock_init) { WSADATA wsaData; int rc = WSAStartup( MAKEWORD(2,2), &wsaData); if (rc != 0) { fatal( "adb: could not initialize Winsock: %s", SystemErrorCodeToString( rc ).c_str()); } _winsock_init = 1; // Note that we do not call atexit() to register WSACleanup to be called // at normal process termination because: // 1) When exit() is called, there are still threads actively using // Winsock because we don't cleanly shutdown all threads, so it // doesn't make sense to call WSACleanup() and may cause problems // with those threads. // 2) A deadlock can occur when exit() holds a C Runtime lock, then it // calls WSACleanup() which tries to unload a DLL, which tries to // grab the LoaderLock. This conflicts with the device_poll_thread // which holds the LoaderLock because AdbWinApi.dll calls // setupapi.dll which tries to load wintrust.dll which tries to load // crypt32.dll which calls atexit() which tries to acquire the C // Runtime lock that the other thread holds. } } int network_loopback_client(int port, int type, std::string* error) { struct sockaddr_in addr; SOCKET s; unique_fh f(_fh_alloc(&_fh_socket_class)); if (!f) { *error = strerror(errno); return -1; } if (!_winsock_init) _init_winsock(); memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_port = htons(port); addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); s = socket(AF_INET, type, 0); if(s == INVALID_SOCKET) { *error = android::base::StringPrintf("cannot create socket: %s", SystemErrorCodeToString(WSAGetLastError()).c_str()); D("%s\n", error->c_str()); return -1; } f->fh_socket = s; if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) { // Save err just in case inet_ntoa() or ntohs() changes the last error. const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot connect to %s:%u: %s", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), SystemErrorCodeToString(err).c_str()); D("could not connect to %s:%d: %s\n", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); return -1; } const int fd = _fh_to_int(f.get()); snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", port ); D( "port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", fd ); f.release(); return fd; } #define LISTEN_BACKLOG 4 // interface_address is INADDR_LOOPBACK or INADDR_ANY. static int _network_server(int port, int type, u_long interface_address, std::string* error) { struct sockaddr_in addr; SOCKET s; int n; unique_fh f(_fh_alloc(&_fh_socket_class)); if (!f) { *error = strerror(errno); return -1; } if (!_winsock_init) _init_winsock(); memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_port = htons(port); addr.sin_addr.s_addr = htonl(interface_address); // TODO: Consider using dual-stack socket that can simultaneously listen on // IPv4 and IPv6. s = socket(AF_INET, type, 0); if (s == INVALID_SOCKET) { *error = android::base::StringPrintf("cannot create socket: %s", SystemErrorCodeToString(WSAGetLastError()).c_str()); D("%s\n", error->c_str()); return -1; } f->fh_socket = s; // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the // same port, so instead use SO_EXCLUSIVEADDRUSE. n = 1; if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) { *error = android::base::StringPrintf( "cannot set socket option SO_EXCLUSIVEADDRUSE: %s", SystemErrorCodeToString(WSAGetLastError()).c_str()); D("%s\n", error->c_str()); return -1; } if (bind(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) { // Save err just in case inet_ntoa() or ntohs() changes the last error. const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), SystemErrorCodeToString(err).c_str()); D("could not bind to %s:%d: %s\n", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); return -1; } if (type == SOCK_STREAM) { if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) { *error = android::base::StringPrintf("cannot listen on socket: %s", SystemErrorCodeToString(WSAGetLastError()).c_str()); D("could not listen on %s:%d: %s\n", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); return -1; } } const int fd = _fh_to_int(f.get()); snprintf( f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd, interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "", port ); D( "port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", fd ); f.release(); return fd; } int network_loopback_server(int port, int type, std::string* error) { return _network_server(port, type, INADDR_LOOPBACK, error); } int network_inaddr_any_server(int port, int type, std::string* error) { return _network_server(port, type, INADDR_ANY, error); } int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) { unique_fh f(_fh_alloc(&_fh_socket_class)); if (!f) { *error = strerror(errno); return -1; } if (!_winsock_init) _init_winsock(); struct addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = type; char port_str[16]; snprintf(port_str, sizeof(port_str), "%d", port); struct addrinfo* addrinfo_ptr = nullptr; #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03) // TODO: When the Android SDK tools increases the Windows system // requirements >= WinXP SP2, switch to GetAddrInfoW(widen(host).c_str()). #else // Otherwise, keep using getaddrinfo(), or do runtime API detection // with GetProcAddress("GetAddrInfoW"). #endif if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) { *error = android::base::StringPrintf( "cannot resolve host '%s' and port %s: %s", host.c_str(), port_str, SystemErrorCodeToString(WSAGetLastError()).c_str()); D("%s\n", error->c_str()); return -1; } std::unique_ptr addrinfo(addrinfo_ptr, freeaddrinfo); addrinfo_ptr = nullptr; // TODO: Try all the addresses if there's more than one? This just uses // the first. Or, could call WSAConnectByName() (Windows Vista and newer) // which tries all addresses, takes a timeout and more. SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol); if(s == INVALID_SOCKET) { *error = android::base::StringPrintf("cannot create socket: %s", SystemErrorCodeToString(WSAGetLastError()).c_str()); D("%s\n", error->c_str()); return -1; } f->fh_socket = s; // TODO: Implement timeouts for Windows. Seems like the default in theory // (according to http://serverfault.com/a/671453) and in practice is 21 sec. if(connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) { // TODO: Use WSAAddressToString or inet_ntop on address. *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str, SystemErrorCodeToString(WSAGetLastError()).c_str()); D("could not connect to %s:%s:%s: %s\n", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(), port_str, error->c_str()); return -1; } const int fd = _fh_to_int(f.get()); snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", port ); D( "host '%s' port %d type %s => fd %d\n", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp", fd ); f.release(); return fd; } #undef accept int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen) { FH serverfh = _fh_from_int(serverfd, __func__); if ( !serverfh || serverfh->clazz != &_fh_socket_class ) { D("adb_socket_accept: invalid fd %d\n", serverfd); errno = EBADF; return -1; } unique_fh fh(_fh_alloc( &_fh_socket_class )); if (!fh) { PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket " "descriptor"; return -1; } fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen ); if (fh->fh_socket == INVALID_SOCKET) { const DWORD err = WSAGetLastError(); LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd << " failed: " + SystemErrorCodeToString(err); _socket_set_errno( err ); return -1; } const int fd = _fh_to_int(fh.get()); snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name ); D( "adb_socket_accept on fd %d returns fd %d\n", serverfd, fd ); fh.release(); return fd; } int adb_setsockopt( int fd, int level, int optname, const void* optval, socklen_t optlen ) { FH fh = _fh_from_int(fd, __func__); if ( !fh || fh->clazz != &_fh_socket_class ) { D("adb_setsockopt: invalid fd %d\n", fd); errno = EBADF; return -1; } int result = setsockopt( fh->fh_socket, level, optname, reinterpret_cast(optval), optlen ); if ( result == SOCKET_ERROR ) { const DWORD err = WSAGetLastError(); D( "adb_setsockopt: setsockopt on fd %d level %d optname %d " "failed: %s\n", fd, level, optname, SystemErrorCodeToString(err).c_str() ); _socket_set_errno( err ); result = -1; } return result; } int adb_shutdown(int fd) { FH f = _fh_from_int(fd, __func__); if (!f || f->clazz != &_fh_socket_class) { D("adb_shutdown: invalid fd %d\n", fd); errno = EBADF; return -1; } D( "adb_shutdown: %s\n", f->name); if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); D("socket shutdown fd %d failed: %s\n", fd, SystemErrorCodeToString(err).c_str()); _socket_set_errno(err); return -1; } return 0; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** emulated socketpairs *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ /* we implement socketpairs directly in use space for the following reasons: * - it avoids copying data from/to the Nt kernel * - it allows us to implement fdevent hooks easily and cheaply, something * that is not possible with standard Win32 pipes !! * * basically, we use two circular buffers, each one corresponding to a given * direction. * * each buffer is implemented as two regions: * * region A which is (a_start,a_end) * region B which is (0, b_end) with b_end <= a_start * * an empty buffer has: a_start = a_end = b_end = 0 * * a_start is the pointer where we start reading data * a_end is the pointer where we start writing data, unless it is BUFFER_SIZE, * then you start writing at b_end * * the buffer is full when b_end == a_start && a_end == BUFFER_SIZE * * there is room when b_end < a_start || a_end < BUFER_SIZE * * when reading, a_start is incremented, it a_start meets a_end, then * we do: a_start = 0, a_end = b_end, b_end = 0, and keep going on.. */ #define BIP_BUFFER_SIZE 4096 #if 0 #include # define BIPD(x) D x # define BIPDUMP bip_dump_hex static void bip_dump_hex( const unsigned char* ptr, size_t len ) { int nn, len2 = len; if (len2 > 8) len2 = 8; for (nn = 0; nn < len2; nn++) printf("%02x", ptr[nn]); printf(" "); for (nn = 0; nn < len2; nn++) { int c = ptr[nn]; if (c < 32 || c > 127) c = '.'; printf("%c", c); } printf("\n"); fflush(stdout); } #else # define BIPD(x) do {} while (0) # define BIPDUMP(p,l) BIPD(p) #endif typedef struct BipBufferRec_ { int a_start; int a_end; int b_end; int fdin; int fdout; int closed; int can_write; /* boolean */ HANDLE evt_write; /* event signaled when one can write to a buffer */ int can_read; /* boolean */ HANDLE evt_read; /* event signaled when one can read from a buffer */ CRITICAL_SECTION lock; unsigned char buff[ BIP_BUFFER_SIZE ]; } BipBufferRec, *BipBuffer; static void bip_buffer_init( BipBuffer buffer ) { D( "bit_buffer_init %p\n", buffer ); buffer->a_start = 0; buffer->a_end = 0; buffer->b_end = 0; buffer->can_write = 1; buffer->can_read = 0; buffer->fdin = 0; buffer->fdout = 0; buffer->closed = 0; buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL ); buffer->evt_read = CreateEvent( NULL, TRUE, FALSE, NULL ); InitializeCriticalSection( &buffer->lock ); } static void bip_buffer_close( BipBuffer bip ) { bip->closed = 1; if (!bip->can_read) { SetEvent( bip->evt_read ); } if (!bip->can_write) { SetEvent( bip->evt_write ); } } static void bip_buffer_done( BipBuffer bip ) { BIPD(( "bip_buffer_done: %d->%d\n", bip->fdin, bip->fdout )); CloseHandle( bip->evt_read ); CloseHandle( bip->evt_write ); DeleteCriticalSection( &bip->lock ); } static int bip_buffer_write( BipBuffer bip, const void* src, int len ) { int avail, count = 0; if (len <= 0) return 0; BIPD(( "bip_buffer_write: enter %d->%d len %d\n", bip->fdin, bip->fdout, len )); BIPDUMP( src, len ); EnterCriticalSection( &bip->lock ); while (!bip->can_write) { int ret; LeaveCriticalSection( &bip->lock ); if (bip->closed) { errno = EPIPE; return -1; } /* spinlocking here is probably unfair, but let's live with it */ ret = WaitForSingleObject( bip->evt_write, INFINITE ); if (ret != WAIT_OBJECT_0) { /* buffer probably closed */ D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError() ); return 0; } if (bip->closed) { errno = EPIPE; return -1; } EnterCriticalSection( &bip->lock ); } BIPD(( "bip_buffer_write: exec %d->%d len %d\n", bip->fdin, bip->fdout, len )); avail = BIP_BUFFER_SIZE - bip->a_end; if (avail > 0) { /* we can append to region A */ if (avail > len) avail = len; memcpy( bip->buff + bip->a_end, src, avail ); src = (const char *)src + avail; count += avail; len -= avail; bip->a_end += avail; if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) { bip->can_write = 0; ResetEvent( bip->evt_write ); goto Exit; } } if (len == 0) goto Exit; avail = bip->a_start - bip->b_end; assert( avail > 0 ); /* since can_write is TRUE */ if (avail > len) avail = len; memcpy( bip->buff + bip->b_end, src, avail ); count += avail; bip->b_end += avail; if (bip->b_end == bip->a_start) { bip->can_write = 0; ResetEvent( bip->evt_write ); } Exit: assert( count > 0 ); if ( !bip->can_read ) { bip->can_read = 1; SetEvent( bip->evt_read ); } BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n", bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read )); LeaveCriticalSection( &bip->lock ); return count; } static int bip_buffer_read( BipBuffer bip, void* dst, int len ) { int avail, count = 0; if (len <= 0) return 0; BIPD(( "bip_buffer_read: enter %d->%d len %d\n", bip->fdin, bip->fdout, len )); EnterCriticalSection( &bip->lock ); while ( !bip->can_read ) { #if 0 LeaveCriticalSection( &bip->lock ); errno = EAGAIN; return -1; #else int ret; LeaveCriticalSection( &bip->lock ); if (bip->closed) { errno = EPIPE; return -1; } ret = WaitForSingleObject( bip->evt_read, INFINITE ); if (ret != WAIT_OBJECT_0) { /* probably closed buffer */ D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError()); return 0; } if (bip->closed) { errno = EPIPE; return -1; } EnterCriticalSection( &bip->lock ); #endif } BIPD(( "bip_buffer_read: exec %d->%d len %d\n", bip->fdin, bip->fdout, len )); avail = bip->a_end - bip->a_start; assert( avail > 0 ); /* since can_read is TRUE */ if (avail > len) avail = len; memcpy( dst, bip->buff + bip->a_start, avail ); dst = (char *)dst + avail; count += avail; len -= avail; bip->a_start += avail; if (bip->a_start < bip->a_end) goto Exit; bip->a_start = 0; bip->a_end = bip->b_end; bip->b_end = 0; avail = bip->a_end; if (avail > 0) { if (avail > len) avail = len; memcpy( dst, bip->buff, avail ); count += avail; bip->a_start += avail; if ( bip->a_start < bip->a_end ) goto Exit; bip->a_start = bip->a_end = 0; } bip->can_read = 0; ResetEvent( bip->evt_read ); Exit: assert( count > 0 ); if (!bip->can_write ) { bip->can_write = 1; SetEvent( bip->evt_write ); } BIPDUMP( (const unsigned char*)dst - count, count ); BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n", bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read )); LeaveCriticalSection( &bip->lock ); return count; } typedef struct SocketPairRec_ { BipBufferRec a2b_bip; BipBufferRec b2a_bip; FH a_fd; int used; } SocketPairRec; void _fh_socketpair_init( FH f ) { f->fh_pair = NULL; } static int _fh_socketpair_close( FH f ) { if ( f->fh_pair ) { SocketPair pair = f->fh_pair; if ( f == pair->a_fd ) { pair->a_fd = NULL; } bip_buffer_close( &pair->b2a_bip ); bip_buffer_close( &pair->a2b_bip ); if ( --pair->used == 0 ) { bip_buffer_done( &pair->b2a_bip ); bip_buffer_done( &pair->a2b_bip ); free( pair ); } f->fh_pair = NULL; } return 0; } static int _fh_socketpair_lseek( FH f, int pos, int origin ) { errno = ESPIPE; return -1; } static int _fh_socketpair_read( FH f, void* buf, int len ) { SocketPair pair = f->fh_pair; BipBuffer bip; if (!pair) return -1; if ( f == pair->a_fd ) bip = &pair->b2a_bip; else bip = &pair->a2b_bip; return bip_buffer_read( bip, buf, len ); } static int _fh_socketpair_write( FH f, const void* buf, int len ) { SocketPair pair = f->fh_pair; BipBuffer bip; if (!pair) return -1; if ( f == pair->a_fd ) bip = &pair->a2b_bip; else bip = &pair->b2a_bip; return bip_buffer_write( bip, buf, len ); } static void _fh_socketpair_hook( FH f, int event, EventHook hook ); /* forward */ static const FHClassRec _fh_socketpair_class = { _fh_socketpair_init, _fh_socketpair_close, _fh_socketpair_lseek, _fh_socketpair_read, _fh_socketpair_write, _fh_socketpair_hook }; int adb_socketpair(int sv[2]) { SocketPair pair; unique_fh fa(_fh_alloc(&_fh_socketpair_class)); if (!fa) { return -1; } unique_fh fb(_fh_alloc(&_fh_socketpair_class)); if (!fb) { return -1; } pair = reinterpret_cast(malloc(sizeof(*pair))); if (pair == NULL) { D("adb_socketpair: not enough memory to allocate pipes\n" ); return -1; } bip_buffer_init( &pair->a2b_bip ); bip_buffer_init( &pair->b2a_bip ); fa->fh_pair = pair; fb->fh_pair = pair; pair->used = 2; pair->a_fd = fa.get(); sv[0] = _fh_to_int(fa.get()); sv[1] = _fh_to_int(fb.get()); pair->a2b_bip.fdin = sv[0]; pair->a2b_bip.fdout = sv[1]; pair->b2a_bip.fdin = sv[1]; pair->b2a_bip.fdout = sv[0]; snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] ); snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] ); D( "adb_socketpair: returns (%d, %d)\n", sv[0], sv[1] ); fa.release(); fb.release(); return 0; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** fdevents emulation *****/ /***** *****/ /***** this is a very simple implementation, we rely on the fact *****/ /***** that ADB doesn't use FDE_ERROR. *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ #define FATAL(x...) fatal(__FUNCTION__, x) #if DEBUG static void dump_fde(fdevent *fde, const char *info) { fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd, fde->state & FDE_READ ? 'R' : ' ', fde->state & FDE_WRITE ? 'W' : ' ', fde->state & FDE_ERROR ? 'E' : ' ', info); } #else #define dump_fde(fde, info) do { } while(0) #endif #define FDE_EVENTMASK 0x00ff #define FDE_STATEMASK 0xff00 #define FDE_ACTIVE 0x0100 #define FDE_PENDING 0x0200 #define FDE_CREATED 0x0400 static void fdevent_plist_enqueue(fdevent *node); static void fdevent_plist_remove(fdevent *node); static fdevent *fdevent_plist_dequeue(void); static fdevent list_pending = { .next = &list_pending, .prev = &list_pending, }; static fdevent **fd_table = 0; static int fd_table_max = 0; typedef struct EventLooperRec_* EventLooper; typedef struct EventHookRec_ { EventHook next; FH fh; HANDLE h; int wanted; /* wanted event flags */ int ready; /* ready event flags */ void* aux; void (*prepare)( EventHook hook ); int (*start) ( EventHook hook ); void (*stop) ( EventHook hook ); int (*check) ( EventHook hook ); int (*peek) ( EventHook hook ); } EventHookRec; static EventHook _free_hooks; static EventHook event_hook_alloc(FH fh) { EventHook hook = _free_hooks; if (hook != NULL) { _free_hooks = hook->next; } else { hook = reinterpret_cast(malloc(sizeof(*hook))); if (hook == NULL) fatal( "could not allocate event hook\n" ); } hook->next = NULL; hook->fh = fh; hook->wanted = 0; hook->ready = 0; hook->h = INVALID_HANDLE_VALUE; hook->aux = NULL; hook->prepare = NULL; hook->start = NULL; hook->stop = NULL; hook->check = NULL; hook->peek = NULL; return hook; } static void event_hook_free( EventHook hook ) { hook->fh = NULL; hook->wanted = 0; hook->ready = 0; hook->next = _free_hooks; _free_hooks = hook; } static void event_hook_signal( EventHook hook ) { FH f = hook->fh; int fd = _fh_to_int(f); fdevent* fde = fd_table[ fd - WIN32_FH_BASE ]; if (fde != NULL && fde->fd == fd) { if ((fde->state & FDE_PENDING) == 0) { fde->state |= FDE_PENDING; fdevent_plist_enqueue( fde ); } fde->events |= hook->wanted; } } #define MAX_LOOPER_HANDLES WIN32_MAX_FHS typedef struct EventLooperRec_ { EventHook hooks; HANDLE htab[ MAX_LOOPER_HANDLES ]; int htab_count; } EventLooperRec; static EventHook* event_looper_find_p( EventLooper looper, FH fh ) { EventHook *pnode = &looper->hooks; EventHook node = *pnode; for (;;) { if ( node == NULL || node->fh == fh ) break; pnode = &node->next; node = *pnode; } return pnode; } static void event_looper_hook( EventLooper looper, int fd, int events ) { FH f = _fh_from_int(fd, __func__); EventHook *pnode; EventHook node; if (f == NULL) /* invalid arg */ { D("event_looper_hook: invalid fd=%d\n", fd); return; } pnode = event_looper_find_p( looper, f ); node = *pnode; if ( node == NULL ) { node = event_hook_alloc( f ); node->next = *pnode; *pnode = node; } if ( (node->wanted & events) != events ) { /* this should update start/stop/check/peek */ D("event_looper_hook: call hook for %d (new=%x, old=%x)\n", fd, node->wanted, events); f->clazz->_fh_hook( f, events & ~node->wanted, node ); node->wanted |= events; } else { D("event_looper_hook: ignoring events %x for %d wanted=%x)\n", events, fd, node->wanted); } } static void event_looper_unhook( EventLooper looper, int fd, int events ) { FH fh = _fh_from_int(fd, __func__); EventHook *pnode = event_looper_find_p( looper, fh ); EventHook node = *pnode; if (node != NULL) { int events2 = events & node->wanted; if ( events2 == 0 ) { D( "event_looper_unhook: events %x not registered for fd %d\n", events, fd ); return; } node->wanted &= ~events2; if (!node->wanted) { *pnode = node->next; event_hook_free( node ); } } } /* * A fixer for WaitForMultipleObjects on condition that there are more than 64 * handles to wait on. * * In cetain cases DDMS may establish more than 64 connections with ADB. For * instance, this may happen if there are more than 64 processes running on a * device, or there are multiple devices connected (including the emulator) with * the combined number of running processes greater than 64. In this case using * WaitForMultipleObjects to wait on connection events simply wouldn't cut, * because of the API limitations (64 handles max). So, we need to provide a way * to scale WaitForMultipleObjects to accept an arbitrary number of handles. The * easiest (and "Microsoft recommended") way to do that would be dividing the * handle array into chunks with the chunk size less than 64, and fire up as many * waiting threads as there are chunks. Then each thread would wait on a chunk of * handles, and will report back to the caller which handle has been set. * Here is the implementation of that algorithm. */ /* Number of handles to wait on in each wating thread. */ #define WAIT_ALL_CHUNK_SIZE 63 /* Descriptor for a wating thread */ typedef struct WaitForAllParam { /* A handle to an event to signal when waiting is over. This handle is shared * accross all the waiting threads, so each waiting thread knows when any * other thread has exited, so it can exit too. */ HANDLE main_event; /* Upon exit from a waiting thread contains the index of the handle that has * been signaled. The index is an absolute index of the signaled handle in * the original array. This pointer is shared accross all the waiting threads * and it's not guaranteed (due to a race condition) that when all the * waiting threads exit, the value contained here would indicate the first * handle that was signaled. This is fine, because the caller cares only * about any handle being signaled. It doesn't care about the order, nor * about the whole list of handles that were signaled. */ LONG volatile *signaled_index; /* Array of handles to wait on in a waiting thread. */ HANDLE* handles; /* Number of handles in 'handles' array to wait on. */ int handles_count; /* Index inside the main array of the first handle in the 'handles' array. */ int first_handle_index; /* Waiting thread handle. */ HANDLE thread; } WaitForAllParam; /* Waiting thread routine. */ static unsigned __stdcall _in_waiter_thread(void* arg) { HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1]; int res; WaitForAllParam* const param = (WaitForAllParam*)arg; /* We have to wait on the main_event in order to be notified when any of the * sibling threads is exiting. */ wait_on[0] = param->main_event; /* The rest of the handles go behind the main event handle. */ memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE)); res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE); if (res > 0 && res < (param->handles_count + 1)) { /* One of the original handles got signaled. Save its absolute index into * the output variable. */ InterlockedCompareExchange(param->signaled_index, res - 1L + param->first_handle_index, -1L); } /* Notify the caller (and the siblings) that the wait is over. */ SetEvent(param->main_event); _endthreadex(0); return 0; } /* WaitForMultipeObjects fixer routine. * Param: * handles Array of handles to wait on. * handles_count Number of handles in the array. * Return: * (>= 0 && < handles_count) - Index of the signaled handle in the array, or * WAIT_FAILED on an error. */ static int _wait_for_all(HANDLE* handles, int handles_count) { WaitForAllParam* threads; HANDLE main_event; int chunks, chunk, remains; /* This variable is going to be accessed by several threads at the same time, * this is bound to fail randomly when the core is run on multi-core machines. * To solve this, we need to do the following (1 _and_ 2): * 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize * out the reads/writes in this function unexpectedly. * 2. Ensure correct memory ordering. The "simple" way to do that is to wrap * all accesses inside a critical section. But we can also use * InterlockedCompareExchange() which always provide a full memory barrier * on Win32. */ volatile LONG sig_index = -1; /* Calculate number of chunks, and allocate thread param array. */ chunks = handles_count / WAIT_ALL_CHUNK_SIZE; remains = handles_count % WAIT_ALL_CHUNK_SIZE; threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) * sizeof(WaitForAllParam)); if (threads == NULL) { D("Unable to allocate thread array for %d handles.\n", handles_count); return (int)WAIT_FAILED; } /* Create main event to wait on for all waiting threads. This is a "manualy * reset" event that will remain set once it was set. */ main_event = CreateEvent(NULL, TRUE, FALSE, NULL); if (main_event == NULL) { D("Unable to create main event. Error: %ld\n", GetLastError()); free(threads); return (int)WAIT_FAILED; } /* * Initialize waiting thread parameters. */ for (chunk = 0; chunk < chunks; chunk++) { threads[chunk].main_event = main_event; threads[chunk].signaled_index = &sig_index; threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk; threads[chunk].handles = handles + threads[chunk].first_handle_index; threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE; } if (remains) { threads[chunk].main_event = main_event; threads[chunk].signaled_index = &sig_index; threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk; threads[chunk].handles = handles + threads[chunk].first_handle_index; threads[chunk].handles_count = remains; chunks++; } /* Start the waiting threads. */ for (chunk = 0; chunk < chunks; chunk++) { /* Note that using adb_thread_create is not appropriate here, since we * need a handle to wait on for thread termination. */ threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread, &threads[chunk], 0, NULL); if (threads[chunk].thread == NULL) { /* Unable to create a waiter thread. Collapse. */ D("Unable to create a waiting thread %d of %d. errno=%d\n", chunk, chunks, errno); chunks = chunk; SetEvent(main_event); break; } } /* Wait on any of the threads to get signaled. */ WaitForSingleObject(main_event, INFINITE); /* Wait on all the waiting threads to exit. */ for (chunk = 0; chunk < chunks; chunk++) { WaitForSingleObject(threads[chunk].thread, INFINITE); CloseHandle(threads[chunk].thread); } CloseHandle(main_event); free(threads); const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1); return (ret >= 0) ? ret : (int)WAIT_FAILED; } static EventLooperRec win32_looper; static void fdevent_init(void) { win32_looper.htab_count = 0; win32_looper.hooks = NULL; } static void fdevent_connect(fdevent *fde) { EventLooper looper = &win32_looper; int events = fde->state & FDE_EVENTMASK; if (events != 0) event_looper_hook( looper, fde->fd, events ); } static void fdevent_disconnect(fdevent *fde) { EventLooper looper = &win32_looper; int events = fde->state & FDE_EVENTMASK; if (events != 0) event_looper_unhook( looper, fde->fd, events ); } static void fdevent_update(fdevent *fde, unsigned events) { EventLooper looper = &win32_looper; unsigned events0 = fde->state & FDE_EVENTMASK; if (events != events0) { int removes = events0 & ~events; int adds = events & ~events0; if (removes) { D("fdevent_update: remove %x from %d\n", removes, fde->fd); event_looper_unhook( looper, fde->fd, removes ); } if (adds) { D("fdevent_update: add %x to %d\n", adds, fde->fd); event_looper_hook ( looper, fde->fd, adds ); } } } static void fdevent_process() { EventLooper looper = &win32_looper; EventHook hook; int gotone = 0; /* if we have at least one ready hook, execute it/them */ for (hook = looper->hooks; hook; hook = hook->next) { hook->ready = 0; if (hook->prepare) { hook->prepare(hook); if (hook->ready != 0) { event_hook_signal( hook ); gotone = 1; } } } /* nothing's ready yet, so wait for something to happen */ if (!gotone) { looper->htab_count = 0; for (hook = looper->hooks; hook; hook = hook->next) { if (hook->start && !hook->start(hook)) { D( "fdevent_process: error when starting a hook\n" ); return; } if (hook->h != INVALID_HANDLE_VALUE) { int nn; for (nn = 0; nn < looper->htab_count; nn++) { if ( looper->htab[nn] == hook->h ) goto DontAdd; } looper->htab[ looper->htab_count++ ] = hook->h; DontAdd: ; } } if (looper->htab_count == 0) { D( "fdevent_process: nothing to wait for !!\n" ); return; } do { int wait_ret; D( "adb_win32: waiting for %d events\n", looper->htab_count ); if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) { D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.\n", looper->htab_count); wait_ret = _wait_for_all(looper->htab, looper->htab_count); } else { wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE ); } if (wait_ret == (int)WAIT_FAILED) { D( "adb_win32: wait failed, error %ld\n", GetLastError() ); } else { D( "adb_win32: got one (index %d)\n", wait_ret ); /* according to Cygwin, some objects like consoles wake up on "inappropriate" events * like mouse movements. we need to filter these with the "check" function */ if ((unsigned)wait_ret < (unsigned)looper->htab_count) { for (hook = looper->hooks; hook; hook = hook->next) { if ( looper->htab[wait_ret] == hook->h && (!hook->check || hook->check(hook)) ) { D( "adb_win32: signaling %s for %x\n", hook->fh->name, hook->ready ); event_hook_signal( hook ); gotone = 1; break; } } } } } while (!gotone); for (hook = looper->hooks; hook; hook = hook->next) { if (hook->stop) hook->stop( hook ); } } for (hook = looper->hooks; hook; hook = hook->next) { if (hook->peek && hook->peek(hook)) event_hook_signal( hook ); } } static void fdevent_register(fdevent *fde) { int fd = fde->fd - WIN32_FH_BASE; if(fd < 0) { FATAL("bogus negative fd (%d)\n", fde->fd); } if(fd >= fd_table_max) { int oldmax = fd_table_max; if(fde->fd > 32000) { FATAL("bogus huuuuge fd (%d)\n", fde->fd); } if(fd_table_max == 0) { fdevent_init(); fd_table_max = 256; } while(fd_table_max <= fd) { fd_table_max *= 2; } fd_table = reinterpret_cast(realloc(fd_table, sizeof(fdevent*) * fd_table_max)); if(fd_table == 0) { FATAL("could not expand fd_table to %d entries\n", fd_table_max); } memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax)); } fd_table[fd] = fde; } static void fdevent_unregister(fdevent *fde) { int fd = fde->fd - WIN32_FH_BASE; if((fd < 0) || (fd >= fd_table_max)) { FATAL("fd out of range (%d)\n", fde->fd); } if(fd_table[fd] != fde) { FATAL("fd_table out of sync"); } fd_table[fd] = 0; if(!(fde->state & FDE_DONT_CLOSE)) { dump_fde(fde, "close"); adb_close(fde->fd); } } static void fdevent_plist_enqueue(fdevent *node) { fdevent *list = &list_pending; node->next = list; node->prev = list->prev; node->prev->next = node; list->prev = node; } static void fdevent_plist_remove(fdevent *node) { node->prev->next = node->next; node->next->prev = node->prev; node->next = 0; node->prev = 0; } static fdevent *fdevent_plist_dequeue(void) { fdevent *list = &list_pending; fdevent *node = list->next; if(node == list) return 0; list->next = node->next; list->next->prev = list; node->next = 0; node->prev = 0; return node; } fdevent *fdevent_create(int fd, fd_func func, void *arg) { fdevent *fde = (fdevent*) malloc(sizeof(fdevent)); if(fde == 0) return 0; fdevent_install(fde, fd, func, arg); fde->state |= FDE_CREATED; return fde; } void fdevent_destroy(fdevent *fde) { if(fde == 0) return; if(!(fde->state & FDE_CREATED)) { FATAL("fde %p not created by fdevent_create()\n", fde); } fdevent_remove(fde); } void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg) { memset(fde, 0, sizeof(fdevent)); fde->state = FDE_ACTIVE; fde->fd = fd; fde->func = func; fde->arg = arg; fdevent_register(fde); dump_fde(fde, "connect"); fdevent_connect(fde); fde->state |= FDE_ACTIVE; } void fdevent_remove(fdevent *fde) { if(fde->state & FDE_PENDING) { fdevent_plist_remove(fde); } if(fde->state & FDE_ACTIVE) { fdevent_disconnect(fde); dump_fde(fde, "disconnect"); fdevent_unregister(fde); } fde->state = 0; fde->events = 0; } void fdevent_set(fdevent *fde, unsigned events) { events &= FDE_EVENTMASK; if((fde->state & FDE_EVENTMASK) == (int)events) return; if(fde->state & FDE_ACTIVE) { fdevent_update(fde, events); dump_fde(fde, "update"); } fde->state = (fde->state & FDE_STATEMASK) | events; if(fde->state & FDE_PENDING) { /* if we're pending, make sure ** we don't signal an event that ** is no longer wanted. */ fde->events &= (~events); if(fde->events == 0) { fdevent_plist_remove(fde); fde->state &= (~FDE_PENDING); } } } void fdevent_add(fdevent *fde, unsigned events) { fdevent_set( fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK)); } void fdevent_del(fdevent *fde, unsigned events) { fdevent_set( fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK))); } void fdevent_loop() { fdevent *fde; for(;;) { #if DEBUG fprintf(stderr,"--- ---- waiting for events\n"); #endif fdevent_process(); while((fde = fdevent_plist_dequeue())) { unsigned events = fde->events; fde->events = 0; fde->state &= (~FDE_PENDING); dump_fde(fde, "callback"); fde->func(fde->fd, events, fde->arg); } } } /** FILE EVENT HOOKS **/ static void _event_file_prepare( EventHook hook ) { if (hook->wanted & (FDE_READ|FDE_WRITE)) { /* we can always read/write */ hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE); } } static int _event_file_peek( EventHook hook ) { return (hook->wanted & (FDE_READ|FDE_WRITE)); } static void _fh_file_hook( FH f, int events, EventHook hook ) { hook->h = f->fh_handle; hook->prepare = _event_file_prepare; hook->peek = _event_file_peek; } /** SOCKET EVENT HOOKS **/ static void _event_socket_verify( EventHook hook, WSANETWORKEVENTS* evts ) { if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) { if (hook->wanted & FDE_READ) hook->ready |= FDE_READ; if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR) hook->ready |= FDE_ERROR; } if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) { if (hook->wanted & FDE_WRITE) hook->ready |= FDE_WRITE; if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR) hook->ready |= FDE_ERROR; } if ( evts->lNetworkEvents & FD_OOB ) { if (hook->wanted & FDE_ERROR) hook->ready |= FDE_ERROR; } } static void _event_socket_prepare( EventHook hook ) { WSANETWORKEVENTS evts; /* look if some of the events we want already happened ? */ if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts )) _event_socket_verify( hook, &evts ); } static int _socket_wanted_to_flags( int wanted ) { int flags = 0; if (wanted & FDE_READ) flags |= FD_READ | FD_ACCEPT | FD_CLOSE; if (wanted & FDE_WRITE) flags |= FD_WRITE | FD_CONNECT | FD_CLOSE; if (wanted & FDE_ERROR) flags |= FD_OOB; return flags; } static int _event_socket_start( EventHook hook ) { /* create an event which we're going to wait for */ FH fh = hook->fh; long flags = _socket_wanted_to_flags( hook->wanted ); hook->h = fh->event; if (hook->h == INVALID_HANDLE_VALUE) { D( "_event_socket_start: no event for %s\n", fh->name ); return 0; } if ( flags != fh->mask ) { D( "_event_socket_start: hooking %s for %x (flags %ld)\n", hook->fh->name, hook->wanted, flags ); if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) { D( "_event_socket_start: WSAEventSelect() for %s failed, error %d\n", hook->fh->name, WSAGetLastError() ); CloseHandle( hook->h ); hook->h = INVALID_HANDLE_VALUE; exit(1); return 0; } fh->mask = flags; } return 1; } static void _event_socket_stop( EventHook hook ) { hook->h = INVALID_HANDLE_VALUE; } static int _event_socket_check( EventHook hook ) { int result = 0; FH fh = hook->fh; WSANETWORKEVENTS evts; if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) { _event_socket_verify( hook, &evts ); result = (hook->ready != 0); if (result) { ResetEvent( hook->h ); } } D( "_event_socket_check %s returns %d\n", fh->name, result ); return result; } static int _event_socket_peek( EventHook hook ) { WSANETWORKEVENTS evts; FH fh = hook->fh; /* look if some of the events we want already happened ? */ if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) { _event_socket_verify( hook, &evts ); if (hook->ready) ResetEvent( hook->h ); } return hook->ready != 0; } static void _fh_socket_hook( FH f, int events, EventHook hook ) { hook->prepare = _event_socket_prepare; hook->start = _event_socket_start; hook->stop = _event_socket_stop; hook->check = _event_socket_check; hook->peek = _event_socket_peek; // TODO: check return value? _event_socket_start( hook ); } /** SOCKETPAIR EVENT HOOKS **/ static void _event_socketpair_prepare( EventHook hook ) { FH fh = hook->fh; SocketPair pair = fh->fh_pair; BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip; BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip; if (hook->wanted & FDE_READ && rbip->can_read) hook->ready |= FDE_READ; if (hook->wanted & FDE_WRITE && wbip->can_write) hook->ready |= FDE_WRITE; } static int _event_socketpair_start( EventHook hook ) { FH fh = hook->fh; SocketPair pair = fh->fh_pair; BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip; BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip; if (hook->wanted == FDE_READ) hook->h = rbip->evt_read; else if (hook->wanted == FDE_WRITE) hook->h = wbip->evt_write; else { D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE\n" ); return 0; } D( "_event_socketpair_start: hook %s for %x wanted=%x\n", hook->fh->name, _fh_to_int(fh), hook->wanted); return 1; } static int _event_socketpair_peek( EventHook hook ) { _event_socketpair_prepare( hook ); return hook->ready != 0; } static void _fh_socketpair_hook( FH fh, int events, EventHook hook ) { hook->prepare = _event_socketpair_prepare; hook->start = _event_socketpair_start; hook->peek = _event_socketpair_peek; } void adb_sysdeps_init( void ) { #define ADB_MUTEX(x) InitializeCriticalSection( & x ); #include "mutex_list.h" InitializeCriticalSection( &_win32_lock ); } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** Console Window Terminal Emulation *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ // This reads input from a Win32 console window and translates it into Unix // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal // mode, not Application mode), which itself emulates xterm. Gnome Terminal // is emulated instead of xterm because it is probably more popular than xterm: // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal // supports modern fonts, etc. It seems best to emulate the terminal that most // Android developers use because they'll fix apps (the shell, etc.) to keep // working with that terminal's emulation. // // The point of this emulation is not to be perfect or to solve all issues with // console windows on Windows, but to be better than the original code which // just called read() (which called ReadFile(), which called ReadConsoleA()) // which did not support Ctrl-C, tab completion, shell input line editing // keys, server echo, and more. // // This implementation reconfigures the console with SetConsoleMode(), then // calls ReadConsoleInput() to get raw input which it remaps to Unix // terminal-style sequences which is returned via unix_read() which is used // by the 'adb shell' command. // // Code organization: // // * stdin_raw_init() and stdin_raw_restore() reconfigure the console. // * unix_read() detects console windows (as opposed to pipes, files, etc.). // * _console_read() is the main code of the emulation. // Read an input record from the console; one that should be processed. static bool _get_interesting_input_record_uncached(const HANDLE console, INPUT_RECORD* const input_record) { for (;;) { DWORD read_count = 0; memset(input_record, 0, sizeof(*input_record)); if (!ReadConsoleInputA(console, input_record, 1, &read_count)) { D("_get_interesting_input_record_uncached: ReadConsoleInputA() " "failed: %s\n", SystemErrorCodeToString(GetLastError()).c_str()); errno = EIO; return false; } if (read_count == 0) { // should be impossible fatal("ReadConsoleInputA returned 0"); } if (read_count != 1) { // should be impossible fatal("ReadConsoleInputA did not return one input record"); } if ((input_record->EventType == KEY_EVENT) && (input_record->Event.KeyEvent.bKeyDown)) { if (input_record->Event.KeyEvent.wRepeatCount == 0) { fatal("ReadConsoleInputA returned a key event with zero repeat" " count"); } // Got an interesting INPUT_RECORD, so return return true; } } } // Cached input record (in case _console_read() is passed a buffer that doesn't // have enough space to fit wRepeatCount number of key sequences). A non-zero // wRepeatCount indicates that a record is cached. static INPUT_RECORD _win32_input_record; // Get the next KEY_EVENT_RECORD that should be processed. static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) { // If nothing cached, read directly from the console until we get an // interesting record. if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) { if (!_get_interesting_input_record_uncached(console, &_win32_input_record)) { // There was an error, so make sure wRepeatCount is zero because // that signifies no cached input record. _win32_input_record.Event.KeyEvent.wRepeatCount = 0; return NULL; } } return &_win32_input_record.Event.KeyEvent; } static __inline__ bool _is_shift_pressed(const DWORD control_key_state) { return (control_key_state & SHIFT_PRESSED) != 0; } static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) { return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0; } static __inline__ bool _is_alt_pressed(const DWORD control_key_state) { return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0; } static __inline__ bool _is_numlock_on(const DWORD control_key_state) { return (control_key_state & NUMLOCK_ON) != 0; } static __inline__ bool _is_capslock_on(const DWORD control_key_state) { return (control_key_state & CAPSLOCK_ON) != 0; } static __inline__ bool _is_enhanced_key(const DWORD control_key_state) { return (control_key_state & ENHANCED_KEY) != 0; } // Constants from MSDN for ToAscii(). static const BYTE TOASCII_KEY_OFF = 0x00; static const BYTE TOASCII_KEY_DOWN = 0x80; static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock // Given a key event, ignore a modifier key and return the character that was // entered without the modifier. Writes to *ch and returns the number of bytes // written. static size_t _get_char_ignoring_modifier(char* const ch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state, const WORD modifier) { // If there is no character from Windows, try ignoring the specified // modifier and look for a character. Note that if AltGr is being used, // there will be a character from Windows. if (key_event->uChar.AsciiChar == '\0') { // Note that we read the control key state from the passed in argument // instead of from key_event since the argument has been normalized. if (((modifier == VK_SHIFT) && _is_shift_pressed(control_key_state)) || ((modifier == VK_CONTROL) && _is_ctrl_pressed(control_key_state)) || ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) { BYTE key_state[256] = {0}; key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ? TOASCII_KEY_DOWN : TOASCII_KEY_OFF; key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ? TOASCII_KEY_DOWN : TOASCII_KEY_OFF; key_state[VK_MENU] = _is_alt_pressed(control_key_state) ? TOASCII_KEY_DOWN : TOASCII_KEY_OFF; key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ? TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF; // cause this modifier to be ignored key_state[modifier] = TOASCII_KEY_OFF; WORD translated = 0; if (ToAscii(key_event->wVirtualKeyCode, key_event->wVirtualScanCode, key_state, &translated, 0) == 1) { // Ignoring the modifier, we found a character. *ch = (CHAR)translated; return 1; } } } // Just use whatever Windows told us originally. *ch = key_event->uChar.AsciiChar; // If the character from Windows is NULL, return a size of zero. return (*ch == '\0') ? 0 : 1; } // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key, // but taking into account the shift key. This is because for a sequence like // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0, // we want to find the character ')'. // // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0 // because it is the default key-sequence to switch the input language. // This is configurable in the Region and Language control panel. static __inline__ size_t _get_non_control_char(char* const ch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { return _get_char_ignoring_modifier(ch, key_event, control_key_state, VK_CONTROL); } // Get without Alt. static __inline__ size_t _get_non_alt_char(char* const ch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { return _get_char_ignoring_modifier(ch, key_event, control_key_state, VK_MENU); } // Ignore the control key, find the character from Windows, and apply any // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to // *pch and returns number of bytes written. static size_t _get_control_character(char* const pch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { const size_t len = _get_non_control_char(pch, key_event, control_key_state); if ((len == 1) && _is_ctrl_pressed(control_key_state)) { char ch = *pch; switch (ch) { case '2': case '@': case '`': ch = '\0'; break; case '3': case '[': case '{': ch = '\x1b'; break; case '4': case '\\': case '|': ch = '\x1c'; break; case '5': case ']': case '}': ch = '\x1d'; break; case '6': case '^': case '~': ch = '\x1e'; break; case '7': case '-': case '_': ch = '\x1f'; break; case '8': ch = '\x7f'; break; case '/': if (!_is_alt_pressed(control_key_state)) { ch = '\x1f'; } break; case '?': if (!_is_alt_pressed(control_key_state)) { ch = '\x7f'; } break; } *pch = ch; } return len; } static DWORD _normalize_altgr_control_key_state( const KEY_EVENT_RECORD* const key_event) { DWORD control_key_state = key_event->dwControlKeyState; // If we're in an AltGr situation where the AltGr key is down (depending on // the keyboard layout, that might be the physical right alt key which // produces a control_key_state where Right-Alt and Left-Ctrl are down) or // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have // a character (which indicates that there was an AltGr mapping), then act // as if alt and control are not really down for the purposes of modifiers. // This makes it so that if the user with, say, a German keyboard layout // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just // output the key and we don't see the Alt and Ctrl keys. if (_is_ctrl_pressed(control_key_state) && _is_alt_pressed(control_key_state) && (key_event->uChar.AsciiChar != '\0')) { // Try to remove as few bits as possible to improve our chances of // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or // Left-Alt + Right-Ctrl + AltGr. if ((control_key_state & RIGHT_ALT_PRESSED) != 0) { // Remove Right-Alt. control_key_state &= ~RIGHT_ALT_PRESSED; // If uChar is set, a Ctrl key is pressed, and Right-Alt is // pressed, Left-Ctrl is almost always set, except if the user // presses Right-Ctrl, then AltGr (in that specific order) for // whatever reason. At any rate, make sure the bit is not set. control_key_state &= ~LEFT_CTRL_PRESSED; } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) { // Remove Left-Alt. control_key_state &= ~LEFT_ALT_PRESSED; // Whichever Ctrl key is down, remove it from the state. We only // remove one key, to improve our chances of detecting the // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl. if ((control_key_state & LEFT_CTRL_PRESSED) != 0) { // Remove Left-Ctrl. control_key_state &= ~LEFT_CTRL_PRESSED; } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) { // Remove Right-Ctrl. control_key_state &= ~RIGHT_CTRL_PRESSED; } } // Note that this logic isn't 100% perfect because Windows doesn't // allow us to detect all combinations because a physical AltGr key // press shows up as two bits, plus some combinations are ambiguous // about what is actually physically pressed. } return control_key_state; } // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in // dwControlKeyState for the following keypad keys: period, 0-9. If we detect // this scenario, set the SHIFT_PRESSED bit so we can add modifiers // appropriately. static DWORD _normalize_keypad_control_key_state(const WORD vk, const DWORD control_key_state) { if (!_is_numlock_on(control_key_state)) { return control_key_state; } if (!_is_enhanced_key(control_key_state)) { switch (vk) { case VK_INSERT: // 0 case VK_DELETE: // . case VK_END: // 1 case VK_DOWN: // 2 case VK_NEXT: // 3 case VK_LEFT: // 4 case VK_CLEAR: // 5 case VK_RIGHT: // 6 case VK_HOME: // 7 case VK_UP: // 8 case VK_PRIOR: // 9 return control_key_state | SHIFT_PRESSED; } } return control_key_state; } static const char* _get_keypad_sequence(const DWORD control_key_state, const char* const normal, const char* const shifted) { if (_is_shift_pressed(control_key_state)) { // Shift is pressed and NumLock is off return shifted; } else { // Shift is not pressed and NumLock is off, or, // Shift is pressed and NumLock is on, in which case we want the // NumLock and Shift to neutralize each other, thus, we want the normal // sequence. return normal; } // If Shift is not pressed and NumLock is on, a different virtual key code // is returned by Windows, which can be taken care of by a different case // statement in _console_read(). } // Write sequence to buf and return the number of bytes written. static size_t _get_modifier_sequence(char* const buf, const WORD vk, DWORD control_key_state, const char* const normal) { // Copy the base sequence into buf. const size_t len = strlen(normal); memcpy(buf, normal, len); int code = 0; control_key_state = _normalize_keypad_control_key_state(vk, control_key_state); if (_is_shift_pressed(control_key_state)) { code |= 0x1; } if (_is_alt_pressed(control_key_state)) { // any alt key pressed code |= 0x2; } if (_is_ctrl_pressed(control_key_state)) { // any control key pressed code |= 0x4; } // If some modifier was held down, then we need to insert the modifier code if (code != 0) { if (len == 0) { // Should be impossible because caller should pass a string of // non-zero length. return 0; } size_t index = len - 1; const char lastChar = buf[index]; if (lastChar != '~') { buf[index++] = '1'; } buf[index++] = ';'; // modifier separator // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control, // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control buf[index++] = '1' + code; buf[index++] = lastChar; // move ~ (or other last char) to the end return index; } return len; } // Write sequence to buf and return the number of bytes written. static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk, const DWORD control_key_state, const char* const normal, const char shifted) { if (_is_shift_pressed(control_key_state)) { // Shift is pressed and NumLock is off if (shifted != '\0') { buf[0] = shifted; return sizeof(buf[0]); } else { return 0; } } else { // Shift is not pressed and NumLock is off, or, // Shift is pressed and NumLock is on, in which case we want the // NumLock and Shift to neutralize each other, thus, we want the normal // sequence. return _get_modifier_sequence(buf, vk, control_key_state, normal); } // If Shift is not pressed and NumLock is on, a different virtual key code // is returned by Windows, which can be taken care of by a different case // statement in _console_read(). } // The decimal key on the keypad produces a '.' for U.S. English and a ',' for // Standard German. Figure this out at runtime so we know what to output for // Shift-VK_DELETE. static char _get_decimal_char() { return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR); } // Prefix the len bytes in buf with the escape character, and then return the // new buffer length. size_t _escape_prefix(char* const buf, const size_t len) { // If nothing to prefix, don't do anything. We might be called with // len == 0, if alt was held down with a dead key which produced nothing. if (len == 0) { return 0; } memmove(&buf[1], buf, len); buf[0] = '\x1b'; return len + 1; } // Writes to buffer buf (of length len), returning number of bytes written or // -1 on error. Never returns zero because Win32 consoles are never 'closed' // (as far as I can tell). static int _console_read(const HANDLE console, void* buf, size_t len) { for (;;) { KEY_EVENT_RECORD* const key_event = _get_key_event_record(console); if (key_event == NULL) { return -1; } const WORD vk = key_event->wVirtualKeyCode; const CHAR ch = key_event->uChar.AsciiChar; const DWORD control_key_state = _normalize_altgr_control_key_state( key_event); // The following emulation code should write the output sequence to // either seqstr or to seqbuf and seqbuflen. const char* seqstr = NULL; // NULL terminated C-string // Enough space for max sequence string below, plus modifiers and/or // escape prefix. char seqbuf[16]; size_t seqbuflen = 0; // Space used in seqbuf. #define MATCH(vk, normal) \ case (vk): \ { \ seqstr = (normal); \ } \ break; // Modifier keys should affect the output sequence. #define MATCH_MODIFIER(vk, normal) \ case (vk): \ { \ seqbuflen = _get_modifier_sequence(seqbuf, (vk), \ control_key_state, (normal)); \ } \ break; // The shift key should affect the output sequence. #define MATCH_KEYPAD(vk, normal, shifted) \ case (vk): \ { \ seqstr = _get_keypad_sequence(control_key_state, (normal), \ (shifted)); \ } \ break; // The shift key and other modifier keys should affect the output // sequence. #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \ case (vk): \ { \ seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \ control_key_state, (normal), (shifted)); \ } \ break; #define ESC "\x1b" #define CSI ESC "[" #define SS3 ESC "O" // Only support normal mode, not application mode. // Enhanced keys: // * 6-pack: insert, delete, home, end, page up, page down // * cursor keys: up, down, right, left // * keypad: divide, enter // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT, // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK if (_is_enhanced_key(control_key_state)) { switch (vk) { case VK_RETURN: // Enter key on keypad if (_is_ctrl_pressed(control_key_state)) { seqstr = "\n"; } else { seqstr = "\r"; } break; MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down // gnome-terminal currently sends SS3 "F" and SS3 "H", but that // will be fixed soon to match xterm which sends CSI "F" and // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764 MATCH(VK_END, CSI "F"); MATCH(VK_HOME, CSI "H"); MATCH_MODIFIER(VK_LEFT, CSI "D"); MATCH_MODIFIER(VK_UP, CSI "A"); MATCH_MODIFIER(VK_RIGHT, CSI "C"); MATCH_MODIFIER(VK_DOWN, CSI "B"); MATCH_MODIFIER(VK_INSERT, CSI "2~"); MATCH_MODIFIER(VK_DELETE, CSI "3~"); MATCH(VK_DIVIDE, "/"); } } else { // Non-enhanced keys: switch (vk) { case VK_BACK: // backspace if (_is_alt_pressed(control_key_state)) { seqstr = ESC "\x7f"; } else { seqstr = "\x7f"; } break; case VK_TAB: if (_is_shift_pressed(control_key_state)) { seqstr = CSI "Z"; } else { seqstr = "\t"; } break; // Number 5 key in keypad when NumLock is off, or if NumLock is // on and Shift is down. MATCH_KEYPAD(VK_CLEAR, CSI "E", "5"); case VK_RETURN: // Enter key on main keyboard if (_is_alt_pressed(control_key_state)) { seqstr = ESC "\n"; } else if (_is_ctrl_pressed(control_key_state)) { seqstr = "\n"; } else { seqstr = "\r"; } break; // VK_ESCAPE: Don't do any special handling. The OS uses many // of the sequences with Escape and many of the remaining // sequences don't produce bKeyDown messages, only !bKeyDown // for whatever reason. case VK_SPACE: if (_is_alt_pressed(control_key_state)) { seqstr = ESC " "; } else if (_is_ctrl_pressed(control_key_state)) { seqbuf[0] = '\0'; // NULL char seqbuflen = 1; } else { seqstr = " "; } break; MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down MATCH_KEYPAD(VK_END, CSI "4~", "1"); MATCH_KEYPAD(VK_HOME, CSI "1~", "7"); MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4'); MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8'); MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6'); MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2'); MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0'); MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~", _get_decimal_char()); case 0x30: // 0 case 0x31: // 1 case 0x39: // 9 case VK_OEM_1: // ;: case VK_OEM_PLUS: // =+ case VK_OEM_COMMA: // ,< case VK_OEM_PERIOD: // .> case VK_OEM_7: // '" case VK_OEM_102: // depends on keyboard, could be <> or \| case VK_OEM_2: // /? case VK_OEM_3: // `~ case VK_OEM_4: // [{ case VK_OEM_5: // \| case VK_OEM_6: // ]} { seqbuflen = _get_control_character(seqbuf, key_event, control_key_state); if (_is_alt_pressed(control_key_state)) { seqbuflen = _escape_prefix(seqbuf, seqbuflen); } } break; case 0x32: // 2 case 0x36: // 6 case VK_OEM_MINUS: // -_ { seqbuflen = _get_control_character(seqbuf, key_event, control_key_state); // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then // prefix with escape. if (_is_alt_pressed(control_key_state) && !(_is_ctrl_pressed(control_key_state) && !_is_shift_pressed(control_key_state))) { seqbuflen = _escape_prefix(seqbuf, seqbuflen); } } break; case 0x33: // 3 case 0x34: // 4 case 0x35: // 5 case 0x37: // 7 case 0x38: // 8 { seqbuflen = _get_control_character(seqbuf, key_event, control_key_state); // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then // prefix with escape. if (_is_alt_pressed(control_key_state) && !(_is_ctrl_pressed(control_key_state) && !_is_shift_pressed(control_key_state))) { seqbuflen = _escape_prefix(seqbuf, seqbuflen); } } break; case 0x41: // a case 0x42: // b case 0x43: // c case 0x44: // d case 0x45: // e case 0x46: // f case 0x47: // g case 0x48: // h case 0x49: // i case 0x4a: // j case 0x4b: // k case 0x4c: // l case 0x4d: // m case 0x4e: // n case 0x4f: // o case 0x50: // p case 0x51: // q case 0x52: // r case 0x53: // s case 0x54: // t case 0x55: // u case 0x56: // v case 0x57: // w case 0x58: // x case 0x59: // y case 0x5a: // z { seqbuflen = _get_non_alt_char(seqbuf, key_event, control_key_state); // If Alt is pressed, then prefix with escape. if (_is_alt_pressed(control_key_state)) { seqbuflen = _escape_prefix(seqbuf, seqbuflen); } } break; // These virtual key codes are generated by the keys on the // keypad *when NumLock is on* and *Shift is up*. MATCH(VK_NUMPAD0, "0"); MATCH(VK_NUMPAD1, "1"); MATCH(VK_NUMPAD2, "2"); MATCH(VK_NUMPAD3, "3"); MATCH(VK_NUMPAD4, "4"); MATCH(VK_NUMPAD5, "5"); MATCH(VK_NUMPAD6, "6"); MATCH(VK_NUMPAD7, "7"); MATCH(VK_NUMPAD8, "8"); MATCH(VK_NUMPAD9, "9"); MATCH(VK_MULTIPLY, "*"); MATCH(VK_ADD, "+"); MATCH(VK_SUBTRACT, "-"); // VK_DECIMAL is generated by the . key on the keypad *when // NumLock is on* and *Shift is up* and the sequence is not // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the // Windows Security screen to come up). case VK_DECIMAL: // U.S. English uses '.', Germany German uses ','. seqbuflen = _get_non_control_char(seqbuf, key_event, control_key_state); break; MATCH_MODIFIER(VK_F1, SS3 "P"); MATCH_MODIFIER(VK_F2, SS3 "Q"); MATCH_MODIFIER(VK_F3, SS3 "R"); MATCH_MODIFIER(VK_F4, SS3 "S"); MATCH_MODIFIER(VK_F5, CSI "15~"); MATCH_MODIFIER(VK_F6, CSI "17~"); MATCH_MODIFIER(VK_F7, CSI "18~"); MATCH_MODIFIER(VK_F8, CSI "19~"); MATCH_MODIFIER(VK_F9, CSI "20~"); MATCH_MODIFIER(VK_F10, CSI "21~"); MATCH_MODIFIER(VK_F11, CSI "23~"); MATCH_MODIFIER(VK_F12, CSI "24~"); MATCH_MODIFIER(VK_F13, CSI "25~"); MATCH_MODIFIER(VK_F14, CSI "26~"); MATCH_MODIFIER(VK_F15, CSI "28~"); MATCH_MODIFIER(VK_F16, CSI "29~"); MATCH_MODIFIER(VK_F17, CSI "31~"); MATCH_MODIFIER(VK_F18, CSI "32~"); MATCH_MODIFIER(VK_F19, CSI "33~"); MATCH_MODIFIER(VK_F20, CSI "34~"); // MATCH_MODIFIER(VK_F21, ???); // MATCH_MODIFIER(VK_F22, ???); // MATCH_MODIFIER(VK_F23, ???); // MATCH_MODIFIER(VK_F24, ???); } } #undef MATCH #undef MATCH_MODIFIER #undef MATCH_KEYPAD #undef MATCH_MODIFIER_KEYPAD #undef ESC #undef CSI #undef SS3 const char* out; size_t outlen; // Check for output in any of: // * seqstr is set (and strlen can be used to determine the length). // * seqbuf and seqbuflen are set // Fallback to ch from Windows. if (seqstr != NULL) { out = seqstr; outlen = strlen(seqstr); } else if (seqbuflen > 0) { out = seqbuf; outlen = seqbuflen; } else if (ch != '\0') { // Use whatever Windows told us it is. seqbuf[0] = ch; seqbuflen = 1; out = seqbuf; outlen = seqbuflen; } else { // No special handling for the virtual key code and Windows isn't // telling us a character code, then we don't know how to translate // the key press. // // Consume the input and 'continue' to cause us to get a new key // event. D("_console_read: unknown virtual key code: %d, enhanced: %s\n", vk, _is_enhanced_key(control_key_state) ? "true" : "false"); key_event->wRepeatCount = 0; continue; } int bytesRead = 0; // put output wRepeatCount times into buf/len while (key_event->wRepeatCount > 0) { if (len >= outlen) { // Write to buf/len memcpy(buf, out, outlen); buf = (void*)((char*)buf + outlen); len -= outlen; bytesRead += outlen; // consume the input --key_event->wRepeatCount; } else { // Not enough space, so just leave it in _win32_input_record // for a subsequent retrieval. if (bytesRead == 0) { // We didn't write anything because there wasn't enough // space to even write one sequence. This should never // happen if the caller uses sensible buffer sizes // (i.e. >= maximum sequence length which is probably a // few bytes long). D("_console_read: no buffer space to write one sequence; " "buffer: %ld, sequence: %ld\n", (long)len, (long)outlen); errno = ENOMEM; return -1; } else { // Stop trying to write to buf/len, just return whatever // we wrote so far. break; } } } return bytesRead; } } static DWORD _old_console_mode; // previous GetConsoleMode() result static HANDLE _console_handle; // when set, console mode should be restored void stdin_raw_init(const int fd) { if (STDIN_FILENO == fd) { const HANDLE in = GetStdHandle(STD_INPUT_HANDLE); if ((in == INVALID_HANDLE_VALUE) || (in == NULL)) { return; } if (GetFileType(in) != FILE_TYPE_CHAR) { // stdin might be a file or pipe. return; } if (!GetConsoleMode(in, &_old_console_mode)) { // If GetConsoleMode() fails, stdin is probably is not a console. return; } // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of // calling the process Ctrl-C routine (configured by // SetConsoleCtrlHandler()). // Disable ENABLE_LINE_INPUT so that input is immediately sent. // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this // flag also seems necessary to have proper line-ending processing. if (!SetConsoleMode(in, _old_console_mode & ~(ENABLE_PROCESSED_INPUT | ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT))) { // This really should not fail. D("stdin_raw_init: SetConsoleMode() failed: %s\n", SystemErrorCodeToString(GetLastError()).c_str()); } // Once this is set, it means that stdin has been configured for // reading from and that the old console mode should be restored later. _console_handle = in; // Note that we don't need to configure C Runtime line-ending // translation because _console_read() does not call the C Runtime to // read from the console. } } void stdin_raw_restore(const int fd) { if (STDIN_FILENO == fd) { if (_console_handle != NULL) { const HANDLE in = _console_handle; _console_handle = NULL; // clear state if (!SetConsoleMode(in, _old_console_mode)) { // This really should not fail. D("stdin_raw_restore: SetConsoleMode() failed: %s\n", SystemErrorCodeToString(GetLastError()).c_str()); } } } } // Called by 'adb shell' and 'adb exec-in' to read from stdin. int unix_read(int fd, void* buf, size_t len) { if ((fd == STDIN_FILENO) && (_console_handle != NULL)) { // If it is a request to read from stdin, and stdin_raw_init() has been // called, and it successfully configured the console, then read from // the console using Win32 console APIs and partially emulate a unix // terminal. return _console_read(_console_handle, buf, len); } else { // Just call into C Runtime which can read from pipes/files and which // can do LF/CR translation (which is overridable with _setmode()). // Undefine the macro that is set in sysdeps.h which bans calls to // plain read() in favor of unix_read() or adb_read(). #pragma push_macro("read") #undef read return read(fd, buf, len); #pragma pop_macro("read") } } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** Unicode support *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ // This implements support for using files with Unicode filenames and for // outputting Unicode text to a Win32 console window. This is inspired from // http://utf8everywhere.org/. // // Background // ---------- // // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8 // filenames to APIs such as open(). This works because filenames are largely // opaque 'cookies' (perhaps excluding path separators). // // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char // strings, but the strings are in the ANSI codepage and not UTF-8. (The // CreateFile() API is really just a macro that adds the W/A based on whether // the UNICODE preprocessor symbol is defined). // // Options // ------- // // Thus, to write a portable program, there are a few options: // // 1. Write the program with wchar_t filenames (wchar_t path[256];). // For Windows, just call CreateFileW(). For POSIX, write a wrapper openW() // that takes a wchar_t string, converts it to UTF-8 and then calls the real // open() API. // // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and // 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those, // potentially touching a lot of code. // // 3. Write the program with a 1-byte char filenames (char path[256];) that are // UTF-8. For POSIX, just call open(). For Windows, write a wrapper that // takes a UTF-8 string, converts it to UTF-16 and then calls the real OS // or C Runtime API. // // The Choice // ---------- // // The code below chooses option 3, the UTF-8 everywhere strategy. It // introduces narrow() which converts UTF-16 to UTF-8. This is used by the // NarrowArgs helper class that is used to convert wmain() args into UTF-8 // args that are passed to main() at the beginning of program startup. We also // introduce widen() which converts from UTF-8 to UTF-16. This is used to // implement wrappers below that call UTF-16 OS and C Runtime APIs. // // Unicode console output // ---------------------- // // The way to output Unicode to a Win32 console window is to call // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font // such as Lucida Console or Consolas, and in the case of East Asian languages // (such as Chinese, Japanese, Korean), the user must go to the Control Panel // and change the "system locale" to Chinese, etc., which allows a Chinese, etc. // font to be used in console windows.) // // The problem is getting the C Runtime to make fprintf and related APIs call // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds // promising, but the various modes have issues: // // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and // UTF-16 do not display properly. // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out // totally wrong. // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter // handler to be called (upon a later I/O call), aborting the process. // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf // to output nothing. // // So the only solution is to write our own adb_fprintf() that converts UTF-8 // to UTF-16 and then calls WriteConsoleW(). // Function prototype because attributes cannot be placed on func definitions. static void _widen_fatal(const char *fmt, ...) __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 1, 2))); // A version of fatal() that does not call adb_(v)fprintf(), so it can be // called from those functions. static void _widen_fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); // If (v)fprintf are macros that point to adb_(v)fprintf, when random adb // code calls (v)fprintf, it may end up calling adb_(v)fprintf, which then // calls _widen_fatal(). So then how does _widen_fatal() output a error? // By directly calling real C Runtime APIs that don't properly output // Unicode, but will be able to get a comprehendible message out. To do // this, make sure we don't call (v)fprintf macros by undefining them. #pragma push_macro("fprintf") #pragma push_macro("vfprintf") #undef fprintf #undef vfprintf fprintf(stderr, "error: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); #pragma pop_macro("vfprintf") #pragma pop_macro("fprintf") va_end(ap); exit(-1); } // TODO: Consider implementing widen() and narrow() out of std::wstring_convert // once libcxx is supported on Windows. Or, consider libutils/Unicode.cpp. // Convert from UTF-8 to UTF-16. A size of -1 specifies a NULL terminated // string. Any other size specifies the number of chars to convert, excluding // any NULL terminator (if you're passing an explicit size, you probably don't // have a NULL terminated string in the first place). std::wstring widen(const char* utf8, const int size) { // Note: Do not call SystemErrorCodeToString() from widen() because // SystemErrorCodeToString() calls narrow() which may call fatal() which // calls adb_vfprintf() which calls widen(), potentially causing infinite // recursion. const int chars_to_convert = MultiByteToWideChar(CP_UTF8, 0, utf8, size, NULL, 0); if (chars_to_convert <= 0) { // UTF-8 to UTF-16 should be lossless, so we don't expect this to fail. _widen_fatal("MultiByteToWideChar failed counting: %d, " "GetLastError: %lu", chars_to_convert, GetLastError()); } std::wstring utf16; size_t chars_to_allocate = chars_to_convert; if (size == -1) { // chars_to_convert includes a NULL terminator, so subtract space // for that because resize() includes that itself. --chars_to_allocate; } utf16.resize(chars_to_allocate); // This uses &string[0] to get write-access to the entire string buffer // which may be assuming that the chars are all contiguous, but it seems // to work and saves us the hassle of using a temporary // std::vector. const int result = MultiByteToWideChar(CP_UTF8, 0, utf8, size, &utf16[0], chars_to_convert); if (result != chars_to_convert) { // UTF-8 to UTF-16 should be lossless, so we don't expect this to fail. _widen_fatal("MultiByteToWideChar failed conversion: %d, " "GetLastError: %lu", result, GetLastError()); } // If a size was passed in (size != -1), then the string is NULL terminated // by a NULL char that was written by std::string::resize(). If size == -1, // then MultiByteToWideChar() read a NULL terminator from the original // string and converted it to a NULL UTF-16 char in the output. return utf16; } // Convert a NULL terminated string from UTF-8 to UTF-16. std::wstring widen(const char* utf8) { // Pass -1 to let widen() determine the string length. return widen(utf8, -1); } // Convert from UTF-8 to UTF-16. std::wstring widen(const std::string& utf8) { return widen(utf8.c_str(), utf8.length()); } // Convert from UTF-16 to UTF-8. std::string narrow(const std::wstring& utf16) { return narrow(utf16.c_str()); } // Convert from UTF-16 to UTF-8. std::string narrow(const wchar_t* utf16) { // Note: Do not call SystemErrorCodeToString() from narrow() because // SystemErrorCodeToString() calls narrow() and we don't want potential // infinite recursion. const int chars_required = WideCharToMultiByte(CP_UTF8, 0, utf16, -1, NULL, 0, NULL, NULL); if (chars_required <= 0) { // UTF-16 to UTF-8 should be lossless, so we don't expect this to fail. fatal("WideCharToMultiByte failed counting: %d, GetLastError: %lu", chars_required, GetLastError()); } std::string utf8; // Subtract space for the NULL terminator because resize() includes // that itself. Note that this could potentially throw a std::bad_alloc // exception. utf8.resize(chars_required - 1); // This uses &string[0] to get write-access to the entire string buffer // which may be assuming that the chars are all contiguous, but it seems // to work and saves us the hassle of using a temporary // std::vector. const int result = WideCharToMultiByte(CP_UTF8, 0, utf16, -1, &utf8[0], chars_required, NULL, NULL); if (result != chars_required) { // UTF-16 to UTF-8 should be lossless, so we don't expect this to fail. fatal("WideCharToMultiByte failed conversion: %d, GetLastError: %lu", result, GetLastError()); } return utf8; } // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to // be passed to main(). NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) { narrow_args = new char*[argc + 1]; for (int i = 0; i < argc; ++i) { narrow_args[i] = strdup(narrow(argv[i]).c_str()); } narrow_args[argc] = nullptr; // terminate } NarrowArgs::~NarrowArgs() { if (narrow_args != nullptr) { for (char** argp = narrow_args; *argp != nullptr; ++argp) { free(*argp); } delete[] narrow_args; narrow_args = nullptr; } } int unix_open(const char* path, int options, ...) { if ((options & O_CREAT) == 0) { return _wopen(widen(path).c_str(), options); } else { int mode; va_list args; va_start(args, options); mode = va_arg(args, int); va_end(args); return _wopen(widen(path).c_str(), options, mode); } } // Version of stat() that takes a UTF-8 path. int adb_stat(const char* f, struct adb_stat* s) { #pragma push_macro("wstat") // This definition of wstat seems to be missing from . #if defined(_FILE_OFFSET_BITS) && (_FILE_OFFSET_BITS == 64) #ifdef _USE_32BIT_TIME_T #define wstat _wstat32i64 #else #define wstat _wstat64 #endif #else // has a function prototype for wstat() that should be available. #endif return wstat(widen(f).c_str(), s); #pragma pop_macro("wstat") } // Version of opendir() that takes a UTF-8 path. DIR* adb_opendir(const char* name) { // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of // the fields, but right now all the callers treat the structure as // opaque. return reinterpret_cast(_wopendir(widen(name).c_str())); } // Version of readdir() that returns UTF-8 paths. struct dirent* adb_readdir(DIR* dir) { _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir); struct _wdirent* const went = _wreaddir(wdir); if (went == nullptr) { return nullptr; } // Convert from UTF-16 to UTF-8. const std::string name_utf8(narrow(went->d_name)); // Cast the _wdirent* to dirent* and overwrite the d_name field (which has // space for UTF-16 wchar_t's) with UTF-8 char's. struct dirent* ent = reinterpret_cast(went); if (name_utf8.length() + 1 > sizeof(went->d_name)) { // Name too big to fit in existing buffer. errno = ENOMEM; return nullptr; } // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name) // because _wdirent contains wchar_t instead of char. So even if name_utf8 // can fit in _wdirent::d_name, the resulting dirent::d_name field may be // bigger than the caller expects because they expect a dirent structure // which has a smaller d_name field. Ignore this since the caller should be // resilient. // Rewrite the UTF-16 d_name field to UTF-8. strcpy(ent->d_name, name_utf8.c_str()); return ent; } // Version of closedir() to go with our version of adb_opendir(). int adb_closedir(DIR* dir) { return _wclosedir(reinterpret_cast<_WDIR*>(dir)); } // Version of unlink() that takes a UTF-8 path. int adb_unlink(const char* path) { const std::wstring wpath(widen(path)); int rc = _wunlink(wpath.c_str()); if (rc == -1 && errno == EACCES) { /* unlink returns EACCES when the file is read-only, so we first */ /* try to make it writable, then unlink again... */ rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE); if (rc == 0) rc = _wunlink(wpath.c_str()); } return rc; } // Version of mkdir() that takes a UTF-8 path. int adb_mkdir(const std::string& path, int mode) { return _wmkdir(widen(path.c_str()).c_str()); } // Version of utime() that takes a UTF-8 path. int adb_utime(const char* path, struct utimbuf* u) { static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf), "utimbuf and _utimbuf should be the same size because they both " "contain the same types, namely time_t"); return _wutime(widen(path).c_str(), reinterpret_cast(u)); } // Version of chmod() that takes a UTF-8 path. int adb_chmod(const char* path, int mode) { return _wchmod(widen(path).c_str(), mode); } // Internal function to get a Win32 console HANDLE from a C Runtime FILE*. static HANDLE _get_console_handle(FILE* const stream) { // Get a C Runtime file descriptor number from the FILE* structure. const int fd = fileno(stream); if (fd < 0) { return NULL; } // If it is not a "character device", it is probably a file and not a // console. Do this check early because it is probably cheap. Still do more // checks after this since there are devices that pass this test, but are // not a console, such as NUL, the Windows /dev/null equivalent (I think). if (!isatty(fd)) { return NULL; } // Given a C Runtime file descriptor number, get the underlying OS // file handle. const intptr_t osfh = _get_osfhandle(fd); if (osfh == -1) { return NULL; } const HANDLE h = reinterpret_cast(osfh); DWORD old_mode = 0; if (!GetConsoleMode(h, &old_mode)) { return NULL; } // If GetConsoleMode() was successful, assume this is a console. return h; } // Internal helper function to write UTF-8 bytes to a console. Returns -1 // on error. static int _console_write_utf8(const char* buf, size_t size, FILE* stream, HANDLE console) { // Convert from UTF-8 to UTF-16. // This could throw std::bad_alloc. const std::wstring output(widen(buf, size)); // Note that this does not do \n => \r\n translation because that // doesn't seem necessary for the Windows console. For the Windows // console \r moves to the beginning of the line and \n moves to a new // line. // Flush any stream buffering so that our output is afterwards which // makes sense because our call is afterwards. (void)fflush(stream); // Write UTF-16 to the console. DWORD written = 0; if (!WriteConsoleW(console, output.c_str(), output.length(), &written, NULL)) { errno = EIO; return -1; } // This is the number of UTF-16 chars written, which might be different // than the number of UTF-8 chars passed in. It doesn't seem practical to // get this count correct. return written; } // Function prototype because attributes cannot be placed on func definitions. static int _console_vfprintf(const HANDLE console, FILE* stream, const char *format, va_list ap) __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0))); // Internal function to format a UTF-8 string and write it to a Win32 console. // Returns -1 on error. static int _console_vfprintf(const HANDLE console, FILE* stream, const char *format, va_list ap) { std::string output_utf8; // Format the string. // This could throw std::bad_alloc. android::base::StringAppendV(&output_utf8, format, ap); return _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream, console); } // Version of vfprintf() that takes UTF-8 and can write Unicode to a // Windows console. int adb_vfprintf(FILE *stream, const char *format, va_list ap) { const HANDLE console = _get_console_handle(stream); // If there is an associated Win32 console, write to it specially, // otherwise defer to the regular C Runtime, passing it UTF-8. if (console != NULL) { return _console_vfprintf(console, stream, format, ap); } else { // If vfprintf is a macro, undefine it, so we can call the real // C Runtime API. #pragma push_macro("vfprintf") #undef vfprintf return vfprintf(stream, format, ap); #pragma pop_macro("vfprintf") } } // Version of fprintf() that takes UTF-8 and can write Unicode to a // Windows console. int adb_fprintf(FILE *stream, const char *format, ...) { va_list ap; va_start(ap, format); const int result = adb_vfprintf(stream, format, ap); va_end(ap); return result; } // Version of printf() that takes UTF-8 and can write Unicode to a // Windows console. int adb_printf(const char *format, ...) { va_list ap; va_start(ap, format); const int result = adb_vfprintf(stdout, format, ap); va_end(ap); return result; } // Version of fputs() that takes UTF-8 and can write Unicode to a // Windows console. int adb_fputs(const char* buf, FILE* stream) { // adb_fprintf returns -1 on error, which is conveniently the same as EOF // which fputs (and hence adb_fputs) should return on error. return adb_fprintf(stream, "%s", buf); } // Version of fputc() that takes UTF-8 and can write Unicode to a // Windows console. int adb_fputc(int ch, FILE* stream) { const int result = adb_fprintf(stream, "%c", ch); if (result <= 0) { // If there was an error, or if nothing was printed (which should be an // error), return an error, which fprintf signifies with EOF. return EOF; } // For success, fputc returns the char, cast to unsigned char, then to int. return static_cast(ch); } // Internal function to write UTF-8 to a Win32 console. Returns the number of // items (of length size) written. On error, returns a short item count or 0. static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream, HANDLE console) { // TODO: Note that a Unicode character could be several UTF-8 bytes. But // if we're passed only some of the bytes of a character (for example, from // the network socket for adb shell), we won't be able to convert the char // to a complete UTF-16 char (or surrogate pair), so the output won't look // right. // // To fix this, see libutils/Unicode.cpp for hints on decoding UTF-8. // // For now we ignore this problem because the alternative is that we'd have // to parse UTF-8 and buffer things up (doable). At least this is better // than what we had before -- always incorrect multi-byte UTF-8 output. int result = _console_write_utf8(reinterpret_cast(ptr), size * nmemb, stream, console); if (result == -1) { return 0; } return result / size; } // Version of fwrite() that takes UTF-8 and can write Unicode to a // Windows console. size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) { const HANDLE console = _get_console_handle(stream); // If there is an associated Win32 console, write to it specially, // otherwise defer to the regular C Runtime, passing it UTF-8. if (console != NULL) { return _console_fwrite(ptr, size, nmemb, stream, console); } else { // If fwrite is a macro, undefine it, so we can call the real // C Runtime API. #pragma push_macro("fwrite") #undef fwrite return fwrite(ptr, size, nmemb, stream); #pragma pop_macro("fwrite") } } // Version of fopen() that takes a UTF-8 filename and can access a file with // a Unicode filename. FILE* adb_fopen(const char* f, const char* m) { return _wfopen(widen(f).c_str(), widen(m).c_str()); } // Shadow UTF-8 environment variable name/value pairs that are created from // _wenviron the first time that adb_getenv() is called. Note that this is not // currently updated if putenv, setenv, unsetenv are called. Note that no // thread synchronization is done, but we're called early enough in // single-threaded startup that things work ok. static std::unordered_map g_environ_utf8; // Make sure that shadow UTF-8 environment variables are setup. static void _ensure_env_setup() { // If some name/value pairs exist, then we've already done the setup below. if (g_environ_utf8.size() != 0) { return; } // Read name/value pairs from UTF-16 _wenviron and write new name/value // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense // to use the D() macro here because that tracing only works if the // ADB_TRACE environment variable is setup, but that env var can't be read // until this code completes. for (wchar_t** env = _wenviron; *env != nullptr; ++env) { wchar_t* const equal = wcschr(*env, L'='); if (equal == nullptr) { // Malformed environment variable with no equal sign. Shouldn't // really happen, but we should be resilient to this. continue; } const std::string name_utf8(narrow(std::wstring(*env, equal - *env))); char* const value_utf8 = strdup(narrow(equal + 1).c_str()); // Overwrite any duplicate name, but there shouldn't be a dup in the // first place. g_environ_utf8[name_utf8] = value_utf8; } } // Version of getenv() that takes a UTF-8 environment variable name and // retrieves a UTF-8 value. char* adb_getenv(const char* name) { _ensure_env_setup(); const auto it = g_environ_utf8.find(std::string(name)); if (it == g_environ_utf8.end()) { return nullptr; } return it->second; } // Version of getcwd() that returns the current working directory in UTF-8. char* adb_getcwd(char* buf, int size) { wchar_t* wbuf = _wgetcwd(nullptr, 0); if (wbuf == nullptr) { return nullptr; } const std::string buf_utf8(narrow(wbuf)); free(wbuf); wbuf = nullptr; // If size was specified, make sure all the chars will fit. if (size != 0) { if (size < static_cast(buf_utf8.length() + 1)) { errno = ERANGE; return nullptr; } } // If buf was not specified, allocate storage. if (buf == nullptr) { if (size == 0) { size = buf_utf8.length() + 1; } buf = reinterpret_cast(malloc(size)); if (buf == nullptr) { return nullptr; } } // Destination buffer was allocated with enough space, or we've already // checked an existing buffer size for enough space. strcpy(buf, buf_utf8.c_str()); return buf; }