1176 lines
36 KiB
C++
1176 lines
36 KiB
C++
/* libs/pixelflinger/trap.cpp
|
|
**
|
|
** Copyright 2006, The Android Open Source Project
|
|
**
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
**
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
**
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "pixelflinger-trap"
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <cutils/memory.h>
|
|
#include <log/log.h>
|
|
|
|
#include "trap.h"
|
|
#include "picker.h"
|
|
|
|
namespace android {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// enable to see triangles edges
|
|
#define DEBUG_TRANGLES 0
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static void pointx_validate(void *con, const GGLcoord* c, GGLcoord r);
|
|
static void pointx(void *con, const GGLcoord* c, GGLcoord r);
|
|
static void aa_pointx(void *con, const GGLcoord* c, GGLcoord r);
|
|
static void aa_nice_pointx(void *con, const GGLcoord* c, GGLcoord r);
|
|
|
|
static void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
|
|
static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
|
|
static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w);
|
|
|
|
static void recti_validate(void* c, GGLint l, GGLint t, GGLint r, GGLint b);
|
|
static void recti(void* c, GGLint l, GGLint t, GGLint r, GGLint b);
|
|
|
|
static void trianglex_validate(void*,
|
|
const GGLcoord*, const GGLcoord*, const GGLcoord*);
|
|
static void trianglex_small(void*,
|
|
const GGLcoord*, const GGLcoord*, const GGLcoord*);
|
|
static void trianglex_big(void*,
|
|
const GGLcoord*, const GGLcoord*, const GGLcoord*);
|
|
static void aa_trianglex(void*,
|
|
const GGLcoord*, const GGLcoord*, const GGLcoord*);
|
|
static void trianglex_debug(void* con,
|
|
const GGLcoord*, const GGLcoord*, const GGLcoord*);
|
|
|
|
static void aapolyx(void* con,
|
|
const GGLcoord* pts, int count);
|
|
|
|
static inline int min(int a, int b) CONST;
|
|
static inline int max(int a, int b) CONST;
|
|
static inline int min(int a, int b, int c) CONST;
|
|
static inline int max(int a, int b, int c) CONST;
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Tools
|
|
#endif
|
|
|
|
inline int min(int a, int b) {
|
|
return a<b ? a : b;
|
|
}
|
|
inline int max(int a, int b) {
|
|
return a<b ? b : a;
|
|
}
|
|
inline int min(int a, int b, int c) {
|
|
return min(a,min(b,c));
|
|
}
|
|
inline int max(int a, int b, int c) {
|
|
return max(a,max(b,c));
|
|
}
|
|
|
|
template <typename T>
|
|
static inline void swap(T& a, T& b) {
|
|
T t(a);
|
|
a = b;
|
|
b = t;
|
|
}
|
|
|
|
static void
|
|
triangle_dump_points( const GGLcoord* v0,
|
|
const GGLcoord* v1,
|
|
const GGLcoord* v2 )
|
|
{
|
|
float tri = 1.0f / TRI_ONE;
|
|
ALOGD(" P0=(%.3f, %.3f) [%08x, %08x]\n"
|
|
" P1=(%.3f, %.3f) [%08x, %08x]\n"
|
|
" P2=(%.3f, %.3f) [%08x, %08x]\n",
|
|
v0[0]*tri, v0[1]*tri, v0[0], v0[1],
|
|
v1[0]*tri, v1[1]*tri, v1[0], v1[1],
|
|
v2[0]*tri, v2[1]*tri, v2[0], v2[1] );
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Misc
|
|
#endif
|
|
|
|
void ggl_init_trap(context_t* c)
|
|
{
|
|
ggl_state_changed(c, GGL_PIXEL_PIPELINE_STATE|GGL_TMU_STATE|GGL_CB_STATE);
|
|
}
|
|
|
|
void ggl_state_changed(context_t* c, int flags)
|
|
{
|
|
if (ggl_likely(!c->dirty)) {
|
|
c->procs.pointx = pointx_validate;
|
|
c->procs.linex = linex_validate;
|
|
c->procs.recti = recti_validate;
|
|
c->procs.trianglex = trianglex_validate;
|
|
}
|
|
c->dirty |= uint32_t(flags);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Point
|
|
#endif
|
|
|
|
void pointx_validate(void *con, const GGLcoord* v, GGLcoord rad)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
ggl_pick(c);
|
|
if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
|
|
if (c->state.enables & GGL_ENABLE_POINT_AA_NICE) {
|
|
c->procs.pointx = aa_nice_pointx;
|
|
} else {
|
|
c->procs.pointx = aa_pointx;
|
|
}
|
|
} else {
|
|
c->procs.pointx = pointx;
|
|
}
|
|
c->procs.pointx(con, v, rad);
|
|
}
|
|
|
|
void pointx(void *con, const GGLcoord* v, GGLcoord rad)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
GGLcoord halfSize = TRI_ROUND(rad) >> 1;
|
|
if (halfSize == 0)
|
|
halfSize = TRI_HALF;
|
|
GGLcoord xc = v[0];
|
|
GGLcoord yc = v[1];
|
|
if (halfSize & TRI_HALF) { // size odd
|
|
xc = TRI_FLOOR(xc) + TRI_HALF;
|
|
yc = TRI_FLOOR(yc) + TRI_HALF;
|
|
} else { // size even
|
|
xc = TRI_ROUND(xc);
|
|
yc = TRI_ROUND(yc);
|
|
}
|
|
GGLint l = (xc - halfSize) >> TRI_FRACTION_BITS;
|
|
GGLint t = (yc - halfSize) >> TRI_FRACTION_BITS;
|
|
GGLint r = (xc + halfSize) >> TRI_FRACTION_BITS;
|
|
GGLint b = (yc + halfSize) >> TRI_FRACTION_BITS;
|
|
recti(c, l, t, r, b);
|
|
}
|
|
|
|
// This way of computing the coverage factor, is more accurate and gives
|
|
// better results for small circles, but it is also a lot slower.
|
|
// Here we use super-sampling.
|
|
static int32_t coverageNice(GGLcoord x, GGLcoord y,
|
|
GGLcoord rmin, GGLcoord rmax, GGLcoord rr)
|
|
{
|
|
const GGLcoord d2 = x*x + y*y;
|
|
if (d2 >= rmax) return 0;
|
|
if (d2 < rmin) return 0x7FFF;
|
|
|
|
const int kSamples = 4;
|
|
const int kInc = 4; // 1/4 = 0.25
|
|
const int kCoverageUnit = 1; // 1/(4^2) = 0.0625
|
|
const GGLcoord kCoordOffset = -6; // -0.375
|
|
|
|
int hits = 0;
|
|
int x_sample = x + kCoordOffset;
|
|
for (int i=0 ; i<kSamples ; i++, x_sample += kInc) {
|
|
const int xval = rr - (x_sample * x_sample);
|
|
int y_sample = y + kCoordOffset;
|
|
for (int j=0 ; j<kSamples ; j++, y_sample += kInc) {
|
|
if (xval - (y_sample * y_sample) > 0)
|
|
hits += kCoverageUnit;
|
|
}
|
|
}
|
|
return min(0x7FFF, hits << (15 - kSamples));
|
|
}
|
|
|
|
|
|
void aa_nice_pointx(void *con, const GGLcoord* v, GGLcoord size)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
|
|
GGLcoord rad = ((size + 1)>>1);
|
|
GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS;
|
|
GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS;
|
|
GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
|
|
GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
|
|
GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;
|
|
GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;
|
|
|
|
// scissor...
|
|
if (l < GGLint(c->state.scissor.left)) {
|
|
xstart += TRI_FROM_INT(c->state.scissor.left-l);
|
|
l = GGLint(c->state.scissor.left);
|
|
}
|
|
if (t < GGLint(c->state.scissor.top)) {
|
|
ystart += TRI_FROM_INT(c->state.scissor.top-t);
|
|
t = GGLint(c->state.scissor.top);
|
|
}
|
|
if (r > GGLint(c->state.scissor.right)) {
|
|
r = GGLint(c->state.scissor.right);
|
|
}
|
|
if (b > GGLint(c->state.scissor.bottom)) {
|
|
b = GGLint(c->state.scissor.bottom);
|
|
}
|
|
|
|
int xc = r - l;
|
|
int yc = b - t;
|
|
if (xc>0 && yc>0) {
|
|
int16_t* covPtr = c->state.buffers.coverage;
|
|
const int32_t sqr2Over2 = 0xC; // rounded up
|
|
GGLcoord rr = rad*rad;
|
|
GGLcoord rmin = (rad - sqr2Over2)*(rad - sqr2Over2);
|
|
GGLcoord rmax = (rad + sqr2Over2)*(rad + sqr2Over2);
|
|
GGLcoord y = ystart;
|
|
c->iterators.xl = l;
|
|
c->iterators.xr = r;
|
|
c->init_y(c, t);
|
|
do {
|
|
// compute coverage factors for each pixel
|
|
GGLcoord x = xstart;
|
|
for (int i=l ; i<r ; i++) {
|
|
covPtr[i] = coverageNice(x, y, rmin, rmax, rr);
|
|
x += TRI_ONE;
|
|
}
|
|
y += TRI_ONE;
|
|
c->scanline(c);
|
|
c->step_y(c);
|
|
} while (--yc);
|
|
}
|
|
}
|
|
|
|
// This is a cheap way of computing the coverage factor for a circle.
|
|
// We just lerp between the circles of radii r-sqrt(2)/2 and r+sqrt(2)/2
|
|
static inline int32_t coverageFast(GGLcoord x, GGLcoord y,
|
|
GGLcoord rmin, GGLcoord rmax, GGLcoord scale)
|
|
{
|
|
const GGLcoord d2 = x*x + y*y;
|
|
if (d2 >= rmax) return 0;
|
|
if (d2 < rmin) return 0x7FFF;
|
|
return 0x7FFF - (d2-rmin)*scale;
|
|
}
|
|
|
|
void aa_pointx(void *con, const GGLcoord* v, GGLcoord size)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
|
|
GGLcoord rad = ((size + 1)>>1);
|
|
GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS;
|
|
GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS;
|
|
GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
|
|
GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS;
|
|
GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;
|
|
GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;
|
|
|
|
// scissor...
|
|
if (l < GGLint(c->state.scissor.left)) {
|
|
xstart += TRI_FROM_INT(c->state.scissor.left-l);
|
|
l = GGLint(c->state.scissor.left);
|
|
}
|
|
if (t < GGLint(c->state.scissor.top)) {
|
|
ystart += TRI_FROM_INT(c->state.scissor.top-t);
|
|
t = GGLint(c->state.scissor.top);
|
|
}
|
|
if (r > GGLint(c->state.scissor.right)) {
|
|
r = GGLint(c->state.scissor.right);
|
|
}
|
|
if (b > GGLint(c->state.scissor.bottom)) {
|
|
b = GGLint(c->state.scissor.bottom);
|
|
}
|
|
|
|
int xc = r - l;
|
|
int yc = b - t;
|
|
if (xc>0 && yc>0) {
|
|
int16_t* covPtr = c->state.buffers.coverage;
|
|
rad <<= 4;
|
|
const int32_t sqr2Over2 = 0xB5; // fixed-point 24.8
|
|
GGLcoord rmin = rad - sqr2Over2;
|
|
GGLcoord rmax = rad + sqr2Over2;
|
|
GGLcoord scale;
|
|
rmin *= rmin;
|
|
rmax *= rmax;
|
|
scale = 0x800000 / (rmax - rmin);
|
|
rmin >>= 8;
|
|
rmax >>= 8;
|
|
|
|
GGLcoord y = ystart;
|
|
c->iterators.xl = l;
|
|
c->iterators.xr = r;
|
|
c->init_y(c, t);
|
|
|
|
do {
|
|
// compute coverage factors for each pixel
|
|
GGLcoord x = xstart;
|
|
for (int i=l ; i<r ; i++) {
|
|
covPtr[i] = coverageFast(x, y, rmin, rmax, scale);
|
|
x += TRI_ONE;
|
|
}
|
|
y += TRI_ONE;
|
|
c->scanline(c);
|
|
c->step_y(c);
|
|
} while (--yc);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Line
|
|
#endif
|
|
|
|
void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
ggl_pick(c);
|
|
if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
|
|
c->procs.linex = aa_linex;
|
|
} else {
|
|
c->procs.linex = linex;
|
|
}
|
|
c->procs.linex(con, v0, v1, w);
|
|
}
|
|
|
|
static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
GGLcoord v[4][2];
|
|
v[0][0] = v0[0]; v[0][1] = v0[1];
|
|
v[1][0] = v1[0]; v[1][1] = v1[1];
|
|
v0 = v[0];
|
|
v1 = v[1];
|
|
const GGLcoord dx = abs(v0[0] - v1[0]);
|
|
const GGLcoord dy = abs(v0[1] - v1[1]);
|
|
GGLcoord nx, ny;
|
|
nx = ny = 0;
|
|
|
|
GGLcoord halfWidth = TRI_ROUND(width) >> 1;
|
|
if (halfWidth == 0)
|
|
halfWidth = TRI_HALF;
|
|
|
|
((dx > dy) ? ny : nx) = halfWidth;
|
|
v[2][0] = v1[0]; v[2][1] = v1[1];
|
|
v[3][0] = v0[0]; v[3][1] = v0[1];
|
|
v[0][0] += nx; v[0][1] += ny;
|
|
v[1][0] += nx; v[1][1] += ny;
|
|
v[2][0] -= nx; v[2][1] -= ny;
|
|
v[3][0] -= nx; v[3][1] -= ny;
|
|
trianglex_big(con, v[0], v[1], v[2]);
|
|
trianglex_big(con, v[0], v[2], v[3]);
|
|
}
|
|
|
|
static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
GGLcoord v[4][2];
|
|
v[0][0] = v0[0]; v[0][1] = v0[1];
|
|
v[1][0] = v1[0]; v[1][1] = v1[1];
|
|
v0 = v[0];
|
|
v1 = v[1];
|
|
|
|
const GGLcoord dx = v0[0] - v1[0];
|
|
const GGLcoord dy = v0[1] - v1[1];
|
|
GGLcoord nx = -dy;
|
|
GGLcoord ny = dx;
|
|
|
|
// generally, this will be well below 1.0
|
|
const GGLfixed norm = gglMulx(width, gglSqrtRecipx(nx*nx+ny*ny), 4);
|
|
nx = gglMulx(nx, norm, 21);
|
|
ny = gglMulx(ny, norm, 21);
|
|
|
|
v[2][0] = v1[0]; v[2][1] = v1[1];
|
|
v[3][0] = v0[0]; v[3][1] = v0[1];
|
|
v[0][0] += nx; v[0][1] += ny;
|
|
v[1][0] += nx; v[1][1] += ny;
|
|
v[2][0] -= nx; v[2][1] -= ny;
|
|
v[3][0] -= nx; v[3][1] -= ny;
|
|
aapolyx(con, v[0], 4);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Rect
|
|
#endif
|
|
|
|
void recti_validate(void *con, GGLint l, GGLint t, GGLint r, GGLint b)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
ggl_pick(c);
|
|
c->procs.recti = recti;
|
|
c->procs.recti(con, l, t, r, b);
|
|
}
|
|
|
|
void recti(void* con, GGLint l, GGLint t, GGLint r, GGLint b)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
|
|
// scissor...
|
|
if (l < GGLint(c->state.scissor.left))
|
|
l = GGLint(c->state.scissor.left);
|
|
if (t < GGLint(c->state.scissor.top))
|
|
t = GGLint(c->state.scissor.top);
|
|
if (r > GGLint(c->state.scissor.right))
|
|
r = GGLint(c->state.scissor.right);
|
|
if (b > GGLint(c->state.scissor.bottom))
|
|
b = GGLint(c->state.scissor.bottom);
|
|
|
|
int xc = r - l;
|
|
int yc = b - t;
|
|
if (xc>0 && yc>0) {
|
|
c->iterators.xl = l;
|
|
c->iterators.xr = r;
|
|
c->init_y(c, t);
|
|
c->rect(c, yc);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Triangle / Debugging
|
|
#endif
|
|
|
|
static void scanline_set(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
const GGLFormat* fp = &(c->formats[cb->format]);
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
|
|
(x + (cb->stride * y)) * fp->size;
|
|
const size_t size = ct * fp->size;
|
|
memset(dst, 0xFF, size);
|
|
}
|
|
|
|
static void trianglex_debug(void* con,
|
|
const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
|
|
aa_trianglex(con,v0,v1,v2);
|
|
} else {
|
|
trianglex_big(con,v0,v1,v2);
|
|
}
|
|
void (*save_scanline)(context_t*) = c->scanline;
|
|
c->scanline = scanline_set;
|
|
linex(con, v0, v1, TRI_ONE);
|
|
linex(con, v1, v2, TRI_ONE);
|
|
linex(con, v2, v0, TRI_ONE);
|
|
c->scanline = save_scanline;
|
|
}
|
|
|
|
static void trianglex_xor(void* con,
|
|
const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
|
|
{
|
|
trianglex_big(con,v0,v1,v2);
|
|
trianglex_small(con,v0,v1,v2);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Triangle
|
|
#endif
|
|
|
|
void trianglex_validate(void *con,
|
|
const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
ggl_pick(c);
|
|
if (c->state.needs.p & GGL_NEED_MASK(P_AA)) {
|
|
c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : aa_trianglex;
|
|
} else {
|
|
c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : trianglex_big;
|
|
}
|
|
c->procs.trianglex(con, v0, v1, v2);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void trianglex_small(void* con,
|
|
const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
|
|
// vertices are in 28.4 fixed point, which allows
|
|
// us to use 32 bits multiplies below.
|
|
int32_t x0 = v0[0];
|
|
int32_t y0 = v0[1];
|
|
int32_t x1 = v1[0];
|
|
int32_t y1 = v1[1];
|
|
int32_t x2 = v2[0];
|
|
int32_t y2 = v2[1];
|
|
|
|
int32_t dx01 = x0 - x1;
|
|
int32_t dy20 = y2 - y0;
|
|
int32_t dy01 = y0 - y1;
|
|
int32_t dx20 = x2 - x0;
|
|
|
|
// The code below works only with CCW triangles
|
|
// so if we get a CW triangle, we need to swap two of its vertices
|
|
if (dx01*dy20 < dy01*dx20) {
|
|
swap(x0, x1);
|
|
swap(y0, y1);
|
|
dx01 = x0 - x1;
|
|
dy01 = y0 - y1;
|
|
dx20 = x2 - x0;
|
|
dy20 = y2 - y0;
|
|
}
|
|
int32_t dx12 = x1 - x2;
|
|
int32_t dy12 = y1 - y2;
|
|
|
|
// bounding box & scissor
|
|
const int32_t bminx = TRI_FLOOR(min(x0, x1, x2)) >> TRI_FRACTION_BITS;
|
|
const int32_t bminy = TRI_FLOOR(min(y0, y1, y2)) >> TRI_FRACTION_BITS;
|
|
const int32_t bmaxx = TRI_CEIL( max(x0, x1, x2)) >> TRI_FRACTION_BITS;
|
|
const int32_t bmaxy = TRI_CEIL( max(y0, y1, y2)) >> TRI_FRACTION_BITS;
|
|
const int32_t minx = max(bminx, c->state.scissor.left);
|
|
const int32_t miny = max(bminy, c->state.scissor.top);
|
|
const int32_t maxx = min(bmaxx, c->state.scissor.right);
|
|
const int32_t maxy = min(bmaxy, c->state.scissor.bottom);
|
|
if ((minx >= maxx) || (miny >= maxy))
|
|
return; // too small or clipped out...
|
|
|
|
// step equations to the bounding box and snap to pixel center
|
|
const int32_t my = (miny << TRI_FRACTION_BITS) + TRI_HALF;
|
|
const int32_t mx = (minx << TRI_FRACTION_BITS) + TRI_HALF;
|
|
int32_t ey0 = dy01 * (x0 - mx) - dx01 * (y0 - my);
|
|
int32_t ey1 = dy12 * (x1 - mx) - dx12 * (y1 - my);
|
|
int32_t ey2 = dy20 * (x2 - mx) - dx20 * (y2 - my);
|
|
|
|
// right-exclusive fill rule, to avoid rare cases
|
|
// of over drawing
|
|
if (dy01<0 || (dy01 == 0 && dx01>0)) ey0++;
|
|
if (dy12<0 || (dy12 == 0 && dx12>0)) ey1++;
|
|
if (dy20<0 || (dy20 == 0 && dx20>0)) ey2++;
|
|
|
|
c->init_y(c, miny);
|
|
for (int32_t y = miny; y < maxy; y++) {
|
|
int32_t ex0 = ey0;
|
|
int32_t ex1 = ey1;
|
|
int32_t ex2 = ey2;
|
|
int32_t xl, xr;
|
|
for (xl=minx ; xl<maxx ; xl++) {
|
|
if (ex0>0 && ex1>0 && ex2>0)
|
|
break; // all strictly positive
|
|
ex0 -= dy01 << TRI_FRACTION_BITS;
|
|
ex1 -= dy12 << TRI_FRACTION_BITS;
|
|
ex2 -= dy20 << TRI_FRACTION_BITS;
|
|
}
|
|
xr = xl;
|
|
for ( ; xr<maxx ; xr++) {
|
|
if (!(ex0>0 && ex1>0 && ex2>0))
|
|
break; // not all strictly positive
|
|
ex0 -= dy01 << TRI_FRACTION_BITS;
|
|
ex1 -= dy12 << TRI_FRACTION_BITS;
|
|
ex2 -= dy20 << TRI_FRACTION_BITS;
|
|
}
|
|
|
|
if (xl < xr) {
|
|
c->iterators.xl = xl;
|
|
c->iterators.xr = xr;
|
|
c->scanline(c);
|
|
}
|
|
c->step_y(c);
|
|
|
|
ey0 += dx01 << TRI_FRACTION_BITS;
|
|
ey1 += dx12 << TRI_FRACTION_BITS;
|
|
ey2 += dx20 << TRI_FRACTION_BITS;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#endif
|
|
|
|
// the following routine fills a triangle via edge stepping, which
|
|
// unfortunately requires divisions in the setup phase to get right,
|
|
// it should probably only be used for relatively large trianges
|
|
|
|
|
|
// x = y*DX/DY (ou DX and DY are constants, DY > 0, et y >= 0)
|
|
//
|
|
// for an equation of the type:
|
|
// x' = y*K/2^p (with K and p constants "carefully chosen")
|
|
//
|
|
// We can now do a DDA without precision loss. We define 'e' by:
|
|
// x' - x = y*(DX/DY - K/2^p) = y*e
|
|
//
|
|
// If we choose K = round(DX*2^p/DY) then,
|
|
// abs(e) <= 1/2^(p+1) by construction
|
|
//
|
|
// therefore abs(x'-x) = y*abs(e) <= y/2^(p+1) <= DY/2^(p+1) <= DMAX/2^(p+1)
|
|
//
|
|
// which means that if DMAX <= 2^p, therefore abs(x-x') <= 1/2, including
|
|
// at the last line. In fact, it's even a strict inequality except in one
|
|
// extrem case (DY == DMAX et e = +/- 1/2)
|
|
//
|
|
// Applying that to our coordinates, we need 2^p >= 4096*16 = 65536
|
|
// so p = 16 is enough, we're so lucky!
|
|
|
|
const int TRI_ITERATORS_BITS = 16;
|
|
|
|
struct Edge
|
|
{
|
|
int32_t x; // edge position in 16.16 coordinates
|
|
int32_t x_incr; // on each step, increment x by that amount
|
|
int32_t y_top; // starting scanline, 16.4 format
|
|
int32_t y_bot;
|
|
};
|
|
|
|
static void
|
|
edge_dump( Edge* edge )
|
|
{
|
|
ALOGI( " top=%d (%.3f) bot=%d (%.3f) x=%d (%.3f) ix=%d (%.3f)",
|
|
edge->y_top, edge->y_top/float(TRI_ONE),
|
|
edge->y_bot, edge->y_bot/float(TRI_ONE),
|
|
edge->x, edge->x/float(FIXED_ONE),
|
|
edge->x_incr, edge->x_incr/float(FIXED_ONE) );
|
|
}
|
|
|
|
static void
|
|
triangle_dump_edges( Edge* edges,
|
|
int count )
|
|
{
|
|
ALOGI( "%d edge%s:\n", count, count == 1 ? "" : "s" );
|
|
for ( ; count > 0; count--, edges++ )
|
|
edge_dump( edges );
|
|
}
|
|
|
|
// the following function sets up an edge, it assumes
|
|
// that ymin and ymax are in already in the 'reduced'
|
|
// format
|
|
static __attribute__((noinline))
|
|
void edge_setup(
|
|
Edge* edges,
|
|
int* pcount,
|
|
const GGLcoord* p1,
|
|
const GGLcoord* p2,
|
|
int32_t ymin,
|
|
int32_t ymax )
|
|
{
|
|
const GGLfixed* top = p1;
|
|
const GGLfixed* bot = p2;
|
|
Edge* edge = edges + *pcount;
|
|
|
|
if (top[1] > bot[1]) {
|
|
swap(top, bot);
|
|
}
|
|
|
|
int y1 = top[1] | 1;
|
|
int y2 = bot[1] | 1;
|
|
int dy = y2 - y1;
|
|
|
|
if ( dy == 0 || y1 > ymax || y2 < ymin )
|
|
return;
|
|
|
|
if ( y1 > ymin )
|
|
ymin = TRI_SNAP_NEXT_HALF(y1);
|
|
|
|
if ( y2 < ymax )
|
|
ymax = TRI_SNAP_PREV_HALF(y2);
|
|
|
|
if ( ymin > ymax ) // when the edge doesn't cross any scanline
|
|
return;
|
|
|
|
const int x1 = top[0];
|
|
const int dx = bot[0] - x1;
|
|
const int shift = TRI_ITERATORS_BITS - TRI_FRACTION_BITS;
|
|
|
|
// setup edge fields
|
|
// We add 0.5 to edge->x here because it simplifies the rounding
|
|
// in triangle_sweep_edges() -- this doesn't change the ordering of 'x'
|
|
edge->x = (x1 << shift) + (1LU << (TRI_ITERATORS_BITS-1));
|
|
edge->x_incr = 0;
|
|
edge->y_top = ymin;
|
|
edge->y_bot = ymax;
|
|
|
|
if (ggl_likely(ymin <= ymax && dx)) {
|
|
edge->x_incr = gglDivQ16(dx, dy);
|
|
}
|
|
if (ggl_likely(y1 < ymin)) {
|
|
int32_t xadjust = (edge->x_incr * (ymin-y1)) >> TRI_FRACTION_BITS;
|
|
edge->x += xadjust;
|
|
}
|
|
|
|
++*pcount;
|
|
}
|
|
|
|
|
|
static void
|
|
triangle_sweep_edges( Edge* left,
|
|
Edge* right,
|
|
int ytop,
|
|
int ybot,
|
|
context_t* c )
|
|
{
|
|
int count = ((ybot - ytop)>>TRI_FRACTION_BITS) + 1;
|
|
if (count<=0) return;
|
|
|
|
// sort the edges horizontally
|
|
if ((left->x > right->x) ||
|
|
((left->x == right->x) && (left->x_incr > right->x_incr))) {
|
|
swap(left, right);
|
|
}
|
|
|
|
int left_x = left->x;
|
|
int right_x = right->x;
|
|
const int left_xi = left->x_incr;
|
|
const int right_xi = right->x_incr;
|
|
left->x += left_xi * count;
|
|
right->x += right_xi * count;
|
|
|
|
const int xmin = c->state.scissor.left;
|
|
const int xmax = c->state.scissor.right;
|
|
do {
|
|
// horizontal scissoring
|
|
const int32_t xl = max(left_x >> TRI_ITERATORS_BITS, xmin);
|
|
const int32_t xr = min(right_x >> TRI_ITERATORS_BITS, xmax);
|
|
left_x += left_xi;
|
|
right_x += right_xi;
|
|
// invoke the scanline rasterizer
|
|
if (ggl_likely(xl < xr)) {
|
|
c->iterators.xl = xl;
|
|
c->iterators.xr = xr;
|
|
c->scanline(c);
|
|
}
|
|
c->step_y(c);
|
|
} while (--count);
|
|
}
|
|
|
|
|
|
void trianglex_big(void* con,
|
|
const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2)
|
|
{
|
|
GGL_CONTEXT(c, con);
|
|
|
|
Edge edges[3];
|
|
int num_edges = 0;
|
|
int32_t ymin = TRI_FROM_INT(c->state.scissor.top) + TRI_HALF;
|
|
int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom) - TRI_HALF;
|
|
|
|
edge_setup( edges, &num_edges, v0, v1, ymin, ymax );
|
|
edge_setup( edges, &num_edges, v0, v2, ymin, ymax );
|
|
edge_setup( edges, &num_edges, v1, v2, ymin, ymax );
|
|
|
|
if (ggl_unlikely(num_edges<2)) // for really tiny triangles that don't
|
|
return; // cross any scanline centers
|
|
|
|
Edge* left = &edges[0];
|
|
Edge* right = &edges[1];
|
|
Edge* other = &edges[2];
|
|
int32_t y_top = min(left->y_top, right->y_top);
|
|
int32_t y_bot = max(left->y_bot, right->y_bot);
|
|
|
|
if (ggl_likely(num_edges==3)) {
|
|
y_top = min(y_top, edges[2].y_top);
|
|
y_bot = max(y_bot, edges[2].y_bot);
|
|
if (edges[0].y_top > y_top) {
|
|
other = &edges[0];
|
|
left = &edges[2];
|
|
} else if (edges[1].y_top > y_top) {
|
|
other = &edges[1];
|
|
right = &edges[2];
|
|
}
|
|
}
|
|
|
|
c->init_y(c, y_top >> TRI_FRACTION_BITS);
|
|
|
|
int32_t y_mid = min(left->y_bot, right->y_bot);
|
|
triangle_sweep_edges( left, right, y_top, y_mid, c );
|
|
|
|
// second scanline sweep loop, if necessary
|
|
y_mid += TRI_ONE;
|
|
if (y_mid <= y_bot) {
|
|
((left->y_bot == y_bot) ? right : left) = other;
|
|
if (other->y_top < y_mid) {
|
|
other->x += other->x_incr;
|
|
}
|
|
triangle_sweep_edges( left, right, y_mid, y_bot, c );
|
|
}
|
|
}
|
|
|
|
void aa_trianglex(void* con,
|
|
const GGLcoord* a, const GGLcoord* b, const GGLcoord* c)
|
|
{
|
|
GGLcoord pts[6] = { a[0], a[1], b[0], b[1], c[0], c[1] };
|
|
aapolyx(con, pts, 3);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#endif
|
|
|
|
struct AAEdge
|
|
{
|
|
GGLfixed x; // edge position in 12.16 coordinates
|
|
GGLfixed x_incr; // on each y step, increment x by that amount
|
|
GGLfixed y_incr; // on each x step, increment y by that amount
|
|
int16_t y_top; // starting scanline, 12.4 format
|
|
int16_t y_bot; // starting scanline, 12.4 format
|
|
void dump();
|
|
};
|
|
|
|
void AAEdge::dump()
|
|
{
|
|
float tri = 1.0f / TRI_ONE;
|
|
float iter = 1.0f / (1<<TRI_ITERATORS_BITS);
|
|
float fix = 1.0f / FIXED_ONE;
|
|
ALOGD( "x=%08x (%.3f), "
|
|
"x_incr=%08x (%.3f), y_incr=%08x (%.3f), "
|
|
"y_top=%08x (%.3f), y_bot=%08x (%.3f) ",
|
|
x, x*fix,
|
|
x_incr, x_incr*iter,
|
|
y_incr, y_incr*iter,
|
|
y_top, y_top*tri,
|
|
y_bot, y_bot*tri );
|
|
}
|
|
|
|
// the following function sets up an edge, it assumes
|
|
// that ymin and ymax are in already in the 'reduced'
|
|
// format
|
|
static __attribute__((noinline))
|
|
void aa_edge_setup(
|
|
AAEdge* edges,
|
|
int* pcount,
|
|
const GGLcoord* p1,
|
|
const GGLcoord* p2,
|
|
int32_t ymin,
|
|
int32_t ymax )
|
|
{
|
|
const GGLfixed* top = p1;
|
|
const GGLfixed* bot = p2;
|
|
AAEdge* edge = edges + *pcount;
|
|
|
|
if (top[1] > bot[1])
|
|
swap(top, bot);
|
|
|
|
int y1 = top[1];
|
|
int y2 = bot[1];
|
|
int dy = y2 - y1;
|
|
|
|
if (dy==0 || y1>ymax || y2<ymin)
|
|
return;
|
|
|
|
if (y1 > ymin)
|
|
ymin = y1;
|
|
|
|
if (y2 < ymax)
|
|
ymax = y2;
|
|
|
|
const int x1 = top[0];
|
|
const int dx = bot[0] - x1;
|
|
const int shift = FIXED_BITS - TRI_FRACTION_BITS;
|
|
|
|
// setup edge fields
|
|
edge->x = x1 << shift;
|
|
edge->x_incr = 0;
|
|
edge->y_top = ymin;
|
|
edge->y_bot = ymax;
|
|
edge->y_incr = 0x7FFFFFFF;
|
|
|
|
if (ggl_likely(ymin <= ymax && dx)) {
|
|
edge->x_incr = gglDivQ16(dx, dy);
|
|
if (dx != 0) {
|
|
edge->y_incr = abs(gglDivQ16(dy, dx));
|
|
}
|
|
}
|
|
if (ggl_likely(y1 < ymin)) {
|
|
int32_t xadjust = (edge->x_incr * (ymin-y1))
|
|
>> (TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS);
|
|
edge->x += xadjust;
|
|
}
|
|
|
|
++*pcount;
|
|
}
|
|
|
|
|
|
typedef int (*compar_t)(const void*, const void*);
|
|
static int compare_edges(const AAEdge *e0, const AAEdge *e1) {
|
|
if (e0->y_top > e1->y_top) return 1;
|
|
if (e0->y_top < e1->y_top) return -1;
|
|
if (e0->x > e1->x) return 1;
|
|
if (e0->x < e1->x) return -1;
|
|
if (e0->x_incr > e1->x_incr) return 1;
|
|
if (e0->x_incr < e1->x_incr) return -1;
|
|
return 0; // same edges, should never happen
|
|
}
|
|
|
|
static inline
|
|
void SET_COVERAGE(int16_t*& p, int32_t value, ssize_t n)
|
|
{
|
|
android_memset16((uint16_t*)p, value, n*2);
|
|
p += n;
|
|
}
|
|
|
|
static inline
|
|
void ADD_COVERAGE(int16_t*& p, int32_t value)
|
|
{
|
|
value = *p + value;
|
|
if (value >= 0x8000)
|
|
value = 0x7FFF;
|
|
*p++ = value;
|
|
}
|
|
|
|
static inline
|
|
void SUB_COVERAGE(int16_t*& p, int32_t value)
|
|
{
|
|
value = *p - value;
|
|
value &= ~(value>>31);
|
|
*p++ = value;
|
|
}
|
|
|
|
void aapolyx(void* con,
|
|
const GGLcoord* pts, int count)
|
|
{
|
|
/*
|
|
* NOTE: This routine assumes that the polygon has been clipped to the
|
|
* viewport already, that is, no vertex lies outside of the framebuffer.
|
|
* If this happens, the code below won't corrupt memory but the
|
|
* coverage values may not be correct.
|
|
*/
|
|
|
|
GGL_CONTEXT(c, con);
|
|
|
|
// we do only quads for now (it's used for thick lines)
|
|
if ((count>4) || (count<2)) return;
|
|
|
|
// take scissor into account
|
|
const int xmin = c->state.scissor.left;
|
|
const int xmax = c->state.scissor.right;
|
|
if (xmin >= xmax) return;
|
|
|
|
// generate edges from the vertices
|
|
int32_t ymin = TRI_FROM_INT(c->state.scissor.top);
|
|
int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom);
|
|
if (ymin >= ymax) return;
|
|
|
|
AAEdge edges[4];
|
|
int num_edges = 0;
|
|
GGLcoord const * p = pts;
|
|
for (int i=0 ; i<count-1 ; i++, p+=2) {
|
|
aa_edge_setup(edges, &num_edges, p, p+2, ymin, ymax);
|
|
}
|
|
aa_edge_setup(edges, &num_edges, p, pts, ymin, ymax );
|
|
if (ggl_unlikely(num_edges<2))
|
|
return;
|
|
|
|
// sort the edge list top to bottom, left to right.
|
|
qsort(edges, num_edges, sizeof(AAEdge), (compar_t)compare_edges);
|
|
|
|
int16_t* const covPtr = c->state.buffers.coverage;
|
|
memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr));
|
|
|
|
// now, sweep all edges in order
|
|
// start with the 2 first edges. We know that they share their top
|
|
// vertex, by construction.
|
|
int i = 2;
|
|
AAEdge* left = &edges[0];
|
|
AAEdge* right = &edges[1];
|
|
int32_t yt = left->y_top;
|
|
GGLfixed l = left->x;
|
|
GGLfixed r = right->x;
|
|
int retire = 0;
|
|
int16_t* coverage;
|
|
|
|
// at this point we can initialize the rasterizer
|
|
c->init_y(c, yt>>TRI_FRACTION_BITS);
|
|
c->iterators.xl = xmax;
|
|
c->iterators.xr = xmin;
|
|
|
|
do {
|
|
int32_t y = min(min(left->y_bot, right->y_bot), TRI_FLOOR(yt + TRI_ONE));
|
|
const int32_t shift = TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS;
|
|
const int cf_shift = (1 + TRI_FRACTION_BITS*2 + TRI_ITERATORS_BITS - 15);
|
|
|
|
// compute xmin and xmax for the left edge
|
|
GGLfixed l_min = gglMulAddx(left->x_incr, y - left->y_top, left->x, shift);
|
|
GGLfixed l_max = l;
|
|
l = l_min;
|
|
if (l_min > l_max)
|
|
swap(l_min, l_max);
|
|
|
|
// compute xmin and xmax for the right edge
|
|
GGLfixed r_min = gglMulAddx(right->x_incr, y - right->y_top, right->x, shift);
|
|
GGLfixed r_max = r;
|
|
r = r_min;
|
|
if (r_min > r_max)
|
|
swap(r_min, r_max);
|
|
|
|
// make sure we're not touching coverage values outside of the
|
|
// framebuffer
|
|
l_min &= ~(l_min>>31);
|
|
r_min &= ~(r_min>>31);
|
|
l_max &= ~(l_max>>31);
|
|
r_max &= ~(r_max>>31);
|
|
if (gglFixedToIntFloor(l_min) >= xmax) l_min = gglIntToFixed(xmax)-1;
|
|
if (gglFixedToIntFloor(r_min) >= xmax) r_min = gglIntToFixed(xmax)-1;
|
|
if (gglFixedToIntCeil(l_max) >= xmax) l_max = gglIntToFixed(xmax)-1;
|
|
if (gglFixedToIntCeil(r_max) >= xmax) r_max = gglIntToFixed(xmax)-1;
|
|
|
|
// compute the integer versions of the above
|
|
const GGLfixed l_min_i = gglFloorx(l_min);
|
|
const GGLfixed l_max_i = gglCeilx (l_max);
|
|
const GGLfixed r_min_i = gglFloorx(r_min);
|
|
const GGLfixed r_max_i = gglCeilx (r_max);
|
|
|
|
// clip horizontally using the scissor
|
|
const int xml = max(xmin, gglFixedToIntFloor(l_min_i));
|
|
const int xmr = min(xmax, gglFixedToIntFloor(r_max_i));
|
|
|
|
// if we just stepped to a new scanline, render the previous one.
|
|
// and clear the coverage buffer
|
|
if (retire) {
|
|
if (c->iterators.xl < c->iterators.xr)
|
|
c->scanline(c);
|
|
c->step_y(c);
|
|
memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr));
|
|
c->iterators.xl = xml;
|
|
c->iterators.xr = xmr;
|
|
} else {
|
|
// update the horizontal range of this scanline
|
|
c->iterators.xl = min(c->iterators.xl, xml);
|
|
c->iterators.xr = max(c->iterators.xr, xmr);
|
|
}
|
|
|
|
coverage = covPtr + gglFixedToIntFloor(l_min_i);
|
|
if (l_min_i == gglFloorx(l_max)) {
|
|
|
|
/*
|
|
* fully traverse this pixel vertically
|
|
* l_max
|
|
* +-----/--+ yt
|
|
* | / |
|
|
* | / |
|
|
* | / |
|
|
* +-/------+ y
|
|
* l_min (l_min_i + TRI_ONE)
|
|
*/
|
|
|
|
GGLfixed dx = l_max - l_min;
|
|
int32_t dy = y - yt;
|
|
int cf = gglMulx((dx >> 1) + (l_min_i + FIXED_ONE - l_max), dy,
|
|
FIXED_BITS + TRI_FRACTION_BITS - 15);
|
|
ADD_COVERAGE(coverage, cf);
|
|
// all pixels on the right have cf = 1.0
|
|
} else {
|
|
/*
|
|
* spans several pixels in one scanline
|
|
* l_max
|
|
* +--------+--/-----+ yt
|
|
* | |/ |
|
|
* | /| |
|
|
* | / | |
|
|
* +---/----+--------+ y
|
|
* l_min (l_min_i + TRI_ONE)
|
|
*/
|
|
|
|
// handle the first pixel separately...
|
|
const int32_t y_incr = left->y_incr;
|
|
int32_t dx = TRI_FROM_FIXED(l_min_i - l_min) + TRI_ONE;
|
|
int32_t cf = (dx * dx * y_incr) >> cf_shift;
|
|
ADD_COVERAGE(coverage, cf);
|
|
|
|
// following pixels get covered by y_incr, but we need
|
|
// to fix-up the cf to account for previous partial pixel
|
|
dx = TRI_FROM_FIXED(l_min - l_min_i);
|
|
cf -= (dx * dx * y_incr) >> cf_shift;
|
|
for (int x = l_min_i+FIXED_ONE ; x < l_max_i-FIXED_ONE ; x += FIXED_ONE) {
|
|
cf += y_incr >> (TRI_ITERATORS_BITS-15);
|
|
ADD_COVERAGE(coverage, cf);
|
|
}
|
|
|
|
// and the last pixel
|
|
dx = TRI_FROM_FIXED(l_max - l_max_i) - TRI_ONE;
|
|
cf += (dx * dx * y_incr) >> cf_shift;
|
|
ADD_COVERAGE(coverage, cf);
|
|
}
|
|
|
|
// now, fill up all fully covered pixels
|
|
coverage = covPtr + gglFixedToIntFloor(l_max_i);
|
|
int cf = ((y - yt) << (15 - TRI_FRACTION_BITS));
|
|
if (ggl_likely(cf >= 0x8000)) {
|
|
SET_COVERAGE(coverage, 0x7FFF, ((r_max - l_max_i)>>FIXED_BITS)+1);
|
|
} else {
|
|
for (int x=l_max_i ; x<r_max ; x+=FIXED_ONE) {
|
|
ADD_COVERAGE(coverage, cf);
|
|
}
|
|
}
|
|
|
|
// subtract the coverage of the right edge
|
|
coverage = covPtr + gglFixedToIntFloor(r_min_i);
|
|
if (r_min_i == gglFloorx(r_max)) {
|
|
GGLfixed dx = r_max - r_min;
|
|
int32_t dy = y - yt;
|
|
int cf = gglMulx((dx >> 1) + (r_min_i + FIXED_ONE - r_max), dy,
|
|
FIXED_BITS + TRI_FRACTION_BITS - 15);
|
|
SUB_COVERAGE(coverage, cf);
|
|
// all pixels on the right have cf = 1.0
|
|
} else {
|
|
// handle the first pixel separately...
|
|
const int32_t y_incr = right->y_incr;
|
|
int32_t dx = TRI_FROM_FIXED(r_min_i - r_min) + TRI_ONE;
|
|
int32_t cf = (dx * dx * y_incr) >> cf_shift;
|
|
SUB_COVERAGE(coverage, cf);
|
|
|
|
// following pixels get covered by y_incr, but we need
|
|
// to fix-up the cf to account for previous partial pixel
|
|
dx = TRI_FROM_FIXED(r_min - r_min_i);
|
|
cf -= (dx * dx * y_incr) >> cf_shift;
|
|
for (int x = r_min_i+FIXED_ONE ; x < r_max_i-FIXED_ONE ; x += FIXED_ONE) {
|
|
cf += y_incr >> (TRI_ITERATORS_BITS-15);
|
|
SUB_COVERAGE(coverage, cf);
|
|
}
|
|
|
|
// and the last pixel
|
|
dx = TRI_FROM_FIXED(r_max - r_max_i) - TRI_ONE;
|
|
cf += (dx * dx * y_incr) >> cf_shift;
|
|
SUB_COVERAGE(coverage, cf);
|
|
}
|
|
|
|
// did we reach the end of an edge? if so, get a new one.
|
|
if (y == left->y_bot || y == right->y_bot) {
|
|
// bail out if we're done
|
|
if (i>=num_edges)
|
|
break;
|
|
if (y == left->y_bot)
|
|
left = &edges[i++];
|
|
if (y == right->y_bot)
|
|
right = &edges[i++];
|
|
}
|
|
|
|
// next scanline
|
|
yt = y;
|
|
|
|
// did we just finish a scanline?
|
|
retire = (y << (32-TRI_FRACTION_BITS)) == 0;
|
|
} while (true);
|
|
|
|
// render the last scanline
|
|
if (c->iterators.xl < c->iterators.xr)
|
|
c->scanline(c);
|
|
}
|
|
|
|
}; // namespace android
|