2348 lines
76 KiB
C++
2348 lines
76 KiB
C++
/* libs/pixelflinger/scanline.cpp
|
|
**
|
|
** Copyright 2006-2011, The Android Open Source Project
|
|
**
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
**
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
**
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*/
|
|
|
|
|
|
#define LOG_TAG "pixelflinger"
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <cutils/memory.h>
|
|
#include <cutils/log.h>
|
|
|
|
#include "buffer.h"
|
|
#include "scanline.h"
|
|
|
|
#include "codeflinger/CodeCache.h"
|
|
#include "codeflinger/GGLAssembler.h"
|
|
#include "codeflinger/ARMAssembler.h"
|
|
#if defined(__mips__)
|
|
#include "codeflinger/MIPSAssembler.h"
|
|
#endif
|
|
//#include "codeflinger/ARMAssemblerOptimizer.h"
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline
|
|
#define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic
|
|
#define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic
|
|
#define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen
|
|
|
|
#ifdef NDEBUG
|
|
# define ANDROID_RELEASE
|
|
# define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED
|
|
#else
|
|
# define ANDROID_DEBUG
|
|
# define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED
|
|
#endif
|
|
|
|
#if defined(__arm__) || defined(__mips__)
|
|
# define ANDROID_ARM_CODEGEN 1
|
|
#else
|
|
# define ANDROID_ARM_CODEGEN 0
|
|
#endif
|
|
|
|
#define DEBUG__CODEGEN_ONLY 0
|
|
|
|
/* Set to 1 to dump to the log the states that need a new
|
|
* code-generated scanline callback, i.e. those that don't
|
|
* have a corresponding shortcut function.
|
|
*/
|
|
#define DEBUG_NEEDS 0
|
|
|
|
#ifdef __mips__
|
|
#define ASSEMBLY_SCRATCH_SIZE 4096
|
|
#else
|
|
#define ASSEMBLY_SCRATCH_SIZE 2048
|
|
#endif
|
|
|
|
// ----------------------------------------------------------------------------
|
|
namespace android {
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static void init_y(context_t*, int32_t);
|
|
static void init_y_noop(context_t*, int32_t);
|
|
static void init_y_packed(context_t*, int32_t);
|
|
static void init_y_error(context_t*, int32_t);
|
|
|
|
static void step_y__generic(context_t* c);
|
|
static void step_y__nop(context_t*);
|
|
static void step_y__smooth(context_t* c);
|
|
static void step_y__tmu(context_t* c);
|
|
static void step_y__w(context_t* c);
|
|
|
|
static void scanline(context_t* c);
|
|
static void scanline_perspective(context_t* c);
|
|
static void scanline_perspective_single(context_t* c);
|
|
static void scanline_t32cb16blend(context_t* c);
|
|
static void scanline_t32cb16blend_dither(context_t* c);
|
|
static void scanline_t32cb16blend_srca(context_t* c);
|
|
static void scanline_t32cb16blend_clamp(context_t* c);
|
|
static void scanline_t32cb16blend_clamp_dither(context_t* c);
|
|
static void scanline_t32cb16blend_clamp_mod(context_t* c);
|
|
static void scanline_x32cb16blend_clamp_mod(context_t* c);
|
|
static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
|
|
static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
|
|
static void scanline_t32cb16(context_t* c);
|
|
static void scanline_t32cb16_dither(context_t* c);
|
|
static void scanline_t32cb16_clamp(context_t* c);
|
|
static void scanline_t32cb16_clamp_dither(context_t* c);
|
|
static void scanline_col32cb16blend(context_t* c);
|
|
static void scanline_t16cb16_clamp(context_t* c);
|
|
static void scanline_t16cb16blend_clamp_mod(context_t* c);
|
|
static void scanline_memcpy(context_t* c);
|
|
static void scanline_memset8(context_t* c);
|
|
static void scanline_memset16(context_t* c);
|
|
static void scanline_memset32(context_t* c);
|
|
static void scanline_noop(context_t* c);
|
|
static void scanline_set(context_t* c);
|
|
static void scanline_clear(context_t* c);
|
|
|
|
static void rect_generic(context_t* c, size_t yc);
|
|
static void rect_memcpy(context_t* c, size_t yc);
|
|
|
|
#if defined( __arm__)
|
|
extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
|
|
extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
|
|
extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
|
|
extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
|
|
#elif defined(__mips__)
|
|
extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t);
|
|
#endif
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix)
|
|
{
|
|
return uint16_t( ((pix << 8) & 0xf800) |
|
|
((pix >> 5) & 0x07e0) |
|
|
((pix >> 19) & 0x001f) );
|
|
}
|
|
|
|
struct shortcut_t {
|
|
needs_filter_t filter;
|
|
const char* desc;
|
|
void (*scanline)(context_t*);
|
|
void (*init_y)(context_t*, int32_t);
|
|
};
|
|
|
|
// Keep in sync with needs
|
|
|
|
/* To understand the values here, have a look at:
|
|
* system/core/include/private/pixelflinger/ggl_context.h
|
|
*
|
|
* Especially the lines defining and using GGL_RESERVE_NEEDS
|
|
*
|
|
* Quick reminders:
|
|
* - the last nibble of the first value is the destination buffer format.
|
|
* - the last nibble of the third value is the source texture format
|
|
* - formats: 4=rgb565 1=abgr8888 2=xbgr8888
|
|
*
|
|
* In the descriptions below:
|
|
*
|
|
* SRC means we copy the source pixels to the destination
|
|
*
|
|
* SRC_OVER means we blend the source pixels to the destination
|
|
* with dstFactor = 1-srcA, srcFactor=1 (premultiplied source).
|
|
* This mode is otherwise called 'blend'.
|
|
*
|
|
* SRCA_OVER means we blend the source pixels to the destination
|
|
* with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
|
|
* This mode is otherwise called 'blend_srca'
|
|
*
|
|
* clamp means we fetch source pixels from a texture with u/v clamping
|
|
*
|
|
* mod means the source pixels are modulated (multiplied) by the
|
|
* a/r/g/b of the current context's color. Typically used for
|
|
* fade-in / fade-out.
|
|
*
|
|
* dither means we dither 32 bit values to 16 bits
|
|
*/
|
|
static shortcut_t shortcuts[] = {
|
|
{ { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
|
|
{ { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop },
|
|
/* same as first entry, but with dithering */
|
|
{ { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
|
|
/* same as second entry, but with dithering */
|
|
{ { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop },
|
|
/* this is used during the boot animation - CHEAT: ignore dithering */
|
|
{ { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
|
|
/* special case for arbitrary texture coordinates (think scaling) */
|
|
{ { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
|
|
{ { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
|
|
/* another case used during emulation */
|
|
{ { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
|
|
/* and this */
|
|
{ { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
|
|
{ { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
|
|
{ { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
|
|
{ { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
|
|
{ { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
|
|
{ { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
|
|
{ { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
|
|
{ { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y },
|
|
{ { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
|
|
"565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y },
|
|
{ { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
|
|
"565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed },
|
|
{ { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
|
|
{ 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
|
|
"(nop) alpha test", scanline_noop, init_y_noop },
|
|
{ { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
|
|
{ 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
|
|
"(nop) depth test", scanline_noop, init_y_noop },
|
|
{ { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
|
|
{ 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
|
|
"(nop) logic_op", scanline_noop, init_y_noop },
|
|
{ { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
|
|
{ 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
|
|
"(nop) color mask", scanline_noop, init_y_noop },
|
|
{ { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
|
|
{ 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
|
|
"(set) logic_op", scanline_set, init_y_noop },
|
|
{ { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
|
|
{ 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
|
|
"(clear) logic_op", scanline_clear, init_y_noop },
|
|
{ { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
|
|
{ 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
|
|
"(clear) blending 0/0", scanline_clear, init_y_noop },
|
|
{ { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
|
|
{ 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
|
|
"(error) invalid color-buffer format", scanline_noop, init_y_error },
|
|
};
|
|
static const needs_filter_t noblend1to1 = {
|
|
// (disregard dithering, see below)
|
|
{ 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
|
|
{ 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
|
|
};
|
|
static const needs_filter_t fill16noblend = {
|
|
{ 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
|
|
{ 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if ANDROID_ARM_CODEGEN
|
|
|
|
#if defined(__mips__)
|
|
static CodeCache gCodeCache(32 * 1024);
|
|
#else
|
|
static CodeCache gCodeCache(12 * 1024);
|
|
#endif
|
|
|
|
class ScanlineAssembly : public Assembly {
|
|
AssemblyKey<needs_t> mKey;
|
|
public:
|
|
ScanlineAssembly(needs_t needs, size_t size)
|
|
: Assembly(size), mKey(needs) { }
|
|
const AssemblyKey<needs_t>& key() const { return mKey; }
|
|
};
|
|
#endif
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void ggl_init_scanline(context_t* c)
|
|
{
|
|
c->init_y = init_y;
|
|
c->step_y = step_y__generic;
|
|
c->scanline = scanline;
|
|
}
|
|
|
|
void ggl_uninit_scanline(context_t* c)
|
|
{
|
|
if (c->state.buffers.coverage)
|
|
free(c->state.buffers.coverage);
|
|
#if ANDROID_ARM_CODEGEN
|
|
if (c->scanline_as)
|
|
c->scanline_as->decStrong(c);
|
|
#endif
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static void pick_scanline(context_t* c)
|
|
{
|
|
#if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
|
|
|
|
#if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
|
|
c->init_y = init_y;
|
|
c->step_y = step_y__generic;
|
|
c->scanline = scanline;
|
|
return;
|
|
#endif
|
|
|
|
//printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
|
|
// c->state.needs.n, c->state.needs.p,
|
|
// c->state.needs.t[0], c->state.needs.t[1]);
|
|
|
|
// first handle the special case that we cannot test with a filter
|
|
const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
|
|
if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
|
|
if (c->state.needs.match(noblend1to1)) {
|
|
// this will match regardless of dithering state, since both
|
|
// src and dest have the same format anyway, there is no dithering
|
|
// to be done.
|
|
const GGLFormat* f =
|
|
&(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
|
|
if ((f->components == GGL_RGB) ||
|
|
(f->components == GGL_RGBA) ||
|
|
(f->components == GGL_LUMINANCE) ||
|
|
(f->components == GGL_LUMINANCE_ALPHA))
|
|
{
|
|
// format must have all of RGB components
|
|
// (so the current color doesn't show through)
|
|
c->scanline = scanline_memcpy;
|
|
c->init_y = init_y_noop;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c->state.needs.match(fill16noblend)) {
|
|
c->init_y = init_y_packed;
|
|
switch (c->formats[cb_format].size) {
|
|
case 1: c->scanline = scanline_memset8; return;
|
|
case 2: c->scanline = scanline_memset16; return;
|
|
case 4: c->scanline = scanline_memset32; return;
|
|
}
|
|
}
|
|
|
|
const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
|
|
for (int i=0 ; i<numFilters ; i++) {
|
|
if (c->state.needs.match(shortcuts[i].filter)) {
|
|
c->scanline = shortcuts[i].scanline;
|
|
c->init_y = shortcuts[i].init_y;
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if DEBUG_NEEDS
|
|
ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
|
|
c->state.needs.n, c->state.needs.p,
|
|
c->state.needs.t[0], c->state.needs.t[1]);
|
|
#endif
|
|
|
|
#endif // DEBUG__CODEGEN_ONLY
|
|
|
|
c->init_y = init_y;
|
|
c->step_y = step_y__generic;
|
|
|
|
#if ANDROID_ARM_CODEGEN
|
|
// we're going to have to generate some code...
|
|
// here, generate code for our pixel pipeline
|
|
const AssemblyKey<needs_t> key(c->state.needs);
|
|
sp<Assembly> assembly = gCodeCache.lookup(key);
|
|
if (assembly == 0) {
|
|
// create a new assembly region
|
|
sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
|
|
ASSEMBLY_SCRATCH_SIZE);
|
|
// initialize our assembler
|
|
#if defined(__arm__)
|
|
GGLAssembler assembler( new ARMAssembler(a) );
|
|
//GGLAssembler assembler(
|
|
// new ARMAssemblerOptimizer(new ARMAssembler(a)) );
|
|
#endif
|
|
#if defined(__mips__)
|
|
GGLAssembler assembler( new ArmToMipsAssembler(a) );
|
|
#endif
|
|
// generate the scanline code for the given needs
|
|
int err = assembler.scanline(c->state.needs, c);
|
|
if (ggl_likely(!err)) {
|
|
// finally, cache this assembly
|
|
err = gCodeCache.cache(a->key(), a);
|
|
}
|
|
if (ggl_unlikely(err)) {
|
|
ALOGE("error generating or caching assembly. Reverting to NOP.");
|
|
c->scanline = scanline_noop;
|
|
c->init_y = init_y_noop;
|
|
c->step_y = step_y__nop;
|
|
return;
|
|
}
|
|
assembly = a;
|
|
}
|
|
|
|
// release the previous assembly
|
|
if (c->scanline_as) {
|
|
c->scanline_as->decStrong(c);
|
|
}
|
|
|
|
//ALOGI("using generated pixel-pipeline");
|
|
c->scanline_as = assembly.get();
|
|
c->scanline_as->incStrong(c); // hold on to assembly
|
|
c->scanline = (void(*)(context_t* c))assembly->base();
|
|
#else
|
|
// ALOGW("using generic (slow) pixel-pipeline");
|
|
c->scanline = scanline;
|
|
#endif
|
|
}
|
|
|
|
void ggl_pick_scanline(context_t* c)
|
|
{
|
|
pick_scanline(c);
|
|
if ((c->state.enables & GGL_ENABLE_W) &&
|
|
(c->state.enables & GGL_ENABLE_TMUS))
|
|
{
|
|
c->span = c->scanline;
|
|
c->scanline = scanline_perspective;
|
|
if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
|
|
// only one TMU enabled
|
|
c->scanline = scanline_perspective_single;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
|
|
static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
|
|
const pixel_t* src, const pixel_t* dst);
|
|
static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
|
|
|
|
#if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
|
|
|
|
// no need to compile the generic-pipeline, it can't be reached
|
|
void scanline(context_t*)
|
|
{
|
|
}
|
|
|
|
#else
|
|
|
|
void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
|
|
{
|
|
if (su && sv) {
|
|
if (su > sv) {
|
|
v = ggl_expand(v, sv, su);
|
|
sv = su;
|
|
} else if (su < sv) {
|
|
u = ggl_expand(u, su, sv);
|
|
su = sv;
|
|
}
|
|
}
|
|
}
|
|
|
|
void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
|
|
{
|
|
rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
|
|
rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
|
|
rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
|
|
rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
|
|
|
|
pixel_t sf, df;
|
|
blend_factor(c, &sf, c->state.blend.src, fragment, fb);
|
|
blend_factor(c, &df, c->state.blend.dst, fragment, fb);
|
|
|
|
fragment->c[1] =
|
|
gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
|
|
fragment->c[2] =
|
|
gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
|
|
fragment->c[3] =
|
|
gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
|
|
|
|
if (c->state.blend.alpha_separate) {
|
|
blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
|
|
blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
|
|
}
|
|
|
|
fragment->c[0] =
|
|
gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
|
|
|
|
// clamp to 1.0
|
|
if (fragment->c[0] >= (1LU<<fragment->s[0]))
|
|
fragment->c[0] = (1<<fragment->s[0])-1;
|
|
if (fragment->c[1] >= (1LU<<fragment->s[1]))
|
|
fragment->c[1] = (1<<fragment->s[1])-1;
|
|
if (fragment->c[2] >= (1LU<<fragment->s[2]))
|
|
fragment->c[2] = (1<<fragment->s[2])-1;
|
|
if (fragment->c[3] >= (1LU<<fragment->s[3]))
|
|
fragment->c[3] = (1<<fragment->s[3])-1;
|
|
}
|
|
|
|
static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
|
|
{
|
|
if (!size)
|
|
return def;
|
|
|
|
// scale to 16 bits
|
|
if (size > 16) {
|
|
x >>= (size - 16);
|
|
} else if (size < 16) {
|
|
x = ggl_expand(x, size, 16);
|
|
}
|
|
x += x >> 15;
|
|
return x;
|
|
}
|
|
|
|
void blend_factor(context_t* c, pixel_t* r,
|
|
uint32_t factor, const pixel_t* src, const pixel_t* dst)
|
|
{
|
|
switch (factor) {
|
|
case GGL_ZERO:
|
|
r->c[1] =
|
|
r->c[2] =
|
|
r->c[3] =
|
|
r->c[0] = 0;
|
|
break;
|
|
case GGL_ONE:
|
|
r->c[1] =
|
|
r->c[2] =
|
|
r->c[3] =
|
|
r->c[0] = FIXED_ONE;
|
|
break;
|
|
case GGL_DST_COLOR:
|
|
r->c[1] = blendfactor(dst->c[1], dst->s[1]);
|
|
r->c[2] = blendfactor(dst->c[2], dst->s[2]);
|
|
r->c[3] = blendfactor(dst->c[3], dst->s[3]);
|
|
r->c[0] = blendfactor(dst->c[0], dst->s[0]);
|
|
break;
|
|
case GGL_SRC_COLOR:
|
|
r->c[1] = blendfactor(src->c[1], src->s[1]);
|
|
r->c[2] = blendfactor(src->c[2], src->s[2]);
|
|
r->c[3] = blendfactor(src->c[3], src->s[3]);
|
|
r->c[0] = blendfactor(src->c[0], src->s[0]);
|
|
break;
|
|
case GGL_ONE_MINUS_DST_COLOR:
|
|
r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
|
|
r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
|
|
r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
|
|
r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
|
|
break;
|
|
case GGL_ONE_MINUS_SRC_COLOR:
|
|
r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
|
|
r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
|
|
r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
|
|
r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
|
|
break;
|
|
case GGL_SRC_ALPHA:
|
|
r->c[1] =
|
|
r->c[2] =
|
|
r->c[3] =
|
|
r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
|
|
break;
|
|
case GGL_ONE_MINUS_SRC_ALPHA:
|
|
r->c[1] =
|
|
r->c[2] =
|
|
r->c[3] =
|
|
r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
|
|
break;
|
|
case GGL_DST_ALPHA:
|
|
r->c[1] =
|
|
r->c[2] =
|
|
r->c[3] =
|
|
r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
|
|
break;
|
|
case GGL_ONE_MINUS_DST_ALPHA:
|
|
r->c[1] =
|
|
r->c[2] =
|
|
r->c[3] =
|
|
r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
|
|
break;
|
|
case GGL_SRC_ALPHA_SATURATE:
|
|
// XXX: GGL_SRC_ALPHA_SATURATE
|
|
break;
|
|
}
|
|
}
|
|
|
|
static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
|
|
{
|
|
GGLfixed d;
|
|
if (tx_wrap == GGL_REPEAT) {
|
|
d = (uint32_t(coord)>>16) * size;
|
|
} else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
|
|
const GGLfixed clamp_min = FIXED_HALF;
|
|
const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
|
|
if (coord < clamp_min) coord = clamp_min;
|
|
if (coord > clamp_max) coord = clamp_max;
|
|
d = coord;
|
|
} else { // 1:1
|
|
const GGLfixed clamp_min = 0;
|
|
const GGLfixed clamp_max = (size << 16);
|
|
if (coord < clamp_min) coord = clamp_min;
|
|
if (coord > clamp_max) coord = clamp_max;
|
|
d = coord;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
static inline
|
|
GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
|
|
{
|
|
const int32_t end = dvdx * (len-1) + v;
|
|
if (end < 0)
|
|
v -= end;
|
|
v &= ~(v>>31);
|
|
return v;
|
|
}
|
|
|
|
void scanline(context_t* c)
|
|
{
|
|
const uint32_t enables = c->state.enables;
|
|
const int xs = c->iterators.xl;
|
|
const int x1 = c->iterators.xr;
|
|
int xc = x1 - xs;
|
|
const int16_t* covPtr = c->state.buffers.coverage + xs;
|
|
|
|
// All iterated values are sampled at the pixel center
|
|
|
|
// reset iterators for that scanline...
|
|
GGLcolor r, g, b, a;
|
|
iterators_t& ci = c->iterators;
|
|
if (enables & GGL_ENABLE_SMOOTH) {
|
|
r = (xs * c->shade.drdx) + ci.ydrdy;
|
|
g = (xs * c->shade.dgdx) + ci.ydgdy;
|
|
b = (xs * c->shade.dbdx) + ci.ydbdy;
|
|
a = (xs * c->shade.dadx) + ci.ydady;
|
|
r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
|
|
g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
|
|
b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
|
|
a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
|
|
} else {
|
|
r = ci.ydrdy;
|
|
g = ci.ydgdy;
|
|
b = ci.ydbdy;
|
|
a = ci.ydady;
|
|
}
|
|
|
|
// z iterators are 1.31
|
|
GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
|
|
GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
|
|
|
|
struct {
|
|
GGLfixed s, t;
|
|
} tc[GGL_TEXTURE_UNIT_COUNT];
|
|
if (enables & GGL_ENABLE_TMUS) {
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
|
|
if (c->state.texture[i].enable) {
|
|
texture_iterators_t& ti = c->state.texture[i].iterators;
|
|
if (enables & GGL_ENABLE_W) {
|
|
tc[i].s = ti.ydsdy;
|
|
tc[i].t = ti.ydtdy;
|
|
} else {
|
|
tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
|
|
tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pixel_t fragment;
|
|
pixel_t texel;
|
|
pixel_t fb;
|
|
|
|
uint32_t x = xs;
|
|
uint32_t y = c->iterators.y;
|
|
|
|
while (xc--) {
|
|
|
|
{ // just a scope
|
|
|
|
// read color (convert to 8 bits by keeping only the integer part)
|
|
fragment.s[1] = fragment.s[2] =
|
|
fragment.s[3] = fragment.s[0] = 8;
|
|
fragment.c[1] = r >> (GGL_COLOR_BITS-8);
|
|
fragment.c[2] = g >> (GGL_COLOR_BITS-8);
|
|
fragment.c[3] = b >> (GGL_COLOR_BITS-8);
|
|
fragment.c[0] = a >> (GGL_COLOR_BITS-8);
|
|
|
|
// texturing
|
|
if (enables & GGL_ENABLE_TMUS) {
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
|
|
texture_t& tx = c->state.texture[i];
|
|
if (!tx.enable)
|
|
continue;
|
|
texture_iterators_t& ti = tx.iterators;
|
|
int32_t u, v;
|
|
|
|
// s-coordinate
|
|
if (tx.s_coord != GGL_ONE_TO_ONE) {
|
|
const int w = tx.surface.width;
|
|
u = wrapping(tc[i].s, w, tx.s_wrap);
|
|
tc[i].s += ti.dsdx;
|
|
} else {
|
|
u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
|
|
}
|
|
|
|
// t-coordinate
|
|
if (tx.t_coord != GGL_ONE_TO_ONE) {
|
|
const int h = tx.surface.height;
|
|
v = wrapping(tc[i].t, h, tx.t_wrap);
|
|
tc[i].t += ti.dtdx;
|
|
} else {
|
|
v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
|
|
}
|
|
|
|
// read texture
|
|
if (tx.mag_filter == GGL_NEAREST &&
|
|
tx.min_filter == GGL_NEAREST)
|
|
{
|
|
u >>= 16;
|
|
v >>= 16;
|
|
tx.surface.read(&tx.surface, c, u, v, &texel);
|
|
} else {
|
|
const int w = tx.surface.width;
|
|
const int h = tx.surface.height;
|
|
u -= FIXED_HALF;
|
|
v -= FIXED_HALF;
|
|
int u0 = u >> 16;
|
|
int v0 = v >> 16;
|
|
int u1 = u0 + 1;
|
|
int v1 = v0 + 1;
|
|
if (tx.s_wrap == GGL_REPEAT) {
|
|
if (u0<0) u0 += w;
|
|
if (u1<0) u1 += w;
|
|
if (u0>=w) u0 -= w;
|
|
if (u1>=w) u1 -= w;
|
|
} else {
|
|
if (u0<0) u0 = 0;
|
|
if (u1<0) u1 = 0;
|
|
if (u0>=w) u0 = w-1;
|
|
if (u1>=w) u1 = w-1;
|
|
}
|
|
if (tx.t_wrap == GGL_REPEAT) {
|
|
if (v0<0) v0 += h;
|
|
if (v1<0) v1 += h;
|
|
if (v0>=h) v0 -= h;
|
|
if (v1>=h) v1 -= h;
|
|
} else {
|
|
if (v0<0) v0 = 0;
|
|
if (v1<0) v1 = 0;
|
|
if (v0>=h) v0 = h-1;
|
|
if (v1>=h) v1 = h-1;
|
|
}
|
|
pixel_t texels[4];
|
|
uint32_t mm[4];
|
|
tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
|
|
tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
|
|
tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
|
|
tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
|
|
u = (u >> 12) & 0xF;
|
|
v = (v >> 12) & 0xF;
|
|
u += u>>3;
|
|
v += v>>3;
|
|
mm[0] = (0x10 - u) * (0x10 - v);
|
|
mm[1] = (0x10 - u) * v;
|
|
mm[2] = u * (0x10 - v);
|
|
mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
|
|
for (int j=0 ; j<4 ; j++) {
|
|
texel.s[j] = texels[0].s[j];
|
|
if (!texel.s[j]) continue;
|
|
texel.s[j] += 8;
|
|
texel.c[j] = texels[0].c[j]*mm[0] +
|
|
texels[1].c[j]*mm[1] +
|
|
texels[2].c[j]*mm[2] +
|
|
texels[3].c[j]*mm[3] ;
|
|
}
|
|
}
|
|
|
|
// Texture environnement...
|
|
for (int j=0 ; j<4 ; j++) {
|
|
uint32_t& Cf = fragment.c[j];
|
|
uint32_t& Ct = texel.c[j];
|
|
uint8_t& sf = fragment.s[j];
|
|
uint8_t& st = texel.s[j];
|
|
uint32_t At = texel.c[0];
|
|
uint8_t sat = texel.s[0];
|
|
switch (tx.env) {
|
|
case GGL_REPLACE:
|
|
if (st) {
|
|
Cf = Ct;
|
|
sf = st;
|
|
}
|
|
break;
|
|
case GGL_MODULATE:
|
|
if (st) {
|
|
uint32_t factor = Ct + (Ct>>(st-1));
|
|
Cf = (Cf * factor) >> st;
|
|
}
|
|
break;
|
|
case GGL_DECAL:
|
|
if (sat) {
|
|
rescale(Cf, sf, Ct, st);
|
|
Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
|
|
}
|
|
break;
|
|
case GGL_BLEND:
|
|
if (st) {
|
|
uint32_t Cc = tx.env_color[i];
|
|
if (sf>8) Cc = (Cc * ((1<<sf)-1))>>8;
|
|
else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
|
|
uint32_t factor = Ct + (Ct>>(st-1));
|
|
Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
|
|
}
|
|
break;
|
|
case GGL_ADD:
|
|
if (st) {
|
|
rescale(Cf, sf, Ct, st);
|
|
Cf += Ct;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// coverage application
|
|
if (enables & GGL_ENABLE_AA) {
|
|
int16_t cf = *covPtr++;
|
|
fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
|
|
}
|
|
|
|
// alpha-test
|
|
if (enables & GGL_ENABLE_ALPHA_TEST) {
|
|
GGLcolor ref = c->state.alpha_test.ref;
|
|
GGLcolor alpha = (uint64_t(fragment.c[0]) *
|
|
((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
|
|
switch (c->state.alpha_test.func) {
|
|
case GGL_NEVER: goto discard;
|
|
case GGL_LESS: if (alpha<ref) break; goto discard;
|
|
case GGL_EQUAL: if (alpha==ref) break; goto discard;
|
|
case GGL_LEQUAL: if (alpha<=ref) break; goto discard;
|
|
case GGL_GREATER: if (alpha>ref) break; goto discard;
|
|
case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard;
|
|
case GGL_GEQUAL: if (alpha>=ref) break; goto discard;
|
|
}
|
|
}
|
|
|
|
// depth test
|
|
if (c->state.buffers.depth.format) {
|
|
if (enables & GGL_ENABLE_DEPTH_TEST) {
|
|
surface_t* cb = &(c->state.buffers.depth);
|
|
uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
|
|
uint16_t zz = uint32_t(z)>>(16);
|
|
uint16_t depth = *p;
|
|
switch (c->state.depth_test.func) {
|
|
case GGL_NEVER: goto discard;
|
|
case GGL_LESS: if (zz<depth) break; goto discard;
|
|
case GGL_EQUAL: if (zz==depth) break; goto discard;
|
|
case GGL_LEQUAL: if (zz<=depth) break; goto discard;
|
|
case GGL_GREATER: if (zz>depth) break; goto discard;
|
|
case GGL_NOTEQUAL: if (zz!=depth) break; goto discard;
|
|
case GGL_GEQUAL: if (zz>=depth) break; goto discard;
|
|
}
|
|
// depth buffer is not enabled, if depth-test is not enabled
|
|
/*
|
|
fragment.s[1] = fragment.s[2] =
|
|
fragment.s[3] = fragment.s[0] = 8;
|
|
fragment.c[1] =
|
|
fragment.c[2] =
|
|
fragment.c[3] =
|
|
fragment.c[0] = 255 - (zz>>8);
|
|
*/
|
|
if (c->state.mask.depth) {
|
|
*p = zz;
|
|
}
|
|
}
|
|
}
|
|
|
|
// fog
|
|
if (enables & GGL_ENABLE_FOG) {
|
|
for (int i=1 ; i<=3 ; i++) {
|
|
GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
|
|
uint32_t& c = fragment.c[i];
|
|
uint8_t& s = fragment.s[i];
|
|
c = (c * 0x10000) / ((1<<s)-1);
|
|
c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
|
|
s = 16;
|
|
}
|
|
}
|
|
|
|
// blending
|
|
if (enables & GGL_ENABLE_BLENDING) {
|
|
fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
|
|
fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
|
|
c->state.buffers.color.read(
|
|
&(c->state.buffers.color), c, x, y, &fb);
|
|
blending( c, &fragment, &fb );
|
|
}
|
|
|
|
// write
|
|
c->state.buffers.color.write(
|
|
&(c->state.buffers.color), c, x, y, &fragment);
|
|
}
|
|
|
|
discard:
|
|
// iterate...
|
|
x += 1;
|
|
if (enables & GGL_ENABLE_SMOOTH) {
|
|
r += c->shade.drdx;
|
|
g += c->shade.dgdx;
|
|
b += c->shade.dbdx;
|
|
a += c->shade.dadx;
|
|
}
|
|
z += c->shade.dzdx;
|
|
f += c->shade.dfdx;
|
|
}
|
|
}
|
|
|
|
#endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Scanline
|
|
#endif
|
|
|
|
/* Used to parse a 32-bit source texture linearly. Usage is:
|
|
*
|
|
* horz_iterator32 hi(context);
|
|
* while (...) {
|
|
* uint32_t src_pixel = hi.get_pixel32();
|
|
* ...
|
|
* }
|
|
*
|
|
* Use only for one-to-one texture mapping.
|
|
*/
|
|
struct horz_iterator32 {
|
|
horz_iterator32(context_t* c) {
|
|
const int x = c->iterators.xl;
|
|
const int y = c->iterators.y;
|
|
texture_t& tx = c->state.texture[0];
|
|
const int32_t u = (tx.shade.is0>>16) + x;
|
|
const int32_t v = (tx.shade.it0>>16) + y;
|
|
m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
|
|
}
|
|
uint32_t get_pixel32() {
|
|
return *m_src++;
|
|
}
|
|
protected:
|
|
uint32_t* m_src;
|
|
};
|
|
|
|
/* A variant for 16-bit source textures. */
|
|
struct horz_iterator16 {
|
|
horz_iterator16(context_t* c) {
|
|
const int x = c->iterators.xl;
|
|
const int y = c->iterators.y;
|
|
texture_t& tx = c->state.texture[0];
|
|
const int32_t u = (tx.shade.is0>>16) + x;
|
|
const int32_t v = (tx.shade.it0>>16) + y;
|
|
m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
|
|
}
|
|
uint16_t get_pixel16() {
|
|
return *m_src++;
|
|
}
|
|
protected:
|
|
uint16_t* m_src;
|
|
};
|
|
|
|
/* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
|
|
* After initialization, call get_src16() or get_src32() to get the current
|
|
* texture pixel value.
|
|
*/
|
|
struct clamp_iterator {
|
|
clamp_iterator(context_t* c) {
|
|
const int xs = c->iterators.xl;
|
|
texture_t& tx = c->state.texture[0];
|
|
texture_iterators_t& ti = tx.iterators;
|
|
m_s = (xs * ti.dsdx) + ti.ydsdy;
|
|
m_t = (xs * ti.dtdx) + ti.ydtdy;
|
|
m_ds = ti.dsdx;
|
|
m_dt = ti.dtdx;
|
|
m_width_m1 = tx.surface.width - 1;
|
|
m_height_m1 = tx.surface.height - 1;
|
|
m_data = tx.surface.data;
|
|
m_stride = tx.surface.stride;
|
|
}
|
|
uint16_t get_pixel16() {
|
|
int u, v;
|
|
get_uv(u, v);
|
|
uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
|
|
return src[0];
|
|
}
|
|
uint32_t get_pixel32() {
|
|
int u, v;
|
|
get_uv(u, v);
|
|
uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
|
|
return src[0];
|
|
}
|
|
private:
|
|
void get_uv(int& u, int& v) {
|
|
int uu = m_s >> 16;
|
|
int vv = m_t >> 16;
|
|
if (uu < 0)
|
|
uu = 0;
|
|
if (uu > m_width_m1)
|
|
uu = m_width_m1;
|
|
if (vv < 0)
|
|
vv = 0;
|
|
if (vv > m_height_m1)
|
|
vv = m_height_m1;
|
|
u = uu;
|
|
v = vv;
|
|
m_s += m_ds;
|
|
m_t += m_dt;
|
|
}
|
|
|
|
GGLfixed m_s, m_t;
|
|
GGLfixed m_ds, m_dt;
|
|
int m_width_m1, m_height_m1;
|
|
uint8_t* m_data;
|
|
int m_stride;
|
|
};
|
|
|
|
/*
|
|
* The 'horizontal clamp iterator' variant corresponds to the case where
|
|
* the 'v' coordinate doesn't change. This is useful to avoid one mult and
|
|
* extra adds / checks per pixels, if the blending/processing operation after
|
|
* this is very fast.
|
|
*/
|
|
static int is_context_horizontal(const context_t* c) {
|
|
return (c->state.texture[0].iterators.dtdx == 0);
|
|
}
|
|
|
|
struct horz_clamp_iterator {
|
|
uint16_t get_pixel16() {
|
|
int u = m_s >> 16;
|
|
m_s += m_ds;
|
|
if (u < 0)
|
|
u = 0;
|
|
if (u > m_width_m1)
|
|
u = m_width_m1;
|
|
const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
|
|
return src[u];
|
|
}
|
|
uint32_t get_pixel32() {
|
|
int u = m_s >> 16;
|
|
m_s += m_ds;
|
|
if (u < 0)
|
|
u = 0;
|
|
if (u > m_width_m1)
|
|
u = m_width_m1;
|
|
const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
|
|
return src[u];
|
|
}
|
|
protected:
|
|
void init(const context_t* c, int shift);
|
|
GGLfixed m_s;
|
|
GGLfixed m_ds;
|
|
int m_width_m1;
|
|
const uint8_t* m_data;
|
|
};
|
|
|
|
void horz_clamp_iterator::init(const context_t* c, int shift)
|
|
{
|
|
const int xs = c->iterators.xl;
|
|
const texture_t& tx = c->state.texture[0];
|
|
const texture_iterators_t& ti = tx.iterators;
|
|
m_s = (xs * ti.dsdx) + ti.ydsdy;
|
|
m_ds = ti.dsdx;
|
|
m_width_m1 = tx.surface.width-1;
|
|
m_data = tx.surface.data;
|
|
|
|
GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
|
|
int v = t >> 16;
|
|
if (v < 0)
|
|
v = 0;
|
|
else if (v >= (int)tx.surface.height)
|
|
v = (int)tx.surface.height-1;
|
|
|
|
m_data += (tx.surface.stride*v) << shift;
|
|
}
|
|
|
|
struct horz_clamp_iterator16 : horz_clamp_iterator {
|
|
horz_clamp_iterator16(const context_t* c) {
|
|
init(c,1);
|
|
};
|
|
};
|
|
|
|
struct horz_clamp_iterator32 : horz_clamp_iterator {
|
|
horz_clamp_iterator32(context_t* c) {
|
|
init(c,2);
|
|
};
|
|
};
|
|
|
|
/* This is used to perform dithering operations.
|
|
*/
|
|
struct ditherer {
|
|
ditherer(const context_t* c) {
|
|
const int x = c->iterators.xl;
|
|
const int y = c->iterators.y;
|
|
m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
|
|
m_index = x & GGL_DITHER_MASK;
|
|
}
|
|
void step(void) {
|
|
m_index++;
|
|
}
|
|
int get_value(void) {
|
|
int ret = m_line[m_index & GGL_DITHER_MASK];
|
|
m_index++;
|
|
return ret;
|
|
}
|
|
uint16_t abgr8888ToRgb565(uint32_t s) {
|
|
uint32_t r = s & 0xff;
|
|
uint32_t g = (s >> 8) & 0xff;
|
|
uint32_t b = (s >> 16) & 0xff;
|
|
return rgb888ToRgb565(r,g,b);
|
|
}
|
|
/* The following assumes that r/g/b are in the 0..255 range each */
|
|
uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
|
|
int threshold = get_value();
|
|
/* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
|
|
r += (threshold >> (GGL_DITHER_BITS-8 +5));
|
|
g += (threshold >> (GGL_DITHER_BITS-8 +6));
|
|
b += (threshold >> (GGL_DITHER_BITS-8 +5));
|
|
if (r > 0xff)
|
|
r = 0xff;
|
|
if (g > 0xff)
|
|
g = 0xff;
|
|
if (b > 0xff)
|
|
b = 0xff;
|
|
return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
|
|
}
|
|
protected:
|
|
const uint8_t* m_line;
|
|
int m_index;
|
|
};
|
|
|
|
/* This structure is used to blend (SRC_OVER) 32-bit source pixels
|
|
* onto 16-bit destination ones. Usage is simply:
|
|
*
|
|
* blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
|
|
*/
|
|
struct blender_32to16 {
|
|
blender_32to16(context_t* c) { }
|
|
void write(uint32_t s, uint16_t* dst) {
|
|
if (s == 0)
|
|
return;
|
|
s = GGL_RGBA_TO_HOST(s);
|
|
int sA = (s>>24);
|
|
if (sA == 0xff) {
|
|
*dst = convertAbgr8888ToRgb565(s);
|
|
} else {
|
|
int f = 0x100 - (sA + (sA>>7));
|
|
int sR = (s >> ( 3))&0x1F;
|
|
int sG = (s >> ( 8+2))&0x3F;
|
|
int sB = (s >> (16+3))&0x1F;
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR += (f*dR)>>8;
|
|
sG += (f*dG)>>8;
|
|
sB += (f*dB)>>8;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
}
|
|
void write(uint32_t s, uint16_t* dst, ditherer& di) {
|
|
if (s == 0) {
|
|
di.step();
|
|
return;
|
|
}
|
|
s = GGL_RGBA_TO_HOST(s);
|
|
int sA = (s>>24);
|
|
if (sA == 0xff) {
|
|
*dst = di.abgr8888ToRgb565(s);
|
|
} else {
|
|
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
|
|
int f = 0x100 - (sA + (sA>>7));
|
|
int sR = (s >> ( 3))&0x1F;
|
|
int sG = (s >> ( 8+2))&0x3F;
|
|
int sB = (s >> (16+3))&0x1F;
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR = ((sR << 8) + f*dR + threshold)>>8;
|
|
sG = ((sG << 8) + f*dG + threshold)>>8;
|
|
sB = ((sB << 8) + f*dB + threshold)>>8;
|
|
if (sR > 0x1f) sR = 0x1f;
|
|
if (sG > 0x3f) sG = 0x3f;
|
|
if (sB > 0x1f) sB = 0x1f;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
}
|
|
};
|
|
|
|
/* This blender does the same for the 'blend_srca' operation.
|
|
* where dstFactor=srcA*(1-srcA) srcFactor=srcA
|
|
*/
|
|
struct blender_32to16_srcA {
|
|
blender_32to16_srcA(const context_t* c) { }
|
|
void write(uint32_t s, uint16_t* dst) {
|
|
if (!s) {
|
|
return;
|
|
}
|
|
uint16_t d = *dst;
|
|
s = GGL_RGBA_TO_HOST(s);
|
|
int sR = (s >> ( 3))&0x1F;
|
|
int sG = (s >> ( 8+2))&0x3F;
|
|
int sB = (s >> (16+3))&0x1F;
|
|
int sA = (s>>24);
|
|
int f1 = (sA + (sA>>7));
|
|
int f2 = 0x100-f1;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR = (f1*sR + f2*dR)>>8;
|
|
sG = (f1*sG + f2*dG)>>8;
|
|
sB = (f1*sB + f2*dB)>>8;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
};
|
|
|
|
/* Common init code the modulating blenders */
|
|
struct blender_modulate {
|
|
void init(const context_t* c) {
|
|
const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
|
|
const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
|
|
const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
|
|
const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
|
|
m_r = r + (r >> 7);
|
|
m_g = g + (g >> 7);
|
|
m_b = b + (b >> 7);
|
|
m_a = a + (a >> 7);
|
|
}
|
|
protected:
|
|
int m_r, m_g, m_b, m_a;
|
|
};
|
|
|
|
/* This blender does a normal blend after modulation.
|
|
*/
|
|
struct blender_32to16_modulate : blender_modulate {
|
|
blender_32to16_modulate(const context_t* c) {
|
|
init(c);
|
|
}
|
|
void write(uint32_t s, uint16_t* dst) {
|
|
// blend source and destination
|
|
if (!s) {
|
|
return;
|
|
}
|
|
s = GGL_RGBA_TO_HOST(s);
|
|
|
|
/* We need to modulate s */
|
|
uint32_t sA = (s >> 24);
|
|
uint32_t sB = (s >> 16) & 0xff;
|
|
uint32_t sG = (s >> 8) & 0xff;
|
|
uint32_t sR = s & 0xff;
|
|
|
|
sA = (sA*m_a) >> 8;
|
|
/* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
|
|
sR = (sR*m_r) >> (8 - 5);
|
|
sG = (sG*m_g) >> (8 - 6);
|
|
sB = (sB*m_b) >> (8 - 5);
|
|
|
|
/* Now do a normal blend */
|
|
int f = 0x100 - (sA + (sA>>7));
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR = (sR + f*dR)>>8;
|
|
sG = (sG + f*dG)>>8;
|
|
sB = (sB + f*dB)>>8;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
void write(uint32_t s, uint16_t* dst, ditherer& di) {
|
|
// blend source and destination
|
|
if (!s) {
|
|
di.step();
|
|
return;
|
|
}
|
|
s = GGL_RGBA_TO_HOST(s);
|
|
|
|
/* We need to modulate s */
|
|
uint32_t sA = (s >> 24);
|
|
uint32_t sB = (s >> 16) & 0xff;
|
|
uint32_t sG = (s >> 8) & 0xff;
|
|
uint32_t sR = s & 0xff;
|
|
|
|
sA = (sA*m_a) >> 8;
|
|
/* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
|
|
sR = (sR*m_r) >> (8 - 5);
|
|
sG = (sG*m_g) >> (8 - 6);
|
|
sB = (sB*m_b) >> (8 - 5);
|
|
|
|
/* Scale threshold to 0.8 fixed float format */
|
|
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
|
|
int f = 0x100 - (sA + (sA>>7));
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR = (sR + f*dR + threshold)>>8;
|
|
sG = (sG + f*dG + threshold)>>8;
|
|
sB = (sB + f*dB + threshold)>>8;
|
|
if (sR > 0x1f) sR = 0x1f;
|
|
if (sG > 0x3f) sG = 0x3f;
|
|
if (sB > 0x1f) sB = 0x1f;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
};
|
|
|
|
/* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
|
|
struct blender_x32to16_modulate : blender_modulate {
|
|
blender_x32to16_modulate(const context_t* c) {
|
|
init(c);
|
|
}
|
|
void write(uint32_t s, uint16_t* dst) {
|
|
s = GGL_RGBA_TO_HOST(s);
|
|
|
|
uint32_t sB = (s >> 16) & 0xff;
|
|
uint32_t sG = (s >> 8) & 0xff;
|
|
uint32_t sR = s & 0xff;
|
|
|
|
/* Keep R/G/B in 5.8 or 6.8 format */
|
|
sR = (sR*m_r) >> (8 - 5);
|
|
sG = (sG*m_g) >> (8 - 6);
|
|
sB = (sB*m_b) >> (8 - 5);
|
|
|
|
int f = 0x100 - m_a;
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR = (sR + f*dR)>>8;
|
|
sG = (sG + f*dG)>>8;
|
|
sB = (sB + f*dB)>>8;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
void write(uint32_t s, uint16_t* dst, ditherer& di) {
|
|
s = GGL_RGBA_TO_HOST(s);
|
|
|
|
uint32_t sB = (s >> 16) & 0xff;
|
|
uint32_t sG = (s >> 8) & 0xff;
|
|
uint32_t sR = s & 0xff;
|
|
|
|
sR = (sR*m_r) >> (8 - 5);
|
|
sG = (sG*m_g) >> (8 - 6);
|
|
sB = (sB*m_b) >> (8 - 5);
|
|
|
|
/* Now do a normal blend */
|
|
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
|
|
int f = 0x100 - m_a;
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR = (sR + f*dR + threshold)>>8;
|
|
sG = (sG + f*dG + threshold)>>8;
|
|
sB = (sB + f*dB + threshold)>>8;
|
|
if (sR > 0x1f) sR = 0x1f;
|
|
if (sG > 0x3f) sG = 0x3f;
|
|
if (sB > 0x1f) sB = 0x1f;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
};
|
|
|
|
/* Same as above, but source is 16bit rgb565 */
|
|
struct blender_16to16_modulate : blender_modulate {
|
|
blender_16to16_modulate(const context_t* c) {
|
|
init(c);
|
|
}
|
|
void write(uint16_t s16, uint16_t* dst) {
|
|
uint32_t s = s16;
|
|
|
|
uint32_t sR = s >> 11;
|
|
uint32_t sG = (s >> 5) & 0x3f;
|
|
uint32_t sB = s & 0x1f;
|
|
|
|
sR = (sR*m_r);
|
|
sG = (sG*m_g);
|
|
sB = (sB*m_b);
|
|
|
|
int f = 0x100 - m_a;
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
sR = (sR + f*dR)>>8;
|
|
sG = (sG + f*dG)>>8;
|
|
sB = (sB + f*dB)>>8;
|
|
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
};
|
|
|
|
/* This is used to iterate over a 16-bit destination color buffer.
|
|
* Usage is:
|
|
*
|
|
* dst_iterator16 di(context);
|
|
* while (di.count--) {
|
|
* <do stuff with dest pixel at di.dst>
|
|
* di.dst++;
|
|
* }
|
|
*/
|
|
struct dst_iterator16 {
|
|
dst_iterator16(const context_t* c) {
|
|
const int x = c->iterators.xl;
|
|
const int width = c->iterators.xr - x;
|
|
const int32_t y = c->iterators.y;
|
|
const surface_t* cb = &(c->state.buffers.color);
|
|
count = width;
|
|
dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
|
|
}
|
|
int count;
|
|
uint16_t* dst;
|
|
};
|
|
|
|
|
|
static void scanline_t32cb16_clamp(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
|
|
if (is_context_horizontal(c)) {
|
|
/* Special case for simple horizontal scaling */
|
|
horz_clamp_iterator32 ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
*di.dst++ = convertAbgr8888ToRgb565(s);
|
|
}
|
|
} else {
|
|
/* General case */
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
*di.dst++ = convertAbgr8888ToRgb565(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void scanline_t32cb16_dither(context_t* c)
|
|
{
|
|
horz_iterator32 si(c);
|
|
dst_iterator16 di(c);
|
|
ditherer dither(c);
|
|
|
|
while (di.count--) {
|
|
uint32_t s = si.get_pixel32();
|
|
*di.dst++ = dither.abgr8888ToRgb565(s);
|
|
}
|
|
}
|
|
|
|
static void scanline_t32cb16_clamp_dither(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
ditherer dither(c);
|
|
|
|
if (is_context_horizontal(c)) {
|
|
/* Special case for simple horizontal scaling */
|
|
horz_clamp_iterator32 ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
*di.dst++ = dither.abgr8888ToRgb565(s);
|
|
}
|
|
} else {
|
|
/* General case */
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
*di.dst++ = dither.abgr8888ToRgb565(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void scanline_t32cb16blend_dither(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
ditherer dither(c);
|
|
blender_32to16 bl(c);
|
|
horz_iterator32 hi(c);
|
|
while (di.count--) {
|
|
uint32_t s = hi.get_pixel32();
|
|
bl.write(s, di.dst, dither);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
static void scanline_t32cb16blend_clamp(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
blender_32to16 bl(c);
|
|
|
|
if (is_context_horizontal(c)) {
|
|
horz_clamp_iterator32 ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
bl.write(s, di.dst);
|
|
di.dst++;
|
|
}
|
|
} else {
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
bl.write(s, di.dst);
|
|
di.dst++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void scanline_t32cb16blend_clamp_dither(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
ditherer dither(c);
|
|
blender_32to16 bl(c);
|
|
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
bl.write(s, di.dst, dither);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
void scanline_t32cb16blend_clamp_mod(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
blender_32to16_modulate bl(c);
|
|
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
bl.write(s, di.dst);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
blender_32to16_modulate bl(c);
|
|
ditherer dither(c);
|
|
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
bl.write(s, di.dst, dither);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
/* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
|
|
void scanline_x32cb16blend_clamp_mod(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
blender_x32to16_modulate bl(c);
|
|
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
bl.write(s, di.dst);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
blender_x32to16_modulate bl(c);
|
|
ditherer dither(c);
|
|
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
uint32_t s = ci.get_pixel32();
|
|
bl.write(s, di.dst, dither);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
void scanline_t16cb16_clamp(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
|
|
/* Special case for simple horizontal scaling */
|
|
if (is_context_horizontal(c)) {
|
|
horz_clamp_iterator16 ci(c);
|
|
while (di.count--) {
|
|
*di.dst++ = ci.get_pixel16();
|
|
}
|
|
} else {
|
|
clamp_iterator ci(c);
|
|
while (di.count--) {
|
|
*di.dst++ = ci.get_pixel16();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template <typename T, typename U>
|
|
static inline __attribute__((const))
|
|
T interpolate(int y, T v0, U dvdx, U dvdy) {
|
|
// interpolates in pixel's centers
|
|
// v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
|
|
return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#endif
|
|
|
|
void init_y(context_t* c, int32_t ys)
|
|
{
|
|
const uint32_t enables = c->state.enables;
|
|
|
|
// compute iterators...
|
|
iterators_t& ci = c->iterators;
|
|
|
|
// sample in the center
|
|
ci.y = ys;
|
|
|
|
if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
|
|
ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
|
|
ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
|
|
ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
|
|
}
|
|
|
|
if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
|
|
ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
|
|
ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
|
|
ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
|
|
ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
|
|
c->step_y = step_y__smooth;
|
|
} else {
|
|
ci.ydrdy = c->shade.r0;
|
|
ci.ydgdy = c->shade.g0;
|
|
ci.ydbdy = c->shade.b0;
|
|
ci.ydady = c->shade.a0;
|
|
// XXX: do only if needed, or make sure this is fast
|
|
c->packed = ggl_pack_color(c, c->state.buffers.color.format,
|
|
ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
|
|
c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
|
|
ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
|
|
}
|
|
|
|
// initialize the variables we need in the shader
|
|
generated_vars_t& gen = c->generated_vars;
|
|
gen.argb[GGLFormat::ALPHA].c = ci.ydady;
|
|
gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
|
|
gen.argb[GGLFormat::RED ].c = ci.ydrdy;
|
|
gen.argb[GGLFormat::RED ].dx = c->shade.drdx;
|
|
gen.argb[GGLFormat::GREEN].c = ci.ydgdy;
|
|
gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
|
|
gen.argb[GGLFormat::BLUE ].c = ci.ydbdy;
|
|
gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
|
|
gen.dzdx = c->shade.dzdx;
|
|
gen.f = ci.ydfdy;
|
|
gen.dfdx = c->shade.dfdx;
|
|
|
|
if (enables & GGL_ENABLE_TMUS) {
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
|
|
texture_t& t = c->state.texture[i];
|
|
if (!t.enable) continue;
|
|
|
|
texture_iterators_t& ti = t.iterators;
|
|
if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
|
|
// we need to set all of these to 0 because in some cases
|
|
// step_y__generic() or step_y__tmu() will be used and
|
|
// therefore will update dtdy, however, in 1:1 mode
|
|
// this is always done by the scanline rasterizer.
|
|
ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
|
|
ti.ydsdy = t.shade.is0;
|
|
ti.ydtdy = t.shade.it0;
|
|
} else {
|
|
const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
|
|
const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
|
|
ti.sscale = t.shade.sscale + adjustSWrap;
|
|
ti.tscale = t.shade.tscale + adjustTWrap;
|
|
if (!(enables & GGL_ENABLE_W)) {
|
|
// S coordinate
|
|
const int32_t sscale = ti.sscale;
|
|
const int32_t sy = interpolate(ys,
|
|
t.shade.is0, t.shade.idsdx, t.shade.idsdy);
|
|
if (sscale>=0) {
|
|
ti.ydsdy= sy << sscale;
|
|
ti.dsdx = t.shade.idsdx << sscale;
|
|
ti.dsdy = t.shade.idsdy << sscale;
|
|
} else {
|
|
ti.ydsdy= sy >> -sscale;
|
|
ti.dsdx = t.shade.idsdx >> -sscale;
|
|
ti.dsdy = t.shade.idsdy >> -sscale;
|
|
}
|
|
// T coordinate
|
|
const int32_t tscale = ti.tscale;
|
|
const int32_t ty = interpolate(ys,
|
|
t.shade.it0, t.shade.idtdx, t.shade.idtdy);
|
|
if (tscale>=0) {
|
|
ti.ydtdy= ty << tscale;
|
|
ti.dtdx = t.shade.idtdx << tscale;
|
|
ti.dtdy = t.shade.idtdy << tscale;
|
|
} else {
|
|
ti.ydtdy= ty >> -tscale;
|
|
ti.dtdx = t.shade.idtdx >> -tscale;
|
|
ti.dtdy = t.shade.idtdy >> -tscale;
|
|
}
|
|
}
|
|
}
|
|
// mirror for generated code...
|
|
generated_tex_vars_t& gen = c->generated_vars.texture[i];
|
|
gen.width = t.surface.width;
|
|
gen.height = t.surface.height;
|
|
gen.stride = t.surface.stride;
|
|
gen.data = int32_t(t.surface.data);
|
|
gen.dsdx = ti.dsdx;
|
|
gen.dtdx = ti.dtdx;
|
|
}
|
|
}
|
|
|
|
// choose the y-stepper
|
|
c->step_y = step_y__nop;
|
|
if (enables & GGL_ENABLE_FOG) {
|
|
c->step_y = step_y__generic;
|
|
} else if (enables & GGL_ENABLE_TMUS) {
|
|
if (enables & GGL_ENABLE_SMOOTH) {
|
|
c->step_y = step_y__generic;
|
|
} else if (enables & GGL_ENABLE_W) {
|
|
c->step_y = step_y__w;
|
|
} else {
|
|
c->step_y = step_y__tmu;
|
|
}
|
|
} else {
|
|
if (enables & GGL_ENABLE_SMOOTH) {
|
|
c->step_y = step_y__smooth;
|
|
}
|
|
}
|
|
|
|
// choose the rectangle blitter
|
|
c->rect = rect_generic;
|
|
if ((c->step_y == step_y__nop) &&
|
|
(c->scanline == scanline_memcpy))
|
|
{
|
|
c->rect = rect_memcpy;
|
|
}
|
|
}
|
|
|
|
void init_y_packed(context_t* c, int32_t y0)
|
|
{
|
|
uint8_t f = c->state.buffers.color.format;
|
|
c->packed = ggl_pack_color(c, f,
|
|
c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
|
|
c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
|
|
c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
|
|
c->iterators.y = y0;
|
|
c->step_y = step_y__nop;
|
|
// choose the rectangle blitter
|
|
c->rect = rect_generic;
|
|
if (c->scanline == scanline_memcpy) {
|
|
c->rect = rect_memcpy;
|
|
}
|
|
}
|
|
|
|
void init_y_noop(context_t* c, int32_t y0)
|
|
{
|
|
c->iterators.y = y0;
|
|
c->step_y = step_y__nop;
|
|
// choose the rectangle blitter
|
|
c->rect = rect_generic;
|
|
if (c->scanline == scanline_memcpy) {
|
|
c->rect = rect_memcpy;
|
|
}
|
|
}
|
|
|
|
void init_y_error(context_t* c, int32_t y0)
|
|
{
|
|
// woooops, shoud never happen,
|
|
// fail gracefully (don't display anything)
|
|
init_y_noop(c, y0);
|
|
ALOGE("color-buffer has an invalid format!");
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#endif
|
|
|
|
void step_y__generic(context_t* c)
|
|
{
|
|
const uint32_t enables = c->state.enables;
|
|
|
|
// iterate...
|
|
iterators_t& ci = c->iterators;
|
|
ci.y += 1;
|
|
|
|
if (enables & GGL_ENABLE_SMOOTH) {
|
|
ci.ydrdy += c->shade.drdy;
|
|
ci.ydgdy += c->shade.dgdy;
|
|
ci.ydbdy += c->shade.dbdy;
|
|
ci.ydady += c->shade.dady;
|
|
}
|
|
|
|
const uint32_t mask =
|
|
GGL_ENABLE_DEPTH_TEST |
|
|
GGL_ENABLE_W |
|
|
GGL_ENABLE_FOG;
|
|
if (enables & mask) {
|
|
ci.ydzdy += c->shade.dzdy;
|
|
ci.ydwdy += c->shade.dwdy;
|
|
ci.ydfdy += c->shade.dfdy;
|
|
}
|
|
|
|
if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
|
|
if (c->state.texture[i].enable) {
|
|
texture_iterators_t& ti = c->state.texture[i].iterators;
|
|
ti.ydsdy += ti.dsdy;
|
|
ti.ydtdy += ti.dtdy;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void step_y__nop(context_t* c)
|
|
{
|
|
c->iterators.y += 1;
|
|
c->iterators.ydzdy += c->shade.dzdy;
|
|
}
|
|
|
|
void step_y__smooth(context_t* c)
|
|
{
|
|
iterators_t& ci = c->iterators;
|
|
ci.y += 1;
|
|
ci.ydrdy += c->shade.drdy;
|
|
ci.ydgdy += c->shade.dgdy;
|
|
ci.ydbdy += c->shade.dbdy;
|
|
ci.ydady += c->shade.dady;
|
|
ci.ydzdy += c->shade.dzdy;
|
|
}
|
|
|
|
void step_y__w(context_t* c)
|
|
{
|
|
iterators_t& ci = c->iterators;
|
|
ci.y += 1;
|
|
ci.ydzdy += c->shade.dzdy;
|
|
ci.ydwdy += c->shade.dwdy;
|
|
}
|
|
|
|
void step_y__tmu(context_t* c)
|
|
{
|
|
iterators_t& ci = c->iterators;
|
|
ci.y += 1;
|
|
ci.ydzdy += c->shade.dzdy;
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
|
|
if (c->state.texture[i].enable) {
|
|
texture_iterators_t& ti = c->state.texture[i].iterators;
|
|
ti.ydsdy += ti.dsdy;
|
|
ti.ydtdy += ti.dtdy;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#endif
|
|
|
|
void scanline_perspective(context_t* c)
|
|
{
|
|
struct {
|
|
union {
|
|
struct {
|
|
int32_t s, sq;
|
|
int32_t t, tq;
|
|
};
|
|
struct {
|
|
int32_t v, q;
|
|
} st[2];
|
|
};
|
|
} tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
|
|
|
|
// XXX: we should have a special case when dwdx = 0
|
|
|
|
// 32 pixels spans works okay. 16 is a lot better,
|
|
// but hey, it's a software renderer...
|
|
const uint32_t SPAN_BITS = 5;
|
|
const uint32_t ys = c->iterators.y;
|
|
const uint32_t xs = c->iterators.xl;
|
|
const uint32_t x1 = c->iterators.xr;
|
|
const uint32_t xc = x1 - xs;
|
|
uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
|
|
uint32_t numSpans = xc >> SPAN_BITS;
|
|
|
|
const iterators_t& ci = c->iterators;
|
|
int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
|
|
int32_t q0 = gglRecipQ(w0, 30);
|
|
const int iwscale = 32 - gglClz(q0);
|
|
|
|
const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
|
|
int32_t xl = c->iterators.xl;
|
|
|
|
// We process s & t with a loop to reduce the code size
|
|
// (and i-cache pressure).
|
|
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
|
|
const texture_t& tmu = c->state.texture[i];
|
|
if (!tmu.enable) continue;
|
|
int32_t s = tmu.shade.is0 +
|
|
(tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
|
|
((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
|
|
int32_t t = tmu.shade.it0 +
|
|
(tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
|
|
((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
|
|
tc[i].s = s;
|
|
tc[i].t = t;
|
|
tc[i].sq = gglMulx(s, q0, iwscale);
|
|
tc[i].tq = gglMulx(t, q0, iwscale);
|
|
}
|
|
|
|
int32_t span = 0;
|
|
do {
|
|
int32_t w1;
|
|
if (ggl_likely(numSpans)) {
|
|
w1 = w0 + dwdx;
|
|
} else {
|
|
if (remainder) {
|
|
// finish off the scanline...
|
|
span = remainder;
|
|
w1 = (c->shade.dwdx * span) + w0;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
int32_t q1 = gglRecipQ(w1, 30);
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
|
|
texture_t& tmu = c->state.texture[i];
|
|
if (!tmu.enable) continue;
|
|
texture_iterators_t& ti = tmu.iterators;
|
|
|
|
for (int j=0 ; j<2 ; j++) {
|
|
int32_t v = tc[i].st[j].v;
|
|
if (span) v += (tmu.shade.st[j].dx)*span;
|
|
else v += (tmu.shade.st[j].dx)<<SPAN_BITS;
|
|
const int32_t v0 = tc[i].st[j].q;
|
|
const int32_t v1 = gglMulx(v, q1, iwscale);
|
|
int32_t dvdx = v1 - v0;
|
|
if (span) dvdx /= span;
|
|
else dvdx >>= SPAN_BITS;
|
|
tc[i].st[j].v = v;
|
|
tc[i].st[j].q = v1;
|
|
|
|
const int scale = ti.st[j].scale + (iwscale - 30);
|
|
if (scale >= 0) {
|
|
ti.st[j].ydvdy = v0 << scale;
|
|
ti.st[j].dvdx = dvdx << scale;
|
|
} else {
|
|
ti.st[j].ydvdy = v0 >> -scale;
|
|
ti.st[j].dvdx = dvdx >> -scale;
|
|
}
|
|
}
|
|
generated_tex_vars_t& gen = c->generated_vars.texture[i];
|
|
gen.dsdx = ti.st[0].dvdx;
|
|
gen.dtdx = ti.st[1].dvdx;
|
|
}
|
|
c->iterators.xl = xl;
|
|
c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
|
|
w0 = w1;
|
|
q0 = q1;
|
|
c->span(c);
|
|
} while(numSpans--);
|
|
}
|
|
|
|
void scanline_perspective_single(context_t* c)
|
|
{
|
|
// 32 pixels spans works okay. 16 is a lot better,
|
|
// but hey, it's a software renderer...
|
|
const uint32_t SPAN_BITS = 5;
|
|
const uint32_t ys = c->iterators.y;
|
|
const uint32_t xs = c->iterators.xl;
|
|
const uint32_t x1 = c->iterators.xr;
|
|
const uint32_t xc = x1 - xs;
|
|
|
|
const iterators_t& ci = c->iterators;
|
|
int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
|
|
int32_t iw = gglRecipQ(w, 30);
|
|
const int iwscale = 32 - gglClz(iw);
|
|
|
|
const int i = 31 - gglClz(c->state.enabled_tmu);
|
|
generated_tex_vars_t& gen = c->generated_vars.texture[i];
|
|
texture_t& tmu = c->state.texture[i];
|
|
texture_iterators_t& ti = tmu.iterators;
|
|
const int sscale = ti.sscale + (iwscale - 30);
|
|
const int tscale = ti.tscale + (iwscale - 30);
|
|
int32_t s = tmu.shade.is0 +
|
|
(tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
|
|
((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
|
|
int32_t t = tmu.shade.it0 +
|
|
(tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
|
|
((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
|
|
int32_t s0 = gglMulx(s, iw, iwscale);
|
|
int32_t t0 = gglMulx(t, iw, iwscale);
|
|
int32_t xl = c->iterators.xl;
|
|
|
|
int32_t sq, tq, dsdx, dtdx;
|
|
int32_t premainder = xc & ((1<<SPAN_BITS)-1);
|
|
uint32_t numSpans = xc >> SPAN_BITS;
|
|
if (c->shade.dwdx == 0) {
|
|
// XXX: we could choose to do this if the error is small enough
|
|
numSpans = 0;
|
|
premainder = xc;
|
|
goto no_perspective;
|
|
}
|
|
|
|
if (premainder) {
|
|
w += c->shade.dwdx * premainder;
|
|
iw = gglRecipQ(w, 30);
|
|
no_perspective:
|
|
s += tmu.shade.idsdx * premainder;
|
|
t += tmu.shade.idtdx * premainder;
|
|
sq = gglMulx(s, iw, iwscale);
|
|
tq = gglMulx(t, iw, iwscale);
|
|
dsdx = (sq - s0) / premainder;
|
|
dtdx = (tq - t0) / premainder;
|
|
c->iterators.xl = xl;
|
|
c->iterators.xr = xl = xl + premainder;
|
|
goto finish;
|
|
}
|
|
|
|
while (numSpans--) {
|
|
w += c->shade.dwdx << SPAN_BITS;
|
|
s += tmu.shade.idsdx << SPAN_BITS;
|
|
t += tmu.shade.idtdx << SPAN_BITS;
|
|
iw = gglRecipQ(w, 30);
|
|
sq = gglMulx(s, iw, iwscale);
|
|
tq = gglMulx(t, iw, iwscale);
|
|
dsdx = (sq - s0) >> SPAN_BITS;
|
|
dtdx = (tq - t0) >> SPAN_BITS;
|
|
c->iterators.xl = xl;
|
|
c->iterators.xr = xl = xl + (1<<SPAN_BITS);
|
|
finish:
|
|
if (sscale >= 0) {
|
|
ti.ydsdy = s0 << sscale;
|
|
ti.dsdx = dsdx << sscale;
|
|
} else {
|
|
ti.ydsdy = s0 >>-sscale;
|
|
ti.dsdx = dsdx >>-sscale;
|
|
}
|
|
if (tscale >= 0) {
|
|
ti.ydtdy = t0 << tscale;
|
|
ti.dtdx = dtdx << tscale;
|
|
} else {
|
|
ti.ydtdy = t0 >>-tscale;
|
|
ti.dtdx = dtdx >>-tscale;
|
|
}
|
|
s0 = sq;
|
|
t0 = tq;
|
|
gen.dsdx = ti.dsdx;
|
|
gen.dtdx = ti.dtdx;
|
|
c->span(c);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void scanline_col32cb16blend(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
union {
|
|
uint16_t* dst;
|
|
uint32_t* dst32;
|
|
};
|
|
dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
|
|
|
|
#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
|
|
#if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
|
|
scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
|
|
#else // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
|
|
scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
|
|
#endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
|
|
#else
|
|
uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
|
|
int sA = (s>>24);
|
|
int f = 0x100 - (sA + (sA>>7));
|
|
while (ct--) {
|
|
uint16_t d = *dst;
|
|
int dR = (d>>11)&0x1f;
|
|
int dG = (d>>5)&0x3f;
|
|
int dB = (d)&0x1f;
|
|
int sR = (s >> ( 3))&0x1F;
|
|
int sG = (s >> ( 8+2))&0x3F;
|
|
int sB = (s >> (16+3))&0x1F;
|
|
sR += (f*dR)>>8;
|
|
sG += (f*dG)>>8;
|
|
sB += (f*dB)>>8;
|
|
*dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
void scanline_t32cb16(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
union {
|
|
uint16_t* dst;
|
|
uint32_t* dst32;
|
|
};
|
|
dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
|
|
|
|
surface_t* tex = &(c->state.texture[0].surface);
|
|
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
|
|
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
|
|
uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
|
|
int sR, sG, sB;
|
|
uint32_t s, d;
|
|
|
|
if (ct==1 || uint32_t(dst)&2) {
|
|
last_one:
|
|
s = GGL_RGBA_TO_HOST( *src++ );
|
|
*dst++ = convertAbgr8888ToRgb565(s);
|
|
ct--;
|
|
}
|
|
|
|
while (ct >= 2) {
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
s = GGL_RGBA_TO_HOST( *src++ );
|
|
d = convertAbgr8888ToRgb565_hi16(s);
|
|
|
|
s = GGL_RGBA_TO_HOST( *src++ );
|
|
d |= convertAbgr8888ToRgb565(s);
|
|
#else
|
|
s = GGL_RGBA_TO_HOST( *src++ );
|
|
d = convertAbgr8888ToRgb565(s);
|
|
|
|
s = GGL_RGBA_TO_HOST( *src++ );
|
|
d |= convertAbgr8888ToRgb565(s) << 16;
|
|
#endif
|
|
*dst32++ = d;
|
|
ct -= 2;
|
|
}
|
|
|
|
if (ct > 0) {
|
|
goto last_one;
|
|
}
|
|
}
|
|
|
|
void scanline_t32cb16blend(context_t* c)
|
|
{
|
|
#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || defined(__mips)))
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
|
|
|
|
surface_t* tex = &(c->state.texture[0].surface);
|
|
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
|
|
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
|
|
uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
|
|
|
|
#ifdef __arm__
|
|
scanline_t32cb16blend_arm(dst, src, ct);
|
|
#else
|
|
scanline_t32cb16blend_mips(dst, src, ct);
|
|
#endif
|
|
#else
|
|
dst_iterator16 di(c);
|
|
horz_iterator32 hi(c);
|
|
blender_32to16 bl(c);
|
|
while (di.count--) {
|
|
uint32_t s = hi.get_pixel32();
|
|
bl.write(s, di.dst);
|
|
di.dst++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void scanline_t32cb16blend_srca(context_t* c)
|
|
{
|
|
dst_iterator16 di(c);
|
|
horz_iterator32 hi(c);
|
|
blender_32to16_srcA blender(c);
|
|
|
|
while (di.count--) {
|
|
uint32_t s = hi.get_pixel32();
|
|
blender.write(s,di.dst);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
void scanline_t16cb16blend_clamp_mod(context_t* c)
|
|
{
|
|
const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
|
|
if (a == 0) {
|
|
return;
|
|
}
|
|
|
|
if (a == 255) {
|
|
scanline_t16cb16_clamp(c);
|
|
return;
|
|
}
|
|
|
|
dst_iterator16 di(c);
|
|
blender_16to16_modulate blender(c);
|
|
clamp_iterator ci(c);
|
|
|
|
while (di.count--) {
|
|
uint16_t s = ci.get_pixel16();
|
|
blender.write(s, di.dst);
|
|
di.dst++;
|
|
}
|
|
}
|
|
|
|
void scanline_memcpy(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
const GGLFormat* fp = &(c->formats[cb->format]);
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
|
|
(x + (cb->stride * y)) * fp->size;
|
|
|
|
surface_t* tex = &(c->state.texture[0].surface);
|
|
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
|
|
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
|
|
uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
|
|
(u + (tex->stride * v)) * fp->size;
|
|
|
|
const size_t size = ct * fp->size;
|
|
memcpy(dst, src, size);
|
|
}
|
|
|
|
void scanline_memset8(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
|
|
uint32_t packed = c->packed;
|
|
memset(dst, packed, ct);
|
|
}
|
|
|
|
void scanline_memset16(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
|
|
uint32_t packed = c->packed;
|
|
android_memset16(dst, packed, ct*2);
|
|
}
|
|
|
|
void scanline_memset32(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
|
|
uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
|
|
android_memset32(dst, packed, ct*4);
|
|
}
|
|
|
|
void scanline_clear(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
const GGLFormat* fp = &(c->formats[cb->format]);
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
|
|
(x + (cb->stride * y)) * fp->size;
|
|
const size_t size = ct * fp->size;
|
|
memset(dst, 0, size);
|
|
}
|
|
|
|
void scanline_set(context_t* c)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
const GGLFormat* fp = &(c->formats[cb->format]);
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
|
|
(x + (cb->stride * y)) * fp->size;
|
|
const size_t size = ct * fp->size;
|
|
memset(dst, 0xFF, size);
|
|
}
|
|
|
|
void scanline_noop(context_t* c)
|
|
{
|
|
}
|
|
|
|
void rect_generic(context_t* c, size_t yc)
|
|
{
|
|
do {
|
|
c->scanline(c);
|
|
c->step_y(c);
|
|
} while (--yc);
|
|
}
|
|
|
|
void rect_memcpy(context_t* c, size_t yc)
|
|
{
|
|
int32_t x = c->iterators.xl;
|
|
size_t ct = c->iterators.xr - x;
|
|
int32_t y = c->iterators.y;
|
|
surface_t* cb = &(c->state.buffers.color);
|
|
const GGLFormat* fp = &(c->formats[cb->format]);
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
|
|
(x + (cb->stride * y)) * fp->size;
|
|
|
|
surface_t* tex = &(c->state.texture[0].surface);
|
|
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
|
|
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
|
|
uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
|
|
(u + (tex->stride * v)) * fp->size;
|
|
|
|
if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
|
|
memcpy(dst, src, ct * fp->size * yc);
|
|
} else {
|
|
const size_t size = ct * fp->size;
|
|
const size_t dbpr = cb->stride * fp->size;
|
|
const size_t sbpr = tex->stride * fp->size;
|
|
do {
|
|
memcpy(dst, src, size);
|
|
dst += dbpr;
|
|
src += sbpr;
|
|
} while (--yc);
|
|
}
|
|
}
|
|
// ----------------------------------------------------------------------------
|
|
}; // namespace android
|
|
|