platform_system_core/libpixelflinger/scanline.cpp

2323 lines
75 KiB
C++

/* libs/pixelflinger/scanline.cpp
**
** Copyright 2006-2011, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "pixelflinger"
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cutils/memory.h>
#include <cutils/log.h>
#include "buffer.h"
#include "scanline.h"
#include "codeflinger/CodeCache.h"
#include "codeflinger/GGLAssembler.h"
#include "codeflinger/ARMAssembler.h"
//#include "codeflinger/ARMAssemblerOptimizer.h"
// ----------------------------------------------------------------------------
#define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline
#define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic
#define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic
#define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen
#ifdef NDEBUG
# define ANDROID_RELEASE
# define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED
#else
# define ANDROID_DEBUG
# define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED
#endif
#if defined(__arm__)
# define ANDROID_ARM_CODEGEN 1
#else
# define ANDROID_ARM_CODEGEN 0
#endif
#define DEBUG__CODEGEN_ONLY 0
/* Set to 1 to dump to the log the states that need a new
* code-generated scanline callback, i.e. those that don't
* have a corresponding shortcut function.
*/
#define DEBUG_NEEDS 0
#define ASSEMBLY_SCRATCH_SIZE 2048
// ----------------------------------------------------------------------------
namespace android {
// ----------------------------------------------------------------------------
static void init_y(context_t*, int32_t);
static void init_y_noop(context_t*, int32_t);
static void init_y_packed(context_t*, int32_t);
static void init_y_error(context_t*, int32_t);
static void step_y__generic(context_t* c);
static void step_y__nop(context_t*);
static void step_y__smooth(context_t* c);
static void step_y__tmu(context_t* c);
static void step_y__w(context_t* c);
static void scanline(context_t* c);
static void scanline_perspective(context_t* c);
static void scanline_perspective_single(context_t* c);
static void scanline_t32cb16blend(context_t* c);
static void scanline_t32cb16blend_dither(context_t* c);
static void scanline_t32cb16blend_srca(context_t* c);
static void scanline_t32cb16blend_clamp(context_t* c);
static void scanline_t32cb16blend_clamp_dither(context_t* c);
static void scanline_t32cb16blend_clamp_mod(context_t* c);
static void scanline_x32cb16blend_clamp_mod(context_t* c);
static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
static void scanline_t32cb16(context_t* c);
static void scanline_t32cb16_dither(context_t* c);
static void scanline_t32cb16_clamp(context_t* c);
static void scanline_t32cb16_clamp_dither(context_t* c);
static void scanline_col32cb16blend(context_t* c);
static void scanline_t16cb16_clamp(context_t* c);
static void scanline_t16cb16blend_clamp_mod(context_t* c);
static void scanline_memcpy(context_t* c);
static void scanline_memset8(context_t* c);
static void scanline_memset16(context_t* c);
static void scanline_memset32(context_t* c);
static void scanline_noop(context_t* c);
static void scanline_set(context_t* c);
static void scanline_clear(context_t* c);
static void rect_generic(context_t* c, size_t yc);
static void rect_memcpy(context_t* c, size_t yc);
extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
// ----------------------------------------------------------------------------
static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix)
{
return uint16_t( ((pix << 8) & 0xf800) |
((pix >> 5) & 0x07e0) |
((pix >> 19) & 0x001f) );
}
struct shortcut_t {
needs_filter_t filter;
const char* desc;
void (*scanline)(context_t*);
void (*init_y)(context_t*, int32_t);
};
// Keep in sync with needs
/* To understand the values here, have a look at:
* system/core/include/private/pixelflinger/ggl_context.h
*
* Especially the lines defining and using GGL_RESERVE_NEEDS
*
* Quick reminders:
* - the last nibble of the first value is the destination buffer format.
* - the last nibble of the third value is the source texture format
* - formats: 4=rgb565 1=abgr8888 2=xbgr8888
*
* In the descriptions below:
*
* SRC means we copy the source pixels to the destination
*
* SRC_OVER means we blend the source pixels to the destination
* with dstFactor = 1-srcA, srcFactor=1 (premultiplied source).
* This mode is otherwise called 'blend'.
*
* SRCA_OVER means we blend the source pixels to the destination
* with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
* This mode is otherwise called 'blend_srca'
*
* clamp means we fetch source pixels from a texture with u/v clamping
*
* mod means the source pixels are modulated (multiplied) by the
* a/r/g/b of the current context's color. Typically used for
* fade-in / fade-out.
*
* dither means we dither 32 bit values to 16 bits
*/
static shortcut_t shortcuts[] = {
{ { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
{ { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop },
/* same as first entry, but with dithering */
{ { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
/* same as second entry, but with dithering */
{ { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop },
/* this is used during the boot animation - CHEAT: ignore dithering */
{ { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
/* special case for arbitrary texture coordinates (think scaling) */
{ { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
{ { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
/* another case used during emulation */
{ { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
/* and this */
{ { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
{ { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
{ { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
{ { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
{ { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
{ { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
{ { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
{ { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y },
{ { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
"565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y },
{ { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
{ 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
"565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed },
{ { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
{ 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
"(nop) alpha test", scanline_noop, init_y_noop },
{ { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
{ 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
"(nop) depth test", scanline_noop, init_y_noop },
{ { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
{ 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
"(nop) logic_op", scanline_noop, init_y_noop },
{ { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
{ 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
"(nop) color mask", scanline_noop, init_y_noop },
{ { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
{ 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
"(set) logic_op", scanline_set, init_y_noop },
{ { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
{ 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
"(clear) logic_op", scanline_clear, init_y_noop },
{ { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
{ 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
"(clear) blending 0/0", scanline_clear, init_y_noop },
{ { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
{ 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
"(error) invalid color-buffer format", scanline_noop, init_y_error },
};
static const needs_filter_t noblend1to1 = {
// (disregard dithering, see below)
{ 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
{ 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
};
static const needs_filter_t fill16noblend = {
{ 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
{ 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
};
// ----------------------------------------------------------------------------
#if ANDROID_ARM_CODEGEN
static CodeCache gCodeCache(12 * 1024);
class ScanlineAssembly : public Assembly {
AssemblyKey<needs_t> mKey;
public:
ScanlineAssembly(needs_t needs, size_t size)
: Assembly(size), mKey(needs) { }
const AssemblyKey<needs_t>& key() const { return mKey; }
};
#endif
// ----------------------------------------------------------------------------
void ggl_init_scanline(context_t* c)
{
c->init_y = init_y;
c->step_y = step_y__generic;
c->scanline = scanline;
}
void ggl_uninit_scanline(context_t* c)
{
if (c->state.buffers.coverage)
free(c->state.buffers.coverage);
#if ANDROID_ARM_CODEGEN
if (c->scanline_as)
c->scanline_as->decStrong(c);
#endif
}
// ----------------------------------------------------------------------------
static void pick_scanline(context_t* c)
{
#if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
#if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
c->init_y = init_y;
c->step_y = step_y__generic;
c->scanline = scanline;
return;
#endif
//printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
// c->state.needs.n, c->state.needs.p,
// c->state.needs.t[0], c->state.needs.t[1]);
// first handle the special case that we cannot test with a filter
const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
if (c->state.needs.match(noblend1to1)) {
// this will match regardless of dithering state, since both
// src and dest have the same format anyway, there is no dithering
// to be done.
const GGLFormat* f =
&(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
if ((f->components == GGL_RGB) ||
(f->components == GGL_RGBA) ||
(f->components == GGL_LUMINANCE) ||
(f->components == GGL_LUMINANCE_ALPHA))
{
// format must have all of RGB components
// (so the current color doesn't show through)
c->scanline = scanline_memcpy;
c->init_y = init_y_noop;
return;
}
}
}
if (c->state.needs.match(fill16noblend)) {
c->init_y = init_y_packed;
switch (c->formats[cb_format].size) {
case 1: c->scanline = scanline_memset8; return;
case 2: c->scanline = scanline_memset16; return;
case 4: c->scanline = scanline_memset32; return;
}
}
const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
for (int i=0 ; i<numFilters ; i++) {
if (c->state.needs.match(shortcuts[i].filter)) {
c->scanline = shortcuts[i].scanline;
c->init_y = shortcuts[i].init_y;
return;
}
}
#if DEBUG_NEEDS
LOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
c->state.needs.n, c->state.needs.p,
c->state.needs.t[0], c->state.needs.t[1]);
#endif
#endif // DEBUG__CODEGEN_ONLY
c->init_y = init_y;
c->step_y = step_y__generic;
#if ANDROID_ARM_CODEGEN
// we're going to have to generate some code...
// here, generate code for our pixel pipeline
const AssemblyKey<needs_t> key(c->state.needs);
sp<Assembly> assembly = gCodeCache.lookup(key);
if (assembly == 0) {
// create a new assembly region
sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
ASSEMBLY_SCRATCH_SIZE);
// initialize our assembler
GGLAssembler assembler( new ARMAssembler(a) );
//GGLAssembler assembler(
// new ARMAssemblerOptimizer(new ARMAssembler(a)) );
// generate the scanline code for the given needs
int err = assembler.scanline(c->state.needs, c);
if (ggl_likely(!err)) {
// finally, cache this assembly
err = gCodeCache.cache(a->key(), a);
}
if (ggl_unlikely(err)) {
LOGE("error generating or caching assembly. Reverting to NOP.");
c->scanline = scanline_noop;
c->init_y = init_y_noop;
c->step_y = step_y__nop;
return;
}
assembly = a;
}
// release the previous assembly
if (c->scanline_as) {
c->scanline_as->decStrong(c);
}
//LOGI("using generated pixel-pipeline");
c->scanline_as = assembly.get();
c->scanline_as->incStrong(c); // hold on to assembly
c->scanline = (void(*)(context_t* c))assembly->base();
#else
// LOGW("using generic (slow) pixel-pipeline");
c->scanline = scanline;
#endif
}
void ggl_pick_scanline(context_t* c)
{
pick_scanline(c);
if ((c->state.enables & GGL_ENABLE_W) &&
(c->state.enables & GGL_ENABLE_TMUS))
{
c->span = c->scanline;
c->scanline = scanline_perspective;
if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
// only one TMU enabled
c->scanline = scanline_perspective_single;
}
}
}
// ----------------------------------------------------------------------------
static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
const pixel_t* src, const pixel_t* dst);
static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
#if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
// no need to compile the generic-pipeline, it can't be reached
void scanline(context_t*)
{
}
#else
void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
{
if (su && sv) {
if (su > sv) {
v = ggl_expand(v, sv, su);
sv = su;
} else if (su < sv) {
u = ggl_expand(u, su, sv);
su = sv;
}
}
}
void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
{
rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
pixel_t sf, df;
blend_factor(c, &sf, c->state.blend.src, fragment, fb);
blend_factor(c, &df, c->state.blend.dst, fragment, fb);
fragment->c[1] =
gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
fragment->c[2] =
gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
fragment->c[3] =
gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
if (c->state.blend.alpha_separate) {
blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
}
fragment->c[0] =
gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
// clamp to 1.0
if (fragment->c[0] >= (1LU<<fragment->s[0]))
fragment->c[0] = (1<<fragment->s[0])-1;
if (fragment->c[1] >= (1LU<<fragment->s[1]))
fragment->c[1] = (1<<fragment->s[1])-1;
if (fragment->c[2] >= (1LU<<fragment->s[2]))
fragment->c[2] = (1<<fragment->s[2])-1;
if (fragment->c[3] >= (1LU<<fragment->s[3]))
fragment->c[3] = (1<<fragment->s[3])-1;
}
static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
{
if (!size)
return def;
// scale to 16 bits
if (size > 16) {
x >>= (size - 16);
} else if (size < 16) {
x = ggl_expand(x, size, 16);
}
x += x >> 15;
return x;
}
void blend_factor(context_t* c, pixel_t* r,
uint32_t factor, const pixel_t* src, const pixel_t* dst)
{
switch (factor) {
case GGL_ZERO:
r->c[1] =
r->c[2] =
r->c[3] =
r->c[0] = 0;
break;
case GGL_ONE:
r->c[1] =
r->c[2] =
r->c[3] =
r->c[0] = FIXED_ONE;
break;
case GGL_DST_COLOR:
r->c[1] = blendfactor(dst->c[1], dst->s[1]);
r->c[2] = blendfactor(dst->c[2], dst->s[2]);
r->c[3] = blendfactor(dst->c[3], dst->s[3]);
r->c[0] = blendfactor(dst->c[0], dst->s[0]);
break;
case GGL_SRC_COLOR:
r->c[1] = blendfactor(src->c[1], src->s[1]);
r->c[2] = blendfactor(src->c[2], src->s[2]);
r->c[3] = blendfactor(src->c[3], src->s[3]);
r->c[0] = blendfactor(src->c[0], src->s[0]);
break;
case GGL_ONE_MINUS_DST_COLOR:
r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
break;
case GGL_ONE_MINUS_SRC_COLOR:
r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
break;
case GGL_SRC_ALPHA:
r->c[1] =
r->c[2] =
r->c[3] =
r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
break;
case GGL_ONE_MINUS_SRC_ALPHA:
r->c[1] =
r->c[2] =
r->c[3] =
r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
break;
case GGL_DST_ALPHA:
r->c[1] =
r->c[2] =
r->c[3] =
r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
break;
case GGL_ONE_MINUS_DST_ALPHA:
r->c[1] =
r->c[2] =
r->c[3] =
r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
break;
case GGL_SRC_ALPHA_SATURATE:
// XXX: GGL_SRC_ALPHA_SATURATE
break;
}
}
static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
{
GGLfixed d;
if (tx_wrap == GGL_REPEAT) {
d = (uint32_t(coord)>>16) * size;
} else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
const GGLfixed clamp_min = FIXED_HALF;
const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
if (coord < clamp_min) coord = clamp_min;
if (coord > clamp_max) coord = clamp_max;
d = coord;
} else { // 1:1
const GGLfixed clamp_min = 0;
const GGLfixed clamp_max = (size << 16);
if (coord < clamp_min) coord = clamp_min;
if (coord > clamp_max) coord = clamp_max;
d = coord;
}
return d;
}
static inline
GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
{
const int32_t end = dvdx * (len-1) + v;
if (end < 0)
v -= end;
v &= ~(v>>31);
return v;
}
void scanline(context_t* c)
{
const uint32_t enables = c->state.enables;
const int xs = c->iterators.xl;
const int x1 = c->iterators.xr;
int xc = x1 - xs;
const int16_t* covPtr = c->state.buffers.coverage + xs;
// All iterated values are sampled at the pixel center
// reset iterators for that scanline...
GGLcolor r, g, b, a;
iterators_t& ci = c->iterators;
if (enables & GGL_ENABLE_SMOOTH) {
r = (xs * c->shade.drdx) + ci.ydrdy;
g = (xs * c->shade.dgdx) + ci.ydgdy;
b = (xs * c->shade.dbdx) + ci.ydbdy;
a = (xs * c->shade.dadx) + ci.ydady;
r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
} else {
r = ci.ydrdy;
g = ci.ydgdy;
b = ci.ydbdy;
a = ci.ydady;
}
// z iterators are 1.31
GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
struct {
GGLfixed s, t;
} tc[GGL_TEXTURE_UNIT_COUNT];
if (enables & GGL_ENABLE_TMUS) {
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
if (c->state.texture[i].enable) {
texture_iterators_t& ti = c->state.texture[i].iterators;
if (enables & GGL_ENABLE_W) {
tc[i].s = ti.ydsdy;
tc[i].t = ti.ydtdy;
} else {
tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
}
}
}
}
pixel_t fragment;
pixel_t texel;
pixel_t fb;
uint32_t x = xs;
uint32_t y = c->iterators.y;
while (xc--) {
{ // just a scope
// read color (convert to 8 bits by keeping only the integer part)
fragment.s[1] = fragment.s[2] =
fragment.s[3] = fragment.s[0] = 8;
fragment.c[1] = r >> (GGL_COLOR_BITS-8);
fragment.c[2] = g >> (GGL_COLOR_BITS-8);
fragment.c[3] = b >> (GGL_COLOR_BITS-8);
fragment.c[0] = a >> (GGL_COLOR_BITS-8);
// texturing
if (enables & GGL_ENABLE_TMUS) {
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
texture_t& tx = c->state.texture[i];
if (!tx.enable)
continue;
texture_iterators_t& ti = tx.iterators;
int32_t u, v;
// s-coordinate
if (tx.s_coord != GGL_ONE_TO_ONE) {
const int w = tx.surface.width;
u = wrapping(tc[i].s, w, tx.s_wrap);
tc[i].s += ti.dsdx;
} else {
u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
}
// t-coordinate
if (tx.t_coord != GGL_ONE_TO_ONE) {
const int h = tx.surface.height;
v = wrapping(tc[i].t, h, tx.t_wrap);
tc[i].t += ti.dtdx;
} else {
v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
}
// read texture
if (tx.mag_filter == GGL_NEAREST &&
tx.min_filter == GGL_NEAREST)
{
u >>= 16;
v >>= 16;
tx.surface.read(&tx.surface, c, u, v, &texel);
} else {
const int w = tx.surface.width;
const int h = tx.surface.height;
u -= FIXED_HALF;
v -= FIXED_HALF;
int u0 = u >> 16;
int v0 = v >> 16;
int u1 = u0 + 1;
int v1 = v0 + 1;
if (tx.s_wrap == GGL_REPEAT) {
if (u0<0) u0 += w;
if (u1<0) u1 += w;
if (u0>=w) u0 -= w;
if (u1>=w) u1 -= w;
} else {
if (u0<0) u0 = 0;
if (u1<0) u1 = 0;
if (u0>=w) u0 = w-1;
if (u1>=w) u1 = w-1;
}
if (tx.t_wrap == GGL_REPEAT) {
if (v0<0) v0 += h;
if (v1<0) v1 += h;
if (v0>=h) v0 -= h;
if (v1>=h) v1 -= h;
} else {
if (v0<0) v0 = 0;
if (v1<0) v1 = 0;
if (v0>=h) v0 = h-1;
if (v1>=h) v1 = h-1;
}
pixel_t texels[4];
uint32_t mm[4];
tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
u = (u >> 12) & 0xF;
v = (v >> 12) & 0xF;
u += u>>3;
v += v>>3;
mm[0] = (0x10 - u) * (0x10 - v);
mm[1] = (0x10 - u) * v;
mm[2] = u * (0x10 - v);
mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
for (int j=0 ; j<4 ; j++) {
texel.s[j] = texels[0].s[j];
if (!texel.s[j]) continue;
texel.s[j] += 8;
texel.c[j] = texels[0].c[j]*mm[0] +
texels[1].c[j]*mm[1] +
texels[2].c[j]*mm[2] +
texels[3].c[j]*mm[3] ;
}
}
// Texture environnement...
for (int j=0 ; j<4 ; j++) {
uint32_t& Cf = fragment.c[j];
uint32_t& Ct = texel.c[j];
uint8_t& sf = fragment.s[j];
uint8_t& st = texel.s[j];
uint32_t At = texel.c[0];
uint8_t sat = texel.s[0];
switch (tx.env) {
case GGL_REPLACE:
if (st) {
Cf = Ct;
sf = st;
}
break;
case GGL_MODULATE:
if (st) {
uint32_t factor = Ct + (Ct>>(st-1));
Cf = (Cf * factor) >> st;
}
break;
case GGL_DECAL:
if (sat) {
rescale(Cf, sf, Ct, st);
Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
}
break;
case GGL_BLEND:
if (st) {
uint32_t Cc = tx.env_color[i];
if (sf>8) Cc = (Cc * ((1<<sf)-1))>>8;
else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
uint32_t factor = Ct + (Ct>>(st-1));
Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
}
break;
case GGL_ADD:
if (st) {
rescale(Cf, sf, Ct, st);
Cf += Ct;
}
break;
}
}
}
}
// coverage application
if (enables & GGL_ENABLE_AA) {
int16_t cf = *covPtr++;
fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
}
// alpha-test
if (enables & GGL_ENABLE_ALPHA_TEST) {
GGLcolor ref = c->state.alpha_test.ref;
GGLcolor alpha = (uint64_t(fragment.c[0]) *
((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
switch (c->state.alpha_test.func) {
case GGL_NEVER: goto discard;
case GGL_LESS: if (alpha<ref) break; goto discard;
case GGL_EQUAL: if (alpha==ref) break; goto discard;
case GGL_LEQUAL: if (alpha<=ref) break; goto discard;
case GGL_GREATER: if (alpha>ref) break; goto discard;
case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard;
case GGL_GEQUAL: if (alpha>=ref) break; goto discard;
}
}
// depth test
if (c->state.buffers.depth.format) {
if (enables & GGL_ENABLE_DEPTH_TEST) {
surface_t* cb = &(c->state.buffers.depth);
uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
uint16_t zz = uint32_t(z)>>(16);
uint16_t depth = *p;
switch (c->state.depth_test.func) {
case GGL_NEVER: goto discard;
case GGL_LESS: if (zz<depth) break; goto discard;
case GGL_EQUAL: if (zz==depth) break; goto discard;
case GGL_LEQUAL: if (zz<=depth) break; goto discard;
case GGL_GREATER: if (zz>depth) break; goto discard;
case GGL_NOTEQUAL: if (zz!=depth) break; goto discard;
case GGL_GEQUAL: if (zz>=depth) break; goto discard;
}
// depth buffer is not enabled, if depth-test is not enabled
/*
fragment.s[1] = fragment.s[2] =
fragment.s[3] = fragment.s[0] = 8;
fragment.c[1] =
fragment.c[2] =
fragment.c[3] =
fragment.c[0] = 255 - (zz>>8);
*/
if (c->state.mask.depth) {
*p = zz;
}
}
}
// fog
if (enables & GGL_ENABLE_FOG) {
for (int i=1 ; i<=3 ; i++) {
GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
uint32_t& c = fragment.c[i];
uint8_t& s = fragment.s[i];
c = (c * 0x10000) / ((1<<s)-1);
c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
s = 16;
}
}
// blending
if (enables & GGL_ENABLE_BLENDING) {
fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
c->state.buffers.color.read(
&(c->state.buffers.color), c, x, y, &fb);
blending( c, &fragment, &fb );
}
// write
c->state.buffers.color.write(
&(c->state.buffers.color), c, x, y, &fragment);
}
discard:
// iterate...
x += 1;
if (enables & GGL_ENABLE_SMOOTH) {
r += c->shade.drdx;
g += c->shade.dgdx;
b += c->shade.dbdx;
a += c->shade.dadx;
}
z += c->shade.dzdx;
f += c->shade.dfdx;
}
}
#endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Scanline
#endif
/* Used to parse a 32-bit source texture linearly. Usage is:
*
* horz_iterator32 hi(context);
* while (...) {
* uint32_t src_pixel = hi.get_pixel32();
* ...
* }
*
* Use only for one-to-one texture mapping.
*/
struct horz_iterator32 {
horz_iterator32(context_t* c) {
const int x = c->iterators.xl;
const int y = c->iterators.y;
texture_t& tx = c->state.texture[0];
const int32_t u = (tx.shade.is0>>16) + x;
const int32_t v = (tx.shade.it0>>16) + y;
m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
}
uint32_t get_pixel32() {
return *m_src++;
}
protected:
uint32_t* m_src;
};
/* A variant for 16-bit source textures. */
struct horz_iterator16 {
horz_iterator16(context_t* c) {
const int x = c->iterators.xl;
const int y = c->iterators.y;
texture_t& tx = c->state.texture[0];
const int32_t u = (tx.shade.is0>>16) + x;
const int32_t v = (tx.shade.it0>>16) + y;
m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
}
uint16_t get_pixel16() {
return *m_src++;
}
protected:
uint16_t* m_src;
};
/* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
* After initialization, call get_src16() or get_src32() to get the current
* texture pixel value.
*/
struct clamp_iterator {
clamp_iterator(context_t* c) {
const int xs = c->iterators.xl;
texture_t& tx = c->state.texture[0];
texture_iterators_t& ti = tx.iterators;
m_s = (xs * ti.dsdx) + ti.ydsdy;
m_t = (xs * ti.dtdx) + ti.ydtdy;
m_ds = ti.dsdx;
m_dt = ti.dtdx;
m_width_m1 = tx.surface.width - 1;
m_height_m1 = tx.surface.height - 1;
m_data = tx.surface.data;
m_stride = tx.surface.stride;
}
uint16_t get_pixel16() {
int u, v;
get_uv(u, v);
uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
return src[0];
}
uint32_t get_pixel32() {
int u, v;
get_uv(u, v);
uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
return src[0];
}
private:
void get_uv(int& u, int& v) {
int uu = m_s >> 16;
int vv = m_t >> 16;
if (uu < 0)
uu = 0;
if (uu > m_width_m1)
uu = m_width_m1;
if (vv < 0)
vv = 0;
if (vv > m_height_m1)
vv = m_height_m1;
u = uu;
v = vv;
m_s += m_ds;
m_t += m_dt;
}
GGLfixed m_s, m_t;
GGLfixed m_ds, m_dt;
int m_width_m1, m_height_m1;
uint8_t* m_data;
int m_stride;
};
/*
* The 'horizontal clamp iterator' variant corresponds to the case where
* the 'v' coordinate doesn't change. This is useful to avoid one mult and
* extra adds / checks per pixels, if the blending/processing operation after
* this is very fast.
*/
static int is_context_horizontal(const context_t* c) {
return (c->state.texture[0].iterators.dtdx == 0);
}
struct horz_clamp_iterator {
uint16_t get_pixel16() {
int u = m_s >> 16;
m_s += m_ds;
if (u < 0)
u = 0;
if (u > m_width_m1)
u = m_width_m1;
const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
return src[u];
}
uint32_t get_pixel32() {
int u = m_s >> 16;
m_s += m_ds;
if (u < 0)
u = 0;
if (u > m_width_m1)
u = m_width_m1;
const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
return src[u];
}
protected:
void init(const context_t* c, int shift);
GGLfixed m_s;
GGLfixed m_ds;
int m_width_m1;
const uint8_t* m_data;
};
void horz_clamp_iterator::init(const context_t* c, int shift)
{
const int xs = c->iterators.xl;
const texture_t& tx = c->state.texture[0];
const texture_iterators_t& ti = tx.iterators;
m_s = (xs * ti.dsdx) + ti.ydsdy;
m_ds = ti.dsdx;
m_width_m1 = tx.surface.width-1;
m_data = tx.surface.data;
GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
int v = t >> 16;
if (v < 0)
v = 0;
else if (v >= (int)tx.surface.height)
v = (int)tx.surface.height-1;
m_data += (tx.surface.stride*v) << shift;
}
struct horz_clamp_iterator16 : horz_clamp_iterator {
horz_clamp_iterator16(const context_t* c) {
init(c,1);
};
};
struct horz_clamp_iterator32 : horz_clamp_iterator {
horz_clamp_iterator32(context_t* c) {
init(c,2);
};
};
/* This is used to perform dithering operations.
*/
struct ditherer {
ditherer(const context_t* c) {
const int x = c->iterators.xl;
const int y = c->iterators.y;
m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
m_index = x & GGL_DITHER_MASK;
}
void step(void) {
m_index++;
}
int get_value(void) {
int ret = m_line[m_index & GGL_DITHER_MASK];
m_index++;
return ret;
}
uint16_t abgr8888ToRgb565(uint32_t s) {
uint32_t r = s & 0xff;
uint32_t g = (s >> 8) & 0xff;
uint32_t b = (s >> 16) & 0xff;
return rgb888ToRgb565(r,g,b);
}
/* The following assumes that r/g/b are in the 0..255 range each */
uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
int threshold = get_value();
/* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
r += (threshold >> (GGL_DITHER_BITS-8 +5));
g += (threshold >> (GGL_DITHER_BITS-8 +6));
b += (threshold >> (GGL_DITHER_BITS-8 +5));
if (r > 0xff)
r = 0xff;
if (g > 0xff)
g = 0xff;
if (b > 0xff)
b = 0xff;
return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
}
protected:
const uint8_t* m_line;
int m_index;
};
/* This structure is used to blend (SRC_OVER) 32-bit source pixels
* onto 16-bit destination ones. Usage is simply:
*
* blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
*/
struct blender_32to16 {
blender_32to16(context_t* c) { }
void write(uint32_t s, uint16_t* dst) {
if (s == 0)
return;
s = GGL_RGBA_TO_HOST(s);
int sA = (s>>24);
if (sA == 0xff) {
*dst = convertAbgr8888ToRgb565(s);
} else {
int f = 0x100 - (sA + (sA>>7));
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR += (f*dR)>>8;
sG += (f*dG)>>8;
sB += (f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
}
void write(uint32_t s, uint16_t* dst, ditherer& di) {
if (s == 0) {
di.step();
return;
}
s = GGL_RGBA_TO_HOST(s);
int sA = (s>>24);
if (sA == 0xff) {
*dst = di.abgr8888ToRgb565(s);
} else {
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
int f = 0x100 - (sA + (sA>>7));
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = ((sR << 8) + f*dR + threshold)>>8;
sG = ((sG << 8) + f*dG + threshold)>>8;
sB = ((sB << 8) + f*dB + threshold)>>8;
if (sR > 0x1f) sR = 0x1f;
if (sG > 0x3f) sG = 0x3f;
if (sB > 0x1f) sB = 0x1f;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
}
};
/* This blender does the same for the 'blend_srca' operation.
* where dstFactor=srcA*(1-srcA) srcFactor=srcA
*/
struct blender_32to16_srcA {
blender_32to16_srcA(const context_t* c) { }
void write(uint32_t s, uint16_t* dst) {
if (!s) {
return;
}
uint16_t d = *dst;
s = GGL_RGBA_TO_HOST(s);
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
int sA = (s>>24);
int f1 = (sA + (sA>>7));
int f2 = 0x100-f1;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (f1*sR + f2*dR)>>8;
sG = (f1*sG + f2*dG)>>8;
sB = (f1*sB + f2*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* Common init code the modulating blenders */
struct blender_modulate {
void init(const context_t* c) {
const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
m_r = r + (r >> 7);
m_g = g + (g >> 7);
m_b = b + (b >> 7);
m_a = a + (a >> 7);
}
protected:
int m_r, m_g, m_b, m_a;
};
/* This blender does a normal blend after modulation.
*/
struct blender_32to16_modulate : blender_modulate {
blender_32to16_modulate(const context_t* c) {
init(c);
}
void write(uint32_t s, uint16_t* dst) {
// blend source and destination
if (!s) {
return;
}
s = GGL_RGBA_TO_HOST(s);
/* We need to modulate s */
uint32_t sA = (s >> 24);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
sA = (sA*m_a) >> 8;
/* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
/* Now do a normal blend */
int f = 0x100 - (sA + (sA>>7));
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR)>>8;
sG = (sG + f*dG)>>8;
sB = (sB + f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
void write(uint32_t s, uint16_t* dst, ditherer& di) {
// blend source and destination
if (!s) {
di.step();
return;
}
s = GGL_RGBA_TO_HOST(s);
/* We need to modulate s */
uint32_t sA = (s >> 24);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
sA = (sA*m_a) >> 8;
/* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
/* Scale threshold to 0.8 fixed float format */
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
int f = 0x100 - (sA + (sA>>7));
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR + threshold)>>8;
sG = (sG + f*dG + threshold)>>8;
sB = (sB + f*dB + threshold)>>8;
if (sR > 0x1f) sR = 0x1f;
if (sG > 0x3f) sG = 0x3f;
if (sB > 0x1f) sB = 0x1f;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
struct blender_x32to16_modulate : blender_modulate {
blender_x32to16_modulate(const context_t* c) {
init(c);
}
void write(uint32_t s, uint16_t* dst) {
s = GGL_RGBA_TO_HOST(s);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
/* Keep R/G/B in 5.8 or 6.8 format */
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
int f = 0x100 - m_a;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR)>>8;
sG = (sG + f*dG)>>8;
sB = (sB + f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
void write(uint32_t s, uint16_t* dst, ditherer& di) {
s = GGL_RGBA_TO_HOST(s);
uint32_t sB = (s >> 16) & 0xff;
uint32_t sG = (s >> 8) & 0xff;
uint32_t sR = s & 0xff;
sR = (sR*m_r) >> (8 - 5);
sG = (sG*m_g) >> (8 - 6);
sB = (sB*m_b) >> (8 - 5);
/* Now do a normal blend */
int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
int f = 0x100 - m_a;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR + threshold)>>8;
sG = (sG + f*dG + threshold)>>8;
sB = (sB + f*dB + threshold)>>8;
if (sR > 0x1f) sR = 0x1f;
if (sG > 0x3f) sG = 0x3f;
if (sB > 0x1f) sB = 0x1f;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* Same as above, but source is 16bit rgb565 */
struct blender_16to16_modulate : blender_modulate {
blender_16to16_modulate(const context_t* c) {
init(c);
}
void write(uint16_t s16, uint16_t* dst) {
uint32_t s = s16;
uint32_t sR = s >> 11;
uint32_t sG = (s >> 5) & 0x3f;
uint32_t sB = s & 0x1f;
sR = (sR*m_r);
sG = (sG*m_g);
sB = (sB*m_b);
int f = 0x100 - m_a;
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
sR = (sR + f*dR)>>8;
sG = (sG + f*dG)>>8;
sB = (sB + f*dB)>>8;
*dst = uint16_t((sR<<11)|(sG<<5)|sB);
}
};
/* This is used to iterate over a 16-bit destination color buffer.
* Usage is:
*
* dst_iterator16 di(context);
* while (di.count--) {
* <do stuff with dest pixel at di.dst>
* di.dst++;
* }
*/
struct dst_iterator16 {
dst_iterator16(const context_t* c) {
const int x = c->iterators.xl;
const int width = c->iterators.xr - x;
const int32_t y = c->iterators.y;
const surface_t* cb = &(c->state.buffers.color);
count = width;
dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
}
int count;
uint16_t* dst;
};
static void scanline_t32cb16_clamp(context_t* c)
{
dst_iterator16 di(c);
if (is_context_horizontal(c)) {
/* Special case for simple horizontal scaling */
horz_clamp_iterator32 ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = convertAbgr8888ToRgb565(s);
}
} else {
/* General case */
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = convertAbgr8888ToRgb565(s);
}
}
}
static void scanline_t32cb16_dither(context_t* c)
{
horz_iterator32 si(c);
dst_iterator16 di(c);
ditherer dither(c);
while (di.count--) {
uint32_t s = si.get_pixel32();
*di.dst++ = dither.abgr8888ToRgb565(s);
}
}
static void scanline_t32cb16_clamp_dither(context_t* c)
{
dst_iterator16 di(c);
ditherer dither(c);
if (is_context_horizontal(c)) {
/* Special case for simple horizontal scaling */
horz_clamp_iterator32 ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = dither.abgr8888ToRgb565(s);
}
} else {
/* General case */
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
*di.dst++ = dither.abgr8888ToRgb565(s);
}
}
}
static void scanline_t32cb16blend_dither(context_t* c)
{
dst_iterator16 di(c);
ditherer dither(c);
blender_32to16 bl(c);
horz_iterator32 hi(c);
while (di.count--) {
uint32_t s = hi.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
static void scanline_t32cb16blend_clamp(context_t* c)
{
dst_iterator16 di(c);
blender_32to16 bl(c);
if (is_context_horizontal(c)) {
horz_clamp_iterator32 ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
} else {
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
}
}
static void scanline_t32cb16blend_clamp_dither(context_t* c)
{
dst_iterator16 di(c);
ditherer dither(c);
blender_32to16 bl(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
void scanline_t32cb16blend_clamp_mod(context_t* c)
{
dst_iterator16 di(c);
blender_32to16_modulate bl(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
}
void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
{
dst_iterator16 di(c);
blender_32to16_modulate bl(c);
ditherer dither(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
/* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
void scanline_x32cb16blend_clamp_mod(context_t* c)
{
dst_iterator16 di(c);
blender_x32to16_modulate bl(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
}
void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
{
dst_iterator16 di(c);
blender_x32to16_modulate bl(c);
ditherer dither(c);
clamp_iterator ci(c);
while (di.count--) {
uint32_t s = ci.get_pixel32();
bl.write(s, di.dst, dither);
di.dst++;
}
}
void scanline_t16cb16_clamp(context_t* c)
{
dst_iterator16 di(c);
/* Special case for simple horizontal scaling */
if (is_context_horizontal(c)) {
horz_clamp_iterator16 ci(c);
while (di.count--) {
*di.dst++ = ci.get_pixel16();
}
} else {
clamp_iterator ci(c);
while (di.count--) {
*di.dst++ = ci.get_pixel16();
}
}
}
template <typename T, typename U>
static inline __attribute__((const))
T interpolate(int y, T v0, U dvdx, U dvdy) {
// interpolates in pixel's centers
// v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
void init_y(context_t* c, int32_t ys)
{
const uint32_t enables = c->state.enables;
// compute iterators...
iterators_t& ci = c->iterators;
// sample in the center
ci.y = ys;
if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
}
if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
c->step_y = step_y__smooth;
} else {
ci.ydrdy = c->shade.r0;
ci.ydgdy = c->shade.g0;
ci.ydbdy = c->shade.b0;
ci.ydady = c->shade.a0;
// XXX: do only if needed, or make sure this is fast
c->packed = ggl_pack_color(c, c->state.buffers.color.format,
ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
}
// initialize the variables we need in the shader
generated_vars_t& gen = c->generated_vars;
gen.argb[GGLFormat::ALPHA].c = ci.ydady;
gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
gen.argb[GGLFormat::RED ].c = ci.ydrdy;
gen.argb[GGLFormat::RED ].dx = c->shade.drdx;
gen.argb[GGLFormat::GREEN].c = ci.ydgdy;
gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
gen.argb[GGLFormat::BLUE ].c = ci.ydbdy;
gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
gen.dzdx = c->shade.dzdx;
gen.f = ci.ydfdy;
gen.dfdx = c->shade.dfdx;
if (enables & GGL_ENABLE_TMUS) {
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
texture_t& t = c->state.texture[i];
if (!t.enable) continue;
texture_iterators_t& ti = t.iterators;
if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
// we need to set all of these to 0 because in some cases
// step_y__generic() or step_y__tmu() will be used and
// therefore will update dtdy, however, in 1:1 mode
// this is always done by the scanline rasterizer.
ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
ti.ydsdy = t.shade.is0;
ti.ydtdy = t.shade.it0;
} else {
const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
ti.sscale = t.shade.sscale + adjustSWrap;
ti.tscale = t.shade.tscale + adjustTWrap;
if (!(enables & GGL_ENABLE_W)) {
// S coordinate
const int32_t sscale = ti.sscale;
const int32_t sy = interpolate(ys,
t.shade.is0, t.shade.idsdx, t.shade.idsdy);
if (sscale>=0) {
ti.ydsdy= sy << sscale;
ti.dsdx = t.shade.idsdx << sscale;
ti.dsdy = t.shade.idsdy << sscale;
} else {
ti.ydsdy= sy >> -sscale;
ti.dsdx = t.shade.idsdx >> -sscale;
ti.dsdy = t.shade.idsdy >> -sscale;
}
// T coordinate
const int32_t tscale = ti.tscale;
const int32_t ty = interpolate(ys,
t.shade.it0, t.shade.idtdx, t.shade.idtdy);
if (tscale>=0) {
ti.ydtdy= ty << tscale;
ti.dtdx = t.shade.idtdx << tscale;
ti.dtdy = t.shade.idtdy << tscale;
} else {
ti.ydtdy= ty >> -tscale;
ti.dtdx = t.shade.idtdx >> -tscale;
ti.dtdy = t.shade.idtdy >> -tscale;
}
}
}
// mirror for generated code...
generated_tex_vars_t& gen = c->generated_vars.texture[i];
gen.width = t.surface.width;
gen.height = t.surface.height;
gen.stride = t.surface.stride;
gen.data = int32_t(t.surface.data);
gen.dsdx = ti.dsdx;
gen.dtdx = ti.dtdx;
}
}
// choose the y-stepper
c->step_y = step_y__nop;
if (enables & GGL_ENABLE_FOG) {
c->step_y = step_y__generic;
} else if (enables & GGL_ENABLE_TMUS) {
if (enables & GGL_ENABLE_SMOOTH) {
c->step_y = step_y__generic;
} else if (enables & GGL_ENABLE_W) {
c->step_y = step_y__w;
} else {
c->step_y = step_y__tmu;
}
} else {
if (enables & GGL_ENABLE_SMOOTH) {
c->step_y = step_y__smooth;
}
}
// choose the rectangle blitter
c->rect = rect_generic;
if ((c->step_y == step_y__nop) &&
(c->scanline == scanline_memcpy))
{
c->rect = rect_memcpy;
}
}
void init_y_packed(context_t* c, int32_t y0)
{
uint8_t f = c->state.buffers.color.format;
c->packed = ggl_pack_color(c, f,
c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
c->iterators.y = y0;
c->step_y = step_y__nop;
// choose the rectangle blitter
c->rect = rect_generic;
if (c->scanline == scanline_memcpy) {
c->rect = rect_memcpy;
}
}
void init_y_noop(context_t* c, int32_t y0)
{
c->iterators.y = y0;
c->step_y = step_y__nop;
// choose the rectangle blitter
c->rect = rect_generic;
if (c->scanline == scanline_memcpy) {
c->rect = rect_memcpy;
}
}
void init_y_error(context_t* c, int32_t y0)
{
// woooops, shoud never happen,
// fail gracefully (don't display anything)
init_y_noop(c, y0);
LOGE("color-buffer has an invalid format!");
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
void step_y__generic(context_t* c)
{
const uint32_t enables = c->state.enables;
// iterate...
iterators_t& ci = c->iterators;
ci.y += 1;
if (enables & GGL_ENABLE_SMOOTH) {
ci.ydrdy += c->shade.drdy;
ci.ydgdy += c->shade.dgdy;
ci.ydbdy += c->shade.dbdy;
ci.ydady += c->shade.dady;
}
const uint32_t mask =
GGL_ENABLE_DEPTH_TEST |
GGL_ENABLE_W |
GGL_ENABLE_FOG;
if (enables & mask) {
ci.ydzdy += c->shade.dzdy;
ci.ydwdy += c->shade.dwdy;
ci.ydfdy += c->shade.dfdy;
}
if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
if (c->state.texture[i].enable) {
texture_iterators_t& ti = c->state.texture[i].iterators;
ti.ydsdy += ti.dsdy;
ti.ydtdy += ti.dtdy;
}
}
}
}
void step_y__nop(context_t* c)
{
c->iterators.y += 1;
c->iterators.ydzdy += c->shade.dzdy;
}
void step_y__smooth(context_t* c)
{
iterators_t& ci = c->iterators;
ci.y += 1;
ci.ydrdy += c->shade.drdy;
ci.ydgdy += c->shade.dgdy;
ci.ydbdy += c->shade.dbdy;
ci.ydady += c->shade.dady;
ci.ydzdy += c->shade.dzdy;
}
void step_y__w(context_t* c)
{
iterators_t& ci = c->iterators;
ci.y += 1;
ci.ydzdy += c->shade.dzdy;
ci.ydwdy += c->shade.dwdy;
}
void step_y__tmu(context_t* c)
{
iterators_t& ci = c->iterators;
ci.y += 1;
ci.ydzdy += c->shade.dzdy;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
if (c->state.texture[i].enable) {
texture_iterators_t& ti = c->state.texture[i].iterators;
ti.ydsdy += ti.dsdy;
ti.ydtdy += ti.dtdy;
}
}
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
void scanline_perspective(context_t* c)
{
struct {
union {
struct {
int32_t s, sq;
int32_t t, tq;
};
struct {
int32_t v, q;
} st[2];
};
} tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
// XXX: we should have a special case when dwdx = 0
// 32 pixels spans works okay. 16 is a lot better,
// but hey, it's a software renderer...
const uint32_t SPAN_BITS = 5;
const uint32_t ys = c->iterators.y;
const uint32_t xs = c->iterators.xl;
const uint32_t x1 = c->iterators.xr;
const uint32_t xc = x1 - xs;
uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
uint32_t numSpans = xc >> SPAN_BITS;
const iterators_t& ci = c->iterators;
int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
int32_t q0 = gglRecipQ(w0, 30);
const int iwscale = 32 - gglClz(q0);
const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
int32_t xl = c->iterators.xl;
// We process s & t with a loop to reduce the code size
// (and i-cache pressure).
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
const texture_t& tmu = c->state.texture[i];
if (!tmu.enable) continue;
int32_t s = tmu.shade.is0 +
(tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
int32_t t = tmu.shade.it0 +
(tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
tc[i].s = s;
tc[i].t = t;
tc[i].sq = gglMulx(s, q0, iwscale);
tc[i].tq = gglMulx(t, q0, iwscale);
}
int32_t span = 0;
do {
int32_t w1;
if (ggl_likely(numSpans)) {
w1 = w0 + dwdx;
} else {
if (remainder) {
// finish off the scanline...
span = remainder;
w1 = (c->shade.dwdx * span) + w0;
} else {
break;
}
}
int32_t q1 = gglRecipQ(w1, 30);
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
texture_t& tmu = c->state.texture[i];
if (!tmu.enable) continue;
texture_iterators_t& ti = tmu.iterators;
for (int j=0 ; j<2 ; j++) {
int32_t v = tc[i].st[j].v;
if (span) v += (tmu.shade.st[j].dx)*span;
else v += (tmu.shade.st[j].dx)<<SPAN_BITS;
const int32_t v0 = tc[i].st[j].q;
const int32_t v1 = gglMulx(v, q1, iwscale);
int32_t dvdx = v1 - v0;
if (span) dvdx /= span;
else dvdx >>= SPAN_BITS;
tc[i].st[j].v = v;
tc[i].st[j].q = v1;
const int scale = ti.st[j].scale + (iwscale - 30);
if (scale >= 0) {
ti.st[j].ydvdy = v0 << scale;
ti.st[j].dvdx = dvdx << scale;
} else {
ti.st[j].ydvdy = v0 >> -scale;
ti.st[j].dvdx = dvdx >> -scale;
}
}
generated_tex_vars_t& gen = c->generated_vars.texture[i];
gen.dsdx = ti.st[0].dvdx;
gen.dtdx = ti.st[1].dvdx;
}
c->iterators.xl = xl;
c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
w0 = w1;
q0 = q1;
c->span(c);
} while(numSpans--);
}
void scanline_perspective_single(context_t* c)
{
// 32 pixels spans works okay. 16 is a lot better,
// but hey, it's a software renderer...
const uint32_t SPAN_BITS = 5;
const uint32_t ys = c->iterators.y;
const uint32_t xs = c->iterators.xl;
const uint32_t x1 = c->iterators.xr;
const uint32_t xc = x1 - xs;
const iterators_t& ci = c->iterators;
int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
int32_t iw = gglRecipQ(w, 30);
const int iwscale = 32 - gglClz(iw);
const int i = 31 - gglClz(c->state.enabled_tmu);
generated_tex_vars_t& gen = c->generated_vars.texture[i];
texture_t& tmu = c->state.texture[i];
texture_iterators_t& ti = tmu.iterators;
const int sscale = ti.sscale + (iwscale - 30);
const int tscale = ti.tscale + (iwscale - 30);
int32_t s = tmu.shade.is0 +
(tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
int32_t t = tmu.shade.it0 +
(tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
int32_t s0 = gglMulx(s, iw, iwscale);
int32_t t0 = gglMulx(t, iw, iwscale);
int32_t xl = c->iterators.xl;
int32_t sq, tq, dsdx, dtdx;
int32_t premainder = xc & ((1<<SPAN_BITS)-1);
uint32_t numSpans = xc >> SPAN_BITS;
if (c->shade.dwdx == 0) {
// XXX: we could choose to do this if the error is small enough
numSpans = 0;
premainder = xc;
goto no_perspective;
}
if (premainder) {
w += c->shade.dwdx * premainder;
iw = gglRecipQ(w, 30);
no_perspective:
s += tmu.shade.idsdx * premainder;
t += tmu.shade.idtdx * premainder;
sq = gglMulx(s, iw, iwscale);
tq = gglMulx(t, iw, iwscale);
dsdx = (sq - s0) / premainder;
dtdx = (tq - t0) / premainder;
c->iterators.xl = xl;
c->iterators.xr = xl = xl + premainder;
goto finish;
}
while (numSpans--) {
w += c->shade.dwdx << SPAN_BITS;
s += tmu.shade.idsdx << SPAN_BITS;
t += tmu.shade.idtdx << SPAN_BITS;
iw = gglRecipQ(w, 30);
sq = gglMulx(s, iw, iwscale);
tq = gglMulx(t, iw, iwscale);
dsdx = (sq - s0) >> SPAN_BITS;
dtdx = (tq - t0) >> SPAN_BITS;
c->iterators.xl = xl;
c->iterators.xr = xl = xl + (1<<SPAN_BITS);
finish:
if (sscale >= 0) {
ti.ydsdy = s0 << sscale;
ti.dsdx = dsdx << sscale;
} else {
ti.ydsdy = s0 >>-sscale;
ti.dsdx = dsdx >>-sscale;
}
if (tscale >= 0) {
ti.ydtdy = t0 << tscale;
ti.dtdx = dtdx << tscale;
} else {
ti.ydtdy = t0 >>-tscale;
ti.dtdx = dtdx >>-tscale;
}
s0 = sq;
t0 = tq;
gen.dsdx = ti.dsdx;
gen.dtdx = ti.dtdx;
c->span(c);
}
}
// ----------------------------------------------------------------------------
void scanline_col32cb16blend(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
union {
uint16_t* dst;
uint32_t* dst32;
};
dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
#if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
#else // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
#endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
#else
uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
int sA = (s>>24);
int f = 0x100 - (sA + (sA>>7));
while (ct--) {
uint16_t d = *dst;
int dR = (d>>11)&0x1f;
int dG = (d>>5)&0x3f;
int dB = (d)&0x1f;
int sR = (s >> ( 3))&0x1F;
int sG = (s >> ( 8+2))&0x3F;
int sB = (s >> (16+3))&0x1F;
sR += (f*dR)>>8;
sG += (f*dG)>>8;
sB += (f*dB)>>8;
*dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
}
#endif
}
void scanline_t32cb16(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
union {
uint16_t* dst;
uint32_t* dst32;
};
dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
surface_t* tex = &(c->state.texture[0].surface);
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
int sR, sG, sB;
uint32_t s, d;
if (ct==1 || uint32_t(dst)&2) {
last_one:
s = GGL_RGBA_TO_HOST( *src++ );
*dst++ = convertAbgr8888ToRgb565(s);
ct--;
}
while (ct >= 2) {
#if BYTE_ORDER == BIG_ENDIAN
s = GGL_RGBA_TO_HOST( *src++ );
d = convertAbgr8888ToRgb565_hi16(s);
s = GGL_RGBA_TO_HOST( *src++ );
d |= convertAbgr8888ToRgb565(s);
#else
s = GGL_RGBA_TO_HOST( *src++ );
d = convertAbgr8888ToRgb565(s);
s = GGL_RGBA_TO_HOST( *src++ );
d |= convertAbgr8888ToRgb565(s) << 16;
#endif
*dst32++ = d;
ct -= 2;
}
if (ct > 0) {
goto last_one;
}
}
void scanline_t32cb16blend(context_t* c)
{
#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
surface_t* tex = &(c->state.texture[0].surface);
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
scanline_t32cb16blend_arm(dst, src, ct);
#else
dst_iterator16 di(c);
horz_iterator32 hi(c);
blender_32to16 bl(c);
while (di.count--) {
uint32_t s = hi.get_pixel32();
bl.write(s, di.dst);
di.dst++;
}
#endif
}
void scanline_t32cb16blend_srca(context_t* c)
{
dst_iterator16 di(c);
horz_iterator32 hi(c);
blender_32to16_srcA blender(c);
while (di.count--) {
uint32_t s = hi.get_pixel32();
blender.write(s,di.dst);
di.dst++;
}
}
void scanline_t16cb16blend_clamp_mod(context_t* c)
{
const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
if (a == 0) {
return;
}
if (a == 255) {
scanline_t16cb16_clamp(c);
return;
}
dst_iterator16 di(c);
blender_16to16_modulate blender(c);
clamp_iterator ci(c);
while (di.count--) {
uint16_t s = ci.get_pixel16();
blender.write(s, di.dst);
di.dst++;
}
}
void scanline_memcpy(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
const GGLFormat* fp = &(c->formats[cb->format]);
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
(x + (cb->stride * y)) * fp->size;
surface_t* tex = &(c->state.texture[0].surface);
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
(u + (tex->stride * v)) * fp->size;
const size_t size = ct * fp->size;
memcpy(dst, src, size);
}
void scanline_memset8(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
uint32_t packed = c->packed;
memset(dst, packed, ct);
}
void scanline_memset16(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
uint32_t packed = c->packed;
android_memset16(dst, packed, ct*2);
}
void scanline_memset32(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
android_memset32(dst, packed, ct*4);
}
void scanline_clear(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
const GGLFormat* fp = &(c->formats[cb->format]);
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
(x + (cb->stride * y)) * fp->size;
const size_t size = ct * fp->size;
memset(dst, 0, size);
}
void scanline_set(context_t* c)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
const GGLFormat* fp = &(c->formats[cb->format]);
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
(x + (cb->stride * y)) * fp->size;
const size_t size = ct * fp->size;
memset(dst, 0xFF, size);
}
void scanline_noop(context_t* c)
{
}
void rect_generic(context_t* c, size_t yc)
{
do {
c->scanline(c);
c->step_y(c);
} while (--yc);
}
void rect_memcpy(context_t* c, size_t yc)
{
int32_t x = c->iterators.xl;
size_t ct = c->iterators.xr - x;
int32_t y = c->iterators.y;
surface_t* cb = &(c->state.buffers.color);
const GGLFormat* fp = &(c->formats[cb->format]);
uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
(x + (cb->stride * y)) * fp->size;
surface_t* tex = &(c->state.texture[0].surface);
const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
(u + (tex->stride * v)) * fp->size;
if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
memcpy(dst, src, ct * fp->size * yc);
} else {
const size_t size = ct * fp->size;
const size_t dbpr = cb->stride * fp->size;
const size_t sbpr = tex->stride * fp->size;
do {
memcpy(dst, src, size);
dst += dbpr;
src += sbpr;
} while (--yc);
}
}
// ----------------------------------------------------------------------------
}; // namespace android