4814 lines
149 KiB
C++
4814 lines
149 KiB
C++
/*
|
|
* Android "Almost" C Compiler.
|
|
* This is a compiler for a small subset of the C language, intended for use
|
|
* in scripting environments where speed and memory footprint are important.
|
|
*
|
|
* This code is based upon the "unobfuscated" version of the
|
|
* Obfuscated Tiny C compiler, see the file LICENSE for details.
|
|
*
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <dlfcn.h>
|
|
#include <errno.h>
|
|
#include <stdarg.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <cutils/hashmap.h>
|
|
|
|
#if defined(__i386__)
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#if defined(__arm__)
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(__arm__)
|
|
#define DEFAULT_ARM_CODEGEN
|
|
#define PROVIDE_ARM_CODEGEN
|
|
#elif defined(__i386__)
|
|
#define DEFAULT_X86_CODEGEN
|
|
#define PROVIDE_X86_CODEGEN
|
|
#elif defined(__x86_64__)
|
|
#define DEFAULT_X64_CODEGEN
|
|
#define PROVIDE_X64_CODEGEN
|
|
#endif
|
|
|
|
#ifdef PROVIDE_ARM_CODEGEN
|
|
#include "disassem.h"
|
|
#endif
|
|
|
|
#include <acc/acc.h>
|
|
|
|
#define LOG_API(...) do {} while(0)
|
|
// #define LOG_API(...) fprintf (stderr, __VA_ARGS__)
|
|
|
|
#define LOG_STACK(...) do {} while(0)
|
|
// #define LOG_STACK(...) fprintf (stderr, __VA_ARGS__)
|
|
|
|
// #define ENABLE_ARM_DISASSEMBLY
|
|
// #define PROVIDE_TRACE_CODEGEN
|
|
|
|
namespace acc {
|
|
|
|
// Subset of STL vector.
|
|
template<class E> class Vector {
|
|
public:
|
|
Vector() {
|
|
mpBase = 0;
|
|
mUsed = 0;
|
|
mSize = 0;
|
|
}
|
|
|
|
~Vector() {
|
|
if (mpBase) {
|
|
for(size_t i = 0; i < mUsed; i++) {
|
|
mpBase[mUsed].~E();
|
|
}
|
|
free(mpBase);
|
|
}
|
|
}
|
|
|
|
inline E& operator[](size_t i) {
|
|
return mpBase[i];
|
|
}
|
|
|
|
inline E& front() {
|
|
return mpBase[0];
|
|
}
|
|
|
|
inline E& back() {
|
|
return mpBase[mUsed - 1];
|
|
}
|
|
|
|
void pop_back() {
|
|
mUsed -= 1;
|
|
mpBase[mUsed].~E();
|
|
}
|
|
|
|
void push_back(const E& item) {
|
|
* ensure(1) = item;
|
|
}
|
|
|
|
size_t size() {
|
|
return mUsed;
|
|
}
|
|
|
|
private:
|
|
E* ensure(int n) {
|
|
size_t newUsed = mUsed + n;
|
|
if (newUsed > mSize) {
|
|
size_t newSize = mSize * 2 + 10;
|
|
if (newSize < newUsed) {
|
|
newSize = newUsed;
|
|
}
|
|
mpBase = (E*) realloc(mpBase, sizeof(E) * newSize);
|
|
mSize = newSize;
|
|
}
|
|
E* result = mpBase + mUsed;
|
|
mUsed = newUsed;
|
|
return result;
|
|
}
|
|
|
|
E* mpBase;
|
|
size_t mUsed;
|
|
size_t mSize;
|
|
};
|
|
|
|
class ErrorSink {
|
|
public:
|
|
void error(const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
verror(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
virtual ~ErrorSink() {}
|
|
virtual void verror(const char* fmt, va_list ap) = 0;
|
|
};
|
|
|
|
class Compiler : public ErrorSink {
|
|
typedef int tokenid_t;
|
|
enum TypeTag {
|
|
TY_INT, TY_CHAR, TY_VOID, TY_FLOAT, TY_DOUBLE,
|
|
TY_POINTER, TY_FUNC, TY_PARAM
|
|
};
|
|
|
|
struct Type {
|
|
TypeTag tag;
|
|
tokenid_t id; // For function arguments
|
|
Type* pHead;
|
|
Type* pTail;
|
|
};
|
|
|
|
class CodeBuf {
|
|
char* ind; // Output code pointer
|
|
char* pProgramBase;
|
|
ErrorSink* mErrorSink;
|
|
int mSize;
|
|
bool mOverflowed;
|
|
|
|
void release() {
|
|
if (pProgramBase != 0) {
|
|
free(pProgramBase);
|
|
pProgramBase = 0;
|
|
}
|
|
}
|
|
|
|
bool check(int n) {
|
|
int newSize = ind - pProgramBase + n;
|
|
bool overflow = newSize > mSize;
|
|
if (overflow && !mOverflowed) {
|
|
mOverflowed = true;
|
|
if (mErrorSink) {
|
|
mErrorSink->error("Code too large: %d bytes", newSize);
|
|
}
|
|
}
|
|
return overflow;
|
|
}
|
|
|
|
public:
|
|
CodeBuf() {
|
|
pProgramBase = 0;
|
|
ind = 0;
|
|
mErrorSink = 0;
|
|
mSize = 0;
|
|
mOverflowed = false;
|
|
}
|
|
|
|
~CodeBuf() {
|
|
release();
|
|
}
|
|
|
|
void init(int size) {
|
|
release();
|
|
mSize = size;
|
|
pProgramBase = (char*) calloc(1, size);
|
|
ind = pProgramBase;
|
|
}
|
|
|
|
void setErrorSink(ErrorSink* pErrorSink) {
|
|
mErrorSink = pErrorSink;
|
|
}
|
|
|
|
int o4(int n) {
|
|
if(check(4)) {
|
|
return 0;
|
|
}
|
|
intptr_t result = (intptr_t) ind;
|
|
* (int*) ind = n;
|
|
ind += 4;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Output a byte. Handles all values, 0..ff.
|
|
*/
|
|
void ob(int n) {
|
|
if(check(1)) {
|
|
return;
|
|
}
|
|
*ind++ = n;
|
|
}
|
|
|
|
inline void* getBase() {
|
|
return (void*) pProgramBase;
|
|
}
|
|
|
|
intptr_t getSize() {
|
|
return ind - pProgramBase;
|
|
}
|
|
|
|
intptr_t getPC() {
|
|
return (intptr_t) ind;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* A code generator creates an in-memory program, generating the code on
|
|
* the fly. There is one code generator implementation for each supported
|
|
* architecture.
|
|
*
|
|
* The code generator implements the following abstract machine:
|
|
* R0 - the accumulator.
|
|
* FP - a frame pointer for accessing function arguments and local
|
|
* variables.
|
|
* SP - a stack pointer for storing intermediate results while evaluating
|
|
* expressions. The stack pointer grows downwards.
|
|
*
|
|
* The function calling convention is that all arguments are placed on the
|
|
* stack such that the first argument has the lowest address.
|
|
* After the call, the result is in R0. The caller is responsible for
|
|
* removing the arguments from the stack.
|
|
* The R0 register is not saved across function calls. The
|
|
* FP and SP registers are saved.
|
|
*/
|
|
|
|
class CodeGenerator {
|
|
public:
|
|
CodeGenerator() {
|
|
mErrorSink = 0;
|
|
pCodeBuf = 0;
|
|
pushType();
|
|
}
|
|
virtual ~CodeGenerator() {}
|
|
|
|
virtual void init(CodeBuf* pCodeBuf) {
|
|
this->pCodeBuf = pCodeBuf;
|
|
pCodeBuf->setErrorSink(mErrorSink);
|
|
}
|
|
|
|
virtual void setErrorSink(ErrorSink* pErrorSink) {
|
|
mErrorSink = pErrorSink;
|
|
if (pCodeBuf) {
|
|
pCodeBuf->setErrorSink(mErrorSink);
|
|
}
|
|
}
|
|
|
|
/* Emit a function prolog.
|
|
* pDecl is the function declaration, which gives the arguments.
|
|
* Save the old value of the FP.
|
|
* Set the new value of the FP.
|
|
* Convert from the native platform calling convention to
|
|
* our stack-based calling convention. This may require
|
|
* pushing arguments from registers to the stack.
|
|
* Allocate "N" bytes of stack space. N isn't known yet, so
|
|
* just emit the instructions for adjusting the stack, and return
|
|
* the address to patch up. The patching will be done in
|
|
* functionExit().
|
|
* returns address to patch with local variable size.
|
|
*/
|
|
virtual int functionEntry(Type* pDecl) = 0;
|
|
|
|
/* Emit a function epilog.
|
|
* Restore the old SP and FP register values.
|
|
* Return to the calling function.
|
|
* argCount - the number of arguments to the function.
|
|
* localVariableAddress - returned from functionEntry()
|
|
* localVariableSize - the size in bytes of the local variables.
|
|
*/
|
|
virtual void functionExit(Type* pDecl, int localVariableAddress,
|
|
int localVariableSize) = 0;
|
|
|
|
/* load immediate value to R0 */
|
|
virtual void li(int i, Type* pType) = 0;
|
|
|
|
/* Load floating point value from global address. */
|
|
virtual void loadFloat(int address, Type* pType) = 0;
|
|
|
|
/* Jump to a target, and return the address of the word that
|
|
* holds the target data, in case it needs to be fixed up later.
|
|
*/
|
|
virtual int gjmp(int t) = 0;
|
|
|
|
/* Test R0 and jump to a target if the test succeeds.
|
|
* l = 0: je, l == 1: jne
|
|
* Return the address of the word that holds the targed data, in
|
|
* case it needs to be fixed up later.
|
|
*/
|
|
virtual int gtst(bool l, int t) = 0;
|
|
|
|
/* Compare TOS against R0, and store the boolean result in R0.
|
|
* Pops TOS.
|
|
* op specifies the comparison.
|
|
*/
|
|
virtual void gcmp(int op, Type* pResultType) = 0;
|
|
|
|
/* Perform the arithmetic op specified by op. TOS is the
|
|
* left argument, R0 is the right argument.
|
|
* Pops TOS.
|
|
*/
|
|
virtual void genOp(int op) = 0;
|
|
|
|
/* Compare 0 against R0, and store the boolean result in R0.
|
|
* op specifies the comparison.
|
|
*/
|
|
virtual void gUnaryCmp(int op, Type* pResultType) = 0;
|
|
|
|
/* Perform the arithmetic op specified by op. 0 is the
|
|
* left argument, R0 is the right argument.
|
|
*/
|
|
virtual void genUnaryOp(int op) = 0;
|
|
|
|
/* Push R0 onto the stack.
|
|
*/
|
|
virtual void pushR0() = 0;
|
|
|
|
/* Store R0 to the address stored in TOS.
|
|
* The TOS is popped.
|
|
* pPointerType is the type of the pointer (of the input R0).
|
|
*/
|
|
virtual void storeR0ToTOS(Type* pPointerType) = 0;
|
|
|
|
/* Load R0 from the address stored in R0.
|
|
* pPointerType is the type of the pointer (of the input R0).
|
|
*/
|
|
virtual void loadR0FromR0(Type* pPointerType) = 0;
|
|
|
|
/* Load the absolute address of a variable to R0.
|
|
* If ea <= LOCAL, then this is a local variable, or an
|
|
* argument, addressed relative to FP.
|
|
* else it is an absolute global address.
|
|
*/
|
|
virtual void leaR0(int ea, Type* pPointerType) = 0;
|
|
|
|
/* Store R0 to a variable.
|
|
* If ea <= LOCAL, then this is a local variable, or an
|
|
* argument, addressed relative to FP.
|
|
* else it is an absolute global address.
|
|
*/
|
|
virtual void storeR0(int ea, Type* pType) = 0;
|
|
|
|
/* load R0 from a variable.
|
|
* If ea <= LOCAL, then this is a local variable, or an
|
|
* argument, addressed relative to FP.
|
|
* else it is an absolute global address.
|
|
* If isIncDec is true, then the stored variable's value
|
|
* should be post-incremented or post-decremented, based
|
|
* on the value of op.
|
|
*/
|
|
virtual void loadR0(int ea, bool isIncDec, int op, Type* pType) = 0;
|
|
|
|
/**
|
|
* Convert R0 to the given type.
|
|
*/
|
|
virtual void convertR0(Type* pType) = 0;
|
|
|
|
/* Emit code to adjust the stack for a function call. Return the
|
|
* label for the address of the instruction that adjusts the
|
|
* stack size. This will be passed as argument "a" to
|
|
* endFunctionCallArguments.
|
|
*/
|
|
virtual int beginFunctionCallArguments() = 0;
|
|
|
|
/* Emit code to store R0 to the stack at byte offset l.
|
|
* Returns stack size of object (typically 4 or 8 bytes)
|
|
*/
|
|
virtual size_t storeR0ToArg(int l) = 0;
|
|
|
|
/* Patch the function call preamble.
|
|
* a is the address returned from beginFunctionCallArguments
|
|
* l is the number of bytes the arguments took on the stack.
|
|
* Typically you would also emit code to convert the argument
|
|
* list into whatever the native function calling convention is.
|
|
* On ARM for example you would pop the first 5 arguments into
|
|
* R0..R4
|
|
*/
|
|
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) = 0;
|
|
|
|
/* Emit a call to an unknown function. The argument "symbol" needs to
|
|
* be stored in the location where the address should go. It forms
|
|
* a chain. The address will be patched later.
|
|
* Return the address of the word that has to be patched.
|
|
*/
|
|
virtual int callForward(int symbol, Type* pFunc) = 0;
|
|
|
|
/* Call a function using PC-relative addressing. t is the PC-relative
|
|
* address of the function. It has already been adjusted for the
|
|
* architectural jump offset, so just store it as-is.
|
|
*/
|
|
virtual void callRelative(int t, Type* pFunc) = 0;
|
|
|
|
/* Call a function pointer. L is the number of bytes the arguments
|
|
* take on the stack. The address of the function is stored at
|
|
* location SP + l.
|
|
*/
|
|
virtual void callIndirect(int l, Type* pFunc) = 0;
|
|
|
|
/* Adjust SP after returning from a function call. l is the
|
|
* number of bytes of arguments stored on the stack. isIndirect
|
|
* is true if this was an indirect call. (In which case the
|
|
* address of the function is stored at location SP + l.)
|
|
*/
|
|
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) = 0;
|
|
|
|
/* Print a disassembly of the assembled code to out. Return
|
|
* non-zero if there is an error.
|
|
*/
|
|
virtual int disassemble(FILE* out) = 0;
|
|
|
|
/* Generate a symbol at the current PC. t is the head of a
|
|
* linked list of addresses to patch.
|
|
*/
|
|
virtual void gsym(int t) = 0;
|
|
|
|
/*
|
|
* Do any cleanup work required at the end of a compile.
|
|
* For example, an instruction cache might need to be
|
|
* invalidated.
|
|
* Return non-zero if there is an error.
|
|
*/
|
|
virtual int finishCompile() = 0;
|
|
|
|
/**
|
|
* Adjust relative branches by this amount.
|
|
*/
|
|
virtual int jumpOffset() = 0;
|
|
|
|
/**
|
|
* Memory alignment (in bytes) for this type of data
|
|
*/
|
|
virtual size_t alignmentOf(Type* type) = 0;
|
|
|
|
/**
|
|
* Array element alignment (in bytes) for this type of data.
|
|
*/
|
|
virtual size_t sizeOf(Type* type) = 0;
|
|
|
|
/**
|
|
* Stack argument size of this data type.
|
|
*/
|
|
virtual size_t stackSizeOf(Type* pType) = 0;
|
|
|
|
virtual Type* getR0Type() {
|
|
return mExpressionStack.back();
|
|
}
|
|
|
|
protected:
|
|
/*
|
|
* Output a byte. Handles all values, 0..ff.
|
|
*/
|
|
void ob(int n) {
|
|
pCodeBuf->ob(n);
|
|
}
|
|
|
|
intptr_t o4(int data) {
|
|
return pCodeBuf->o4(data);
|
|
}
|
|
|
|
intptr_t getBase() {
|
|
return (intptr_t) pCodeBuf->getBase();
|
|
}
|
|
|
|
intptr_t getPC() {
|
|
return pCodeBuf->getPC();
|
|
}
|
|
|
|
intptr_t getSize() {
|
|
return pCodeBuf->getSize();
|
|
}
|
|
|
|
void error(const char* fmt,...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
mErrorSink->verror(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
void assert(bool test) {
|
|
if (!test) {
|
|
* (char*) 0 = 0;
|
|
error("code generator assertion failed.");
|
|
}
|
|
}
|
|
|
|
void setR0Type(Type* pType) {
|
|
mExpressionStack.back() = pType;
|
|
}
|
|
|
|
Type* getTOSType() {
|
|
return mExpressionStack[mExpressionStack.size()-2];
|
|
}
|
|
|
|
void pushType() {
|
|
mExpressionStack.push_back(NULL);
|
|
}
|
|
|
|
void popType() {
|
|
mExpressionStack.pop_back();
|
|
}
|
|
|
|
bool bitsSame(Type* pA, Type* pB) {
|
|
return collapseType(pA->tag) == collapseType(pB->tag);
|
|
}
|
|
|
|
TypeTag collapseType(TypeTag tag) {
|
|
static const TypeTag collapsedTag[] = {
|
|
TY_INT, TY_INT, TY_VOID, TY_FLOAT, TY_DOUBLE, TY_INT,
|
|
TY_VOID, TY_VOID};
|
|
return collapsedTag[tag];
|
|
}
|
|
|
|
TypeTag collapseTypeR0() {
|
|
return collapseType(getR0Type()->tag);
|
|
}
|
|
|
|
bool isFloatType(Type* pType) {
|
|
return isFloatTag(pType->tag);
|
|
}
|
|
|
|
bool isFloatTag(TypeTag tag) {
|
|
return tag == TY_FLOAT || tag == TY_DOUBLE;
|
|
}
|
|
|
|
private:
|
|
Vector<Type*> mExpressionStack;
|
|
CodeBuf* pCodeBuf;
|
|
ErrorSink* mErrorSink;
|
|
};
|
|
|
|
#ifdef PROVIDE_ARM_CODEGEN
|
|
|
|
class ARMCodeGenerator : public CodeGenerator {
|
|
public:
|
|
ARMCodeGenerator() {}
|
|
|
|
virtual ~ARMCodeGenerator() {}
|
|
|
|
/* returns address to patch with local variable size
|
|
*/
|
|
virtual int functionEntry(Type* pDecl) {
|
|
LOG_API("functionEntry(%d);\n", pDecl);
|
|
mStackUse = 0;
|
|
// sp -> arg4 arg5 ...
|
|
// Push our register-based arguments back on the stack
|
|
int regArgCount = calcRegArgCount(pDecl);
|
|
if (regArgCount > 0) {
|
|
mStackUse += regArgCount * 4;
|
|
o4(0xE92D0000 | ((1 << regArgCount) - 1)); // stmfd sp!, {}
|
|
}
|
|
// sp -> arg0 arg1 ...
|
|
o4(0xE92D4800); // stmfd sp!, {fp, lr}
|
|
mStackUse += 2 * 4;
|
|
// sp, fp -> oldfp, retadr, arg0 arg1 ....
|
|
o4(0xE1A0B00D); // mov fp, sp
|
|
LOG_STACK("functionEntry: %d\n", mStackUse);
|
|
return o4(0xE24DD000); // sub sp, sp, # <local variables>
|
|
// We don't know how many local variables we are going to use,
|
|
// but we will round the allocation up to a multiple of
|
|
// STACK_ALIGNMENT, so it won't affect the stack alignment.
|
|
}
|
|
|
|
virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) {
|
|
LOG_API("functionExit(%d, %d, %d);\n", argCount, localVariableAddress, localVariableSize);
|
|
// Round local variable size up to a multiple of stack alignment
|
|
localVariableSize = ((localVariableSize + STACK_ALIGNMENT - 1) /
|
|
STACK_ALIGNMENT) * STACK_ALIGNMENT;
|
|
// Patch local variable allocation code:
|
|
if (localVariableSize < 0 || localVariableSize > 255) {
|
|
error("localVariables out of range: %d", localVariableSize);
|
|
}
|
|
*(char*) (localVariableAddress) = localVariableSize;
|
|
|
|
// sp -> locals .... fp -> oldfp, retadr, arg0, arg1, ...
|
|
o4(0xE1A0E00B); // mov lr, fp
|
|
o4(0xE59BB000); // ldr fp, [fp]
|
|
o4(0xE28ED004); // add sp, lr, #4
|
|
// sp -> retadr, arg0, ...
|
|
o4(0xE8BD4000); // ldmfd sp!, {lr}
|
|
// sp -> arg0 ....
|
|
|
|
// We store the PC into the lr so we can adjust the sp before
|
|
// returning. We need to pull off the registers we pushed
|
|
// earlier. We don't need to actually store them anywhere,
|
|
// just adjust the stack.
|
|
int regArgCount = calcRegArgCount(pDecl);
|
|
if (regArgCount) {
|
|
o4(0xE28DD000 | (regArgCount << 2)); // add sp, sp, #argCount << 2
|
|
}
|
|
o4(0xE12FFF1E); // bx lr
|
|
}
|
|
|
|
/* load immediate value */
|
|
virtual void li(int t, Type* pType) {
|
|
LOG_API("li(%d);\n", t);
|
|
if (t >= 0 && t < 255) {
|
|
o4(0xE3A00000 + t); // mov r0, #0
|
|
} else if (t >= -256 && t < 0) {
|
|
// mvn means move constant ^ ~0
|
|
o4(0xE3E00001 - t); // mvn r0, #0
|
|
} else {
|
|
o4(0xE51F0000); // ldr r0, .L3
|
|
o4(0xEA000000); // b .L99
|
|
o4(t); // .L3: .word 0
|
|
// .L99:
|
|
}
|
|
setR0Type(pType);
|
|
}
|
|
|
|
virtual void loadFloat(int address, Type* pType) {
|
|
setR0Type(pType);
|
|
// Global, absolute address
|
|
o4(0xE59F0000); // ldr r0, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4(address); // .L1: .word ea
|
|
// .L99:
|
|
|
|
switch (pType->tag) {
|
|
case TY_FLOAT:
|
|
o4(0xE5900000); // ldr r0, [r0]
|
|
break;
|
|
case TY_DOUBLE:
|
|
o4(0xE1C000D0); // ldrd r0, [r0]
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual int gjmp(int t) {
|
|
LOG_API("gjmp(%d);\n", t);
|
|
return o4(0xEA000000 | encodeAddress(t)); // b .L33
|
|
}
|
|
|
|
/* l = 0: je, l == 1: jne */
|
|
virtual int gtst(bool l, int t) {
|
|
LOG_API("gtst(%d, %d);\n", l, t);
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag tagR0 = pR0Type->tag;
|
|
switch(tagR0) {
|
|
case TY_FLOAT:
|
|
callRuntime((void*) runtime_is_non_zero_f);
|
|
break;
|
|
case TY_DOUBLE:
|
|
callRuntime((void*) runtime_is_non_zero_d);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
o4(0xE3500000); // cmp r0,#0
|
|
int branch = l ? 0x1A000000 : 0x0A000000; // bne : beq
|
|
return o4(branch | encodeAddress(t));
|
|
}
|
|
|
|
virtual void gcmp(int op, Type* pResultType) {
|
|
LOG_API("gcmp(%d);\n", op);
|
|
Type* pR0Type = getR0Type();
|
|
Type* pTOSType = getTOSType();
|
|
TypeTag tagR0 = collapseType(pR0Type->tag);
|
|
TypeTag tagTOS = collapseType(pTOSType->tag);
|
|
if (tagR0 == TY_INT && tagTOS == TY_INT) {
|
|
o4(0xE8BD0002); // ldmfd sp!,{r1}
|
|
mStackUse -= 4;
|
|
o4(0xE1510000); // cmp r1, r1
|
|
switch(op) {
|
|
case OP_EQUALS:
|
|
o4(0x03A00001); // moveq r0,#1
|
|
o4(0x13A00000); // movne r0,#0
|
|
break;
|
|
case OP_NOT_EQUALS:
|
|
o4(0x03A00000); // moveq r0,#0
|
|
o4(0x13A00001); // movne r0,#1
|
|
break;
|
|
case OP_LESS_EQUAL:
|
|
o4(0xD3A00001); // movle r0,#1
|
|
o4(0xC3A00000); // movgt r0,#0
|
|
break;
|
|
case OP_GREATER:
|
|
o4(0xD3A00000); // movle r0,#0
|
|
o4(0xC3A00001); // movgt r0,#1
|
|
break;
|
|
case OP_GREATER_EQUAL:
|
|
o4(0xA3A00001); // movge r0,#1
|
|
o4(0xB3A00000); // movlt r0,#0
|
|
break;
|
|
case OP_LESS:
|
|
o4(0xA3A00000); // movge r0,#0
|
|
o4(0xB3A00001); // movlt r0,#1
|
|
break;
|
|
default:
|
|
error("Unknown comparison op %d", op);
|
|
break;
|
|
}
|
|
popType();
|
|
} else if (tagR0 == TY_DOUBLE || tagTOS == TY_DOUBLE) {
|
|
setupDoubleArgs();
|
|
switch(op) {
|
|
case OP_EQUALS:
|
|
callRuntime((void*) runtime_cmp_eq_dd);
|
|
break;
|
|
case OP_NOT_EQUALS:
|
|
callRuntime((void*) runtime_cmp_ne_dd);
|
|
break;
|
|
case OP_LESS_EQUAL:
|
|
callRuntime((void*) runtime_cmp_le_dd);
|
|
break;
|
|
case OP_GREATER:
|
|
callRuntime((void*) runtime_cmp_gt_dd);
|
|
break;
|
|
case OP_GREATER_EQUAL:
|
|
callRuntime((void*) runtime_cmp_ge_dd);
|
|
break;
|
|
case OP_LESS:
|
|
callRuntime((void*) runtime_cmp_lt_dd);
|
|
break;
|
|
default:
|
|
error("Unknown comparison op %d", op);
|
|
break;
|
|
}
|
|
} else {
|
|
setupFloatArgs();
|
|
switch(op) {
|
|
case OP_EQUALS:
|
|
callRuntime((void*) runtime_cmp_eq_ff);
|
|
break;
|
|
case OP_NOT_EQUALS:
|
|
callRuntime((void*) runtime_cmp_ne_ff);
|
|
break;
|
|
case OP_LESS_EQUAL:
|
|
callRuntime((void*) runtime_cmp_le_ff);
|
|
break;
|
|
case OP_GREATER:
|
|
callRuntime((void*) runtime_cmp_gt_ff);
|
|
break;
|
|
case OP_GREATER_EQUAL:
|
|
callRuntime((void*) runtime_cmp_ge_ff);
|
|
break;
|
|
case OP_LESS:
|
|
callRuntime((void*) runtime_cmp_lt_ff);
|
|
break;
|
|
default:
|
|
error("Unknown comparison op %d", op);
|
|
break;
|
|
}
|
|
}
|
|
setR0Type(pResultType);
|
|
}
|
|
|
|
virtual void genOp(int op) {
|
|
LOG_API("genOp(%d);\n", op);
|
|
Type* pR0Type = getR0Type();
|
|
Type* pTOSType = getTOSType();
|
|
TypeTag tagR0 = collapseType(pR0Type->tag);
|
|
TypeTag tagTOS = collapseType(pTOSType->tag);
|
|
if (tagR0 == TY_INT && tagTOS == TY_INT) {
|
|
o4(0xE8BD0002); // ldmfd sp!,{r1}
|
|
mStackUse -= 4;
|
|
switch(op) {
|
|
case OP_MUL:
|
|
o4(0x0E0000091); // mul r0,r1,r0
|
|
break;
|
|
case OP_DIV:
|
|
callRuntime((void*) runtime_DIV);
|
|
break;
|
|
case OP_MOD:
|
|
callRuntime((void*) runtime_MOD);
|
|
break;
|
|
case OP_PLUS:
|
|
o4(0xE0810000); // add r0,r1,r0
|
|
break;
|
|
case OP_MINUS:
|
|
o4(0xE0410000); // sub r0,r1,r0
|
|
break;
|
|
case OP_SHIFT_LEFT:
|
|
o4(0xE1A00011); // lsl r0,r1,r0
|
|
break;
|
|
case OP_SHIFT_RIGHT:
|
|
o4(0xE1A00051); // asr r0,r1,r0
|
|
break;
|
|
case OP_BIT_AND:
|
|
o4(0xE0010000); // and r0,r1,r0
|
|
break;
|
|
case OP_BIT_XOR:
|
|
o4(0xE0210000); // eor r0,r1,r0
|
|
break;
|
|
case OP_BIT_OR:
|
|
o4(0xE1810000); // orr r0,r1,r0
|
|
break;
|
|
case OP_BIT_NOT:
|
|
o4(0xE1E00000); // mvn r0, r0
|
|
break;
|
|
default:
|
|
error("Unimplemented op %d\n", op);
|
|
break;
|
|
}
|
|
popType();
|
|
} else {
|
|
Type* pResultType = tagR0 > tagTOS ? pR0Type : pTOSType;
|
|
if (pResultType->tag == TY_DOUBLE) {
|
|
setupDoubleArgs();
|
|
switch(op) {
|
|
case OP_MUL:
|
|
callRuntime((void*) runtime_op_mul_dd);
|
|
break;
|
|
case OP_DIV:
|
|
callRuntime((void*) runtime_op_div_dd);
|
|
break;
|
|
case OP_PLUS:
|
|
callRuntime((void*) runtime_op_add_dd);
|
|
break;
|
|
case OP_MINUS:
|
|
callRuntime((void*) runtime_op_sub_dd);
|
|
break;
|
|
default:
|
|
error("Unsupported binary floating operation %d\n", op);
|
|
break;
|
|
}
|
|
} else {
|
|
setupFloatArgs();
|
|
switch(op) {
|
|
case OP_MUL:
|
|
callRuntime((void*) runtime_op_mul_ff);
|
|
break;
|
|
case OP_DIV:
|
|
callRuntime((void*) runtime_op_div_ff);
|
|
break;
|
|
case OP_PLUS:
|
|
callRuntime((void*) runtime_op_add_ff);
|
|
break;
|
|
case OP_MINUS:
|
|
callRuntime((void*) runtime_op_sub_ff);
|
|
break;
|
|
default:
|
|
error("Unsupported binary floating operation %d\n", op);
|
|
break;
|
|
}
|
|
}
|
|
setR0Type(pResultType);
|
|
}
|
|
}
|
|
|
|
virtual void gUnaryCmp(int op, Type* pResultType) {
|
|
LOG_API("gUnaryCmp(%d);\n", op);
|
|
if (op != OP_LOGICAL_NOT) {
|
|
error("Unknown unary cmp %d", op);
|
|
} else {
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag tag = collapseType(pR0Type->tag);
|
|
switch(tag) {
|
|
case TY_INT:
|
|
o4(0xE3A01000); // mov r1, #0
|
|
o4(0xE1510000); // cmp r1, r1
|
|
o4(0x03A00000); // moveq r0,#0
|
|
o4(0x13A00001); // movne r0,#1
|
|
break;
|
|
case TY_FLOAT:
|
|
callRuntime((void*) runtime_is_zero_f);
|
|
break;
|
|
case TY_DOUBLE:
|
|
callRuntime((void*) runtime_is_zero_d);
|
|
break;
|
|
default:
|
|
error("gUnaryCmp unsupported type");
|
|
break;
|
|
}
|
|
}
|
|
setR0Type(pResultType);
|
|
}
|
|
|
|
virtual void genUnaryOp(int op) {
|
|
LOG_API("genOp(%d);\n", op);
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag tag = collapseType(pR0Type->tag);
|
|
switch(tag) {
|
|
case TY_INT:
|
|
switch(op) {
|
|
case OP_MINUS:
|
|
o4(0xE3A01000); // mov r1, #0
|
|
o4(0xE0410000); // sub r0,r1,r0
|
|
break;
|
|
case OP_BIT_NOT:
|
|
o4(0xE1E00000); // mvn r0, r0
|
|
break;
|
|
default:
|
|
error("Unknown unary op %d\n", op);
|
|
break;
|
|
}
|
|
break;
|
|
case TY_FLOAT:
|
|
case TY_DOUBLE:
|
|
switch (op) {
|
|
case OP_MINUS:
|
|
if (tag == TY_FLOAT) {
|
|
callRuntime((void*) runtime_op_neg_f);
|
|
} else {
|
|
callRuntime((void*) runtime_op_neg_d);
|
|
}
|
|
break;
|
|
case OP_BIT_NOT:
|
|
error("Can't apply '~' operator to a float or double.");
|
|
break;
|
|
default:
|
|
error("Unknown unary op %d\n", op);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
error("genUnaryOp unsupported type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void pushR0() {
|
|
LOG_API("pushR0();\n");
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag r0ct = collapseType(pR0Type->tag);
|
|
if (r0ct != TY_DOUBLE) {
|
|
o4(0xE92D0001); // stmfd sp!,{r0}
|
|
mStackUse += 4;
|
|
} else {
|
|
o4(0xE92D0003); // stmfd sp!,{r0,r1}
|
|
mStackUse += 8;
|
|
}
|
|
pushType();
|
|
LOG_STACK("pushR0: %d\n", mStackUse);
|
|
}
|
|
|
|
virtual void storeR0ToTOS(Type* pPointerType) {
|
|
LOG_API("storeR0ToTOS(%d);\n", isInt);
|
|
assert(pPointerType->tag == TY_POINTER);
|
|
o4(0xE8BD0004); // ldmfd sp!,{r2}
|
|
popType();
|
|
mStackUse -= 4;
|
|
switch (pPointerType->pHead->tag) {
|
|
case TY_INT:
|
|
case TY_FLOAT:
|
|
o4(0xE5820000); // str r0, [r2]
|
|
break;
|
|
case TY_CHAR:
|
|
o4(0xE5C20000); // strb r0, [r2]
|
|
break;
|
|
case TY_DOUBLE:
|
|
o4(0xE1C200F0); // strd r0, [r2]
|
|
break;
|
|
default:
|
|
error("storeR0ToTOS: unimplemented type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void loadR0FromR0(Type* pPointerType) {
|
|
LOG_API("loadR0FromR0(%d);\n", pPointerType);
|
|
assert(pPointerType->tag == TY_POINTER);
|
|
switch (pPointerType->pHead->tag) {
|
|
case TY_INT:
|
|
case TY_FLOAT:
|
|
o4(0xE5900000); // ldr r0, [r0]
|
|
break;
|
|
case TY_CHAR:
|
|
o4(0xE5D00000); // ldrb r0, [r0]
|
|
break;
|
|
case TY_DOUBLE:
|
|
o4(0xE1C000D0); // ldrd r0, [r0]
|
|
break;
|
|
default:
|
|
error("loadR0FromR0: unimplemented type");
|
|
break;
|
|
}
|
|
setR0Type(pPointerType->pHead);
|
|
}
|
|
|
|
virtual void leaR0(int ea, Type* pPointerType) {
|
|
LOG_API("leaR0(%d);\n", ea);
|
|
if (ea > -LOCAL && ea < LOCAL) {
|
|
// Local, fp relative
|
|
if (ea < -1023 || ea > 1023 || ((ea & 3) != 0)) {
|
|
error("Offset out of range: %08x", ea);
|
|
}
|
|
if (ea < 0) {
|
|
o4(0xE24B0F00 | (0xff & ((-ea) >> 2))); // sub r0, fp, #ea
|
|
} else {
|
|
o4(0xE28B0F00 | (0xff & (ea >> 2))); // add r0, fp, #ea
|
|
}
|
|
} else {
|
|
// Global, absolute.
|
|
o4(0xE59F0000); // ldr r0, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4(ea); // .L1: .word 0
|
|
// .L99:
|
|
}
|
|
setR0Type(pPointerType);
|
|
}
|
|
|
|
virtual void storeR0(int ea, Type* pType) {
|
|
LOG_API("storeR0(%d);\n", ea);
|
|
TypeTag tag = pType->tag;
|
|
switch (tag) {
|
|
case TY_INT:
|
|
case TY_FLOAT:
|
|
if (ea > -LOCAL && ea < LOCAL) {
|
|
// Local, fp relative
|
|
if (ea < -4095 || ea > 4095) {
|
|
error("Offset out of range: %08x", ea);
|
|
}
|
|
if (ea < 0) {
|
|
o4(0xE50B0000 | (0xfff & (-ea))); // str r0, [fp,#-ea]
|
|
} else {
|
|
o4(0xE58B0000 | (0xfff & ea)); // str r0, [fp,#ea]
|
|
}
|
|
} else{
|
|
// Global, absolute
|
|
o4(0xE59F1000); // ldr r1, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4(ea); // .L1: .word 0
|
|
o4(0xE5810000); // .L99: str r0, [r1]
|
|
}
|
|
break;
|
|
case TY_DOUBLE:
|
|
if ((ea & 0x7) != 0) {
|
|
error("double address is not aligned: %d", ea);
|
|
}
|
|
if (ea > -LOCAL && ea < LOCAL) {
|
|
// Local, fp relative
|
|
if (ea < -4095 || ea > 4095) {
|
|
error("Offset out of range: %08x", ea);
|
|
}
|
|
if (ea < 0) {
|
|
o4(0xE50B0000 | (0xfff & (-ea))); // str r0, [fp,#-ea]
|
|
o4(0xE50B1000 | (0xfff & (-ea + 4))); // str r1, [fp,#-ea+4]
|
|
#if 0
|
|
// strd doesn't seem to work. Is encoding wrong?
|
|
} else if (ea < 0) {
|
|
o4(0xE1CB000F | ((0xff & (-ea)) << 4)); // strd r0, [fp,#-ea]
|
|
} else if (ea < 256) {
|
|
o4(0xE14B000F | ((0xff & ea) << 4)); // strd r0, [fp,#ea]
|
|
#endif
|
|
} else {
|
|
o4(0xE58B0000 | (0xfff & ea)); // str r0, [fp,#ea]
|
|
o4(0xE58B1000 | (0xfff & (ea + 4))); // str r1, [fp,#ea+4]
|
|
}
|
|
} else{
|
|
// Global, absolute
|
|
o4(0xE59F2000); // ldr r2, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4(ea); // .L1: .word 0
|
|
o4(0xE1C200F0); // .L99: strd r0, [r2]
|
|
}
|
|
break;
|
|
default:
|
|
error("Unable to store to type %d", tag);
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void loadR0(int ea, bool isIncDec, int op, Type* pType) {
|
|
LOG_API("loadR0(%d, %d, %d, %d);\n", ea, isIncDec, op, pType);
|
|
TypeTag tag = collapseType(pType->tag);
|
|
switch (tag) {
|
|
case TY_INT:
|
|
case TY_FLOAT:
|
|
if (ea < LOCAL) {
|
|
// Local, fp relative
|
|
if (ea < -4095 || ea > 4095) {
|
|
error("Offset out of range: %08x", ea);
|
|
}
|
|
if (ea < 0) {
|
|
o4(0xE51B0000 | (0xfff & (-ea))); // ldr r0, [fp,#-ea]
|
|
} else {
|
|
o4(0xE59B0000 | (0xfff & ea)); // ldr r0, [fp,#ea]
|
|
}
|
|
} else {
|
|
// Global, absolute
|
|
o4(0xE59F2000); // ldr r2, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4(ea); // .L1: .word ea
|
|
o4(0xE5920000); // .L99: ldr r0, [r2]
|
|
}
|
|
|
|
if (isIncDec) {
|
|
if (tag == TY_INT) {
|
|
switch (op) {
|
|
case OP_INCREMENT:
|
|
o4(0xE2801001); // add r1, r0, #1
|
|
break;
|
|
case OP_DECREMENT:
|
|
o4(0xE2401001); // sub r1, r0, #1
|
|
break;
|
|
default:
|
|
error("unknown opcode: %d", op);
|
|
}
|
|
if (ea < LOCAL) {
|
|
// Local, fp relative
|
|
// Don't need range check, was already checked above
|
|
if (ea < 0) {
|
|
o4(0xE50B1000 | (0xfff & (-ea))); // str r1, [fp,#-ea]
|
|
} else {
|
|
o4(0xE58B1000 | (0xfff & ea)); // str r1, [fp,#ea]
|
|
}
|
|
} else{
|
|
// Global, absolute
|
|
// r2 is already set up from before.
|
|
o4(0xE5821000); // str r1, [r2]
|
|
}
|
|
}
|
|
else {
|
|
error("inc/dec not implemented for float.");
|
|
}
|
|
}
|
|
break;
|
|
case TY_DOUBLE:
|
|
if ((ea & 0x7) != 0) {
|
|
error("double address is not aligned: %d", ea);
|
|
}
|
|
if (ea < LOCAL) {
|
|
// Local, fp relative
|
|
if (ea < -4095 || ea > 4095) {
|
|
error("Offset out of range: %08x", ea);
|
|
}
|
|
if (ea < 0) {
|
|
o4(0xE51B0000 | (0xfff & (-ea))); // ldr r0, [fp,#-ea]
|
|
o4(0xE51B1000 | (0xfff & (-ea+4))); // ldr r1, [fp,#-ea+4]
|
|
} else {
|
|
o4(0xE59B0000 | (0xfff & ea)); // ldr r0, [fp,#ea]
|
|
o4(0xE59B1000 | (0xfff & (ea+4))); // ldr r0, [fp,#ea+4]
|
|
}
|
|
} else {
|
|
// Global, absolute
|
|
o4(0xE59F2000); // ldr r2, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4(ea); // .L1: .word ea
|
|
o4(0xE1C200D0); // .L99: ldrd r0, [r2]
|
|
}
|
|
break;
|
|
default:
|
|
error("Unable to load type %d", tag);
|
|
break;
|
|
}
|
|
setR0Type(pType);
|
|
}
|
|
|
|
virtual void convertR0(Type* pType){
|
|
Type* pR0Type = getR0Type();
|
|
if (bitsSame(pType, pR0Type)) {
|
|
// do nothing special
|
|
} else {
|
|
TypeTag r0Tag = collapseType(pR0Type->tag);
|
|
TypeTag destTag = collapseType(pType->tag);
|
|
if (r0Tag == TY_INT) {
|
|
if (destTag == TY_FLOAT) {
|
|
callRuntime((void*) runtime_int_to_float);
|
|
} else {
|
|
assert(destTag == TY_DOUBLE);
|
|
callRuntime((void*) runtime_int_to_double);
|
|
}
|
|
} else if (r0Tag == TY_FLOAT) {
|
|
if (destTag == TY_INT) {
|
|
callRuntime((void*) runtime_float_to_int);
|
|
} else {
|
|
assert(destTag == TY_DOUBLE);
|
|
callRuntime((void*) runtime_float_to_double);
|
|
}
|
|
} else {
|
|
assert (r0Tag == TY_DOUBLE);
|
|
if (destTag == TY_INT) {
|
|
callRuntime((void*) runtime_double_to_int);
|
|
} else {
|
|
assert(destTag == TY_FLOAT);
|
|
callRuntime((void*) runtime_double_to_float);
|
|
}
|
|
}
|
|
}
|
|
setR0Type(pType);
|
|
}
|
|
|
|
virtual int beginFunctionCallArguments() {
|
|
LOG_API("beginFunctionCallArguments();\n");
|
|
return o4(0xE24DDF00); // Placeholder
|
|
}
|
|
|
|
virtual size_t storeR0ToArg(int l) {
|
|
LOG_API("storeR0ToArg(%d);\n", l);
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag r0ct = collapseType(pR0Type->tag);
|
|
switch(r0ct) {
|
|
case TY_INT:
|
|
case TY_FLOAT:
|
|
if (l < 0 || l > 4096-4) {
|
|
error("l out of range for stack offset: 0x%08x", l);
|
|
}
|
|
o4(0xE58D0000 + l); // str r0, [sp, #l]
|
|
return 4;
|
|
case TY_DOUBLE: {
|
|
// Align to 8 byte boundary
|
|
int l2 = (l + 7) & ~7;
|
|
if (l2 < 0 || l2 > 4096-8) {
|
|
error("l out of range for stack offset: 0x%08x", l);
|
|
}
|
|
o4(0xE58D0000 + l2); // str r0, [sp, #l]
|
|
o4(0xE58D1000 + l2 + 4); // str r1, [sp, #l+4]
|
|
return (l2 - l) + 8;
|
|
}
|
|
default:
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) {
|
|
LOG_API("endFunctionCallArguments(0x%08x, %d);\n", a, l);
|
|
int argumentStackUse = l;
|
|
// Have to calculate register arg count from actual stack size,
|
|
// in order to properly handle ... functions.
|
|
int regArgCount = l >> 2;
|
|
if (regArgCount > 4) {
|
|
regArgCount = 4;
|
|
}
|
|
if (regArgCount > 0) {
|
|
argumentStackUse -= regArgCount * 4;
|
|
o4(0xE8BD0000 | ((1 << regArgCount) - 1)); // ldmfd sp!,{}
|
|
}
|
|
mStackUse += argumentStackUse;
|
|
|
|
// Align stack.
|
|
int missalignment = mStackUse - ((mStackUse / STACK_ALIGNMENT)
|
|
* STACK_ALIGNMENT);
|
|
mStackAlignmentAdjustment = 0;
|
|
if (missalignment > 0) {
|
|
mStackAlignmentAdjustment = STACK_ALIGNMENT - missalignment;
|
|
}
|
|
l += mStackAlignmentAdjustment;
|
|
|
|
if (l < 0 || l > 0x3FC) {
|
|
error("L out of range for stack adjustment: 0x%08x", l);
|
|
}
|
|
* (int*) a = 0xE24DDF00 | (l >> 2); // sub sp, sp, #0 << 2
|
|
mStackUse += mStackAlignmentAdjustment;
|
|
LOG_STACK("endFunctionCallArguments mStackUse: %d, mStackAlignmentAdjustment %d\n",
|
|
mStackUse, mStackAlignmentAdjustment);
|
|
}
|
|
|
|
virtual int callForward(int symbol, Type* pFunc) {
|
|
LOG_API("callForward(%d);\n", symbol);
|
|
setR0Type(pFunc->pHead);
|
|
// Forward calls are always short (local)
|
|
return o4(0xEB000000 | encodeAddress(symbol));
|
|
}
|
|
|
|
virtual void callRelative(int t, Type* pFunc) {
|
|
LOG_API("callRelative(%d);\n", t);
|
|
setR0Type(pFunc->pHead);
|
|
int abs = t + getPC() + jumpOffset();
|
|
LOG_API("abs=%d (0x%08x)\n", abs, abs);
|
|
if (t >= - (1 << 25) && t < (1 << 25)) {
|
|
o4(0xEB000000 | encodeAddress(t));
|
|
} else {
|
|
// Long call.
|
|
o4(0xE59FC000); // ldr r12, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4(t - 12); // .L1: .word 0
|
|
o4(0xE08CC00F); // .L99: add r12,pc
|
|
o4(0xE12FFF3C); // blx r12
|
|
}
|
|
}
|
|
|
|
virtual void callIndirect(int l, Type* pFunc) {
|
|
LOG_API("callIndirect(%d);\n", l);
|
|
setR0Type(pFunc->pHead);
|
|
int argCount = l >> 2;
|
|
int poppedArgs = argCount > 4 ? 4 : argCount;
|
|
int adjustedL = l - (poppedArgs << 2) + mStackAlignmentAdjustment;
|
|
if (adjustedL < 0 || adjustedL > 4096-4) {
|
|
error("l out of range for stack offset: 0x%08x", l);
|
|
}
|
|
o4(0xE59DC000 | (0xfff & adjustedL)); // ldr r12, [sp,#adjustedL]
|
|
o4(0xE12FFF3C); // blx r12
|
|
}
|
|
|
|
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) {
|
|
LOG_API("adjustStackAfterCall(%d, %d);\n", l, isIndirect);
|
|
int argCount = l >> 2;
|
|
// Have to calculate register arg count from actual stack size,
|
|
// in order to properly handle ... functions.
|
|
int regArgCount = l >> 2;
|
|
if (regArgCount > 4) {
|
|
regArgCount = 4;
|
|
}
|
|
int stackArgs = argCount - regArgCount;
|
|
int stackUse = stackArgs + (isIndirect ? 1 : 0)
|
|
+ (mStackAlignmentAdjustment >> 2);
|
|
if (stackUse) {
|
|
if (stackUse < 0 || stackUse > 255) {
|
|
error("L out of range for stack adjustment: 0x%08x", l);
|
|
}
|
|
o4(0xE28DDF00 | stackUse); // add sp, sp, #stackUse << 2
|
|
mStackUse -= stackUse * 4;
|
|
LOG_STACK("adjustStackAfterCall: %d\n", mStackUse);
|
|
}
|
|
}
|
|
|
|
virtual int jumpOffset() {
|
|
return 8;
|
|
}
|
|
|
|
/* output a symbol and patch all calls to it */
|
|
virtual void gsym(int t) {
|
|
LOG_API("gsym(0x%x)\n", t);
|
|
int n;
|
|
int base = getBase();
|
|
int pc = getPC();
|
|
LOG_API("pc = 0x%x\n", pc);
|
|
while (t) {
|
|
int data = * (int*) t;
|
|
int decodedOffset = ((BRANCH_REL_ADDRESS_MASK & data) << 2);
|
|
if (decodedOffset == 0) {
|
|
n = 0;
|
|
} else {
|
|
n = base + decodedOffset; /* next value */
|
|
}
|
|
*(int *) t = (data & ~BRANCH_REL_ADDRESS_MASK)
|
|
| encodeRelAddress(pc - t - 8);
|
|
t = n;
|
|
}
|
|
}
|
|
|
|
virtual int finishCompile() {
|
|
#if defined(__arm__)
|
|
const long base = long(getBase());
|
|
const long curr = long(getPC());
|
|
int err = cacheflush(base, curr, 0);
|
|
return err;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
virtual int disassemble(FILE* out) {
|
|
#ifdef ENABLE_ARM_DISASSEMBLY
|
|
disasmOut = out;
|
|
disasm_interface_t di;
|
|
di.di_readword = disassemble_readword;
|
|
di.di_printaddr = disassemble_printaddr;
|
|
di.di_printf = disassemble_printf;
|
|
|
|
int base = getBase();
|
|
int pc = getPC();
|
|
for(int i = base; i < pc; i += 4) {
|
|
fprintf(out, "%08x: %08x ", i, *(int*) i);
|
|
::disasm(&di, i, 0);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* alignment (in bytes) for this type of data
|
|
*/
|
|
virtual size_t alignmentOf(Type* pType){
|
|
switch(pType->tag) {
|
|
case TY_DOUBLE:
|
|
return 8;
|
|
default:
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Array element alignment (in bytes) for this type of data.
|
|
*/
|
|
virtual size_t sizeOf(Type* pType){
|
|
switch(pType->tag) {
|
|
case TY_INT:
|
|
return 4;
|
|
case TY_CHAR:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
case TY_FLOAT:
|
|
return 4;
|
|
case TY_DOUBLE:
|
|
return 8;
|
|
case TY_POINTER:
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
virtual size_t stackSizeOf(Type* pType) {
|
|
switch(pType->tag) {
|
|
case TY_DOUBLE:
|
|
return 8;
|
|
default:
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
private:
|
|
static FILE* disasmOut;
|
|
|
|
static u_int
|
|
disassemble_readword(u_int address)
|
|
{
|
|
return(*((u_int *)address));
|
|
}
|
|
|
|
static void
|
|
disassemble_printaddr(u_int address)
|
|
{
|
|
fprintf(disasmOut, "0x%08x", address);
|
|
}
|
|
|
|
static void
|
|
disassemble_printf(const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
vfprintf(disasmOut, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
static const int BRANCH_REL_ADDRESS_MASK = 0x00ffffff;
|
|
|
|
/** Encode a relative address that might also be
|
|
* a label.
|
|
*/
|
|
int encodeAddress(int value) {
|
|
int base = getBase();
|
|
if (value >= base && value <= getPC() ) {
|
|
// This is a label, encode it relative to the base.
|
|
value = value - base;
|
|
}
|
|
return encodeRelAddress(value);
|
|
}
|
|
|
|
int encodeRelAddress(int value) {
|
|
return BRANCH_REL_ADDRESS_MASK & (value >> 2);
|
|
}
|
|
|
|
int calcRegArgCount(Type* pDecl) {
|
|
int reg = 0;
|
|
Type* pArgs = pDecl->pTail;
|
|
while (pArgs && reg < 4) {
|
|
Type* pArg = pArgs->pHead;
|
|
if ( pArg->tag == TY_DOUBLE) {
|
|
int evenReg = (reg + 1) & ~1;
|
|
if (evenReg >= 4) {
|
|
break;
|
|
}
|
|
reg = evenReg + 2;
|
|
} else {
|
|
reg++;
|
|
}
|
|
pArgs = pArgs->pTail;
|
|
}
|
|
return reg;
|
|
}
|
|
|
|
/* Pop TOS to R1
|
|
* Make sure both R0 and TOS are floats. (Could be ints)
|
|
* We know that at least one of R0 and TOS is already a float
|
|
*/
|
|
void setupFloatArgs() {
|
|
Type* pR0Type = getR0Type();
|
|
Type* pTOSType = getTOSType();
|
|
TypeTag tagR0 = collapseType(pR0Type->tag);
|
|
TypeTag tagTOS = collapseType(pTOSType->tag);
|
|
if (tagR0 != TY_FLOAT) {
|
|
assert(tagR0 == TY_INT);
|
|
callRuntime((void*) runtime_int_to_float);
|
|
}
|
|
if (tagTOS != TY_FLOAT) {
|
|
assert(tagTOS == TY_INT);
|
|
assert(tagR0 == TY_FLOAT);
|
|
o4(0xE92D0001); // stmfd sp!,{r0} // push R0
|
|
o4(0xE59D0004); // ldr r0, [sp, #4]
|
|
callRuntime((void*) runtime_int_to_float);
|
|
o4(0xE1A01000); // mov r1, r0
|
|
o4(0xE8BD0001); // ldmfd sp!,{r0} // pop R0
|
|
o4(0xE28DD004); // add sp, sp, #4 // Pop sp
|
|
} else {
|
|
// Pop TOS
|
|
o4(0xE8BD0002); // ldmfd sp!,{r1}
|
|
}
|
|
mStackUse -= 4;
|
|
popType();
|
|
}
|
|
|
|
/* Pop TOS into R2..R3
|
|
* Make sure both R0 and TOS are doubles. Could be floats or ints.
|
|
* We know that at least one of R0 and TOS are already a double.
|
|
*/
|
|
|
|
void setupDoubleArgs() {
|
|
Type* pR0Type = getR0Type();
|
|
Type* pTOSType = getTOSType();
|
|
TypeTag tagR0 = collapseType(pR0Type->tag);
|
|
TypeTag tagTOS = collapseType(pTOSType->tag);
|
|
if (tagR0 != TY_DOUBLE) {
|
|
if (tagR0 == TY_INT) {
|
|
callRuntime((void*) runtime_int_to_double);
|
|
} else {
|
|
assert(tagR0 == TY_FLOAT);
|
|
callRuntime((void*) runtime_float_to_double);
|
|
}
|
|
}
|
|
if (tagTOS != TY_DOUBLE) {
|
|
o4(0xE92D0003); // stmfd sp!,{r0,r1} // push r0,r1
|
|
o4(0xE59D0008); // ldr r0, [sp, #8]
|
|
if (tagTOS == TY_INT) {
|
|
callRuntime((void*) runtime_int_to_double);
|
|
} else {
|
|
assert(tagTOS == TY_FLOAT);
|
|
callRuntime((void*) runtime_float_to_double);
|
|
}
|
|
o4(0xE1A02000); // mov r2, r0
|
|
o4(0xE1A03001); // mov r3, r1
|
|
o4(0xE8BD0003); // ldmfd sp!,{r0, r1} // Restore R0
|
|
o4(0xE28DD004); // add sp, sp, #4 // Pop sp
|
|
mStackUse -= 4;
|
|
} else {
|
|
o4(0xE8BD000C); // ldmfd sp!,{r2,r3}
|
|
mStackUse -= 8;
|
|
}
|
|
popType();
|
|
}
|
|
|
|
void callRuntime(void* fn) {
|
|
o4(0xE59FC000); // ldr r12, .L1
|
|
o4(0xEA000000); // b .L99
|
|
o4((int) fn); //.L1: .word fn
|
|
o4(0xE12FFF3C); //.L99: blx r12
|
|
}
|
|
|
|
// Integer math:
|
|
|
|
static int runtime_DIV(int b, int a) {
|
|
return a / b;
|
|
}
|
|
|
|
static int runtime_MOD(int b, int a) {
|
|
return a % b;
|
|
}
|
|
|
|
// Comparison to zero
|
|
|
|
static int runtime_is_non_zero_f(float a) {
|
|
return a != 0;
|
|
}
|
|
|
|
static int runtime_is_non_zero_d(double a) {
|
|
return a != 0;
|
|
}
|
|
|
|
// Comparison to zero
|
|
|
|
static int runtime_is_zero_f(float a) {
|
|
return a == 0;
|
|
}
|
|
|
|
static int runtime_is_zero_d(double a) {
|
|
return a == 0;
|
|
}
|
|
|
|
// Type conversion
|
|
|
|
static int runtime_float_to_int(float a) {
|
|
return (int) a;
|
|
}
|
|
|
|
static double runtime_float_to_double(float a) {
|
|
return (double) a;
|
|
}
|
|
|
|
static int runtime_double_to_int(double a) {
|
|
return (int) a;
|
|
}
|
|
|
|
static float runtime_double_to_float(double a) {
|
|
return (float) a;
|
|
}
|
|
|
|
static float runtime_int_to_float(int a) {
|
|
return (float) a;
|
|
}
|
|
|
|
static double runtime_int_to_double(int a) {
|
|
return (double) a;
|
|
}
|
|
|
|
// Comparisons float
|
|
|
|
static int runtime_cmp_eq_ff(float b, float a) {
|
|
return a == b;
|
|
}
|
|
|
|
static int runtime_cmp_ne_ff(float b, float a) {
|
|
return a != b;
|
|
}
|
|
|
|
static int runtime_cmp_lt_ff(float b, float a) {
|
|
return a < b;
|
|
}
|
|
|
|
static int runtime_cmp_le_ff(float b, float a) {
|
|
return a <= b;
|
|
}
|
|
|
|
static int runtime_cmp_ge_ff(float b, float a) {
|
|
return a >= b;
|
|
}
|
|
|
|
static int runtime_cmp_gt_ff(float b, float a) {
|
|
return a > b;
|
|
}
|
|
|
|
// Comparisons double
|
|
|
|
static int runtime_cmp_eq_dd(double b, double a) {
|
|
return a == b;
|
|
}
|
|
|
|
static int runtime_cmp_ne_dd(double b, double a) {
|
|
return a != b;
|
|
}
|
|
|
|
static int runtime_cmp_lt_dd(double b, double a) {
|
|
return a < b;
|
|
}
|
|
|
|
static int runtime_cmp_le_dd(double b, double a) {
|
|
return a <= b;
|
|
}
|
|
|
|
static int runtime_cmp_ge_dd(double b, double a) {
|
|
return a >= b;
|
|
}
|
|
|
|
static int runtime_cmp_gt_dd(double b, double a) {
|
|
return a > b;
|
|
}
|
|
|
|
// Math float
|
|
|
|
static float runtime_op_add_ff(float b, float a) {
|
|
return a + b;
|
|
}
|
|
|
|
static float runtime_op_sub_ff(float b, float a) {
|
|
return a - b;
|
|
}
|
|
|
|
static float runtime_op_mul_ff(float b, float a) {
|
|
return a * b;
|
|
}
|
|
|
|
static float runtime_op_div_ff(float b, float a) {
|
|
return a / b;
|
|
}
|
|
|
|
static float runtime_op_neg_f(float a) {
|
|
return -a;
|
|
}
|
|
|
|
// Math double
|
|
|
|
static double runtime_op_add_dd(double b, double a) {
|
|
return a + b;
|
|
}
|
|
|
|
static double runtime_op_sub_dd(double b, double a) {
|
|
return a - b;
|
|
}
|
|
|
|
static double runtime_op_mul_dd(double b, double a) {
|
|
return a * b;
|
|
}
|
|
|
|
static double runtime_op_div_dd(double b, double a) {
|
|
return a / b;
|
|
}
|
|
|
|
static double runtime_op_neg_d(double a) {
|
|
return -a;
|
|
}
|
|
|
|
static const int STACK_ALIGNMENT = 8;
|
|
int mStackUse;
|
|
// This variable holds the amount we adjusted the stack in the most
|
|
// recent endFunctionCallArguments call. It's examined by the
|
|
// following adjustStackAfterCall call.
|
|
int mStackAlignmentAdjustment;
|
|
};
|
|
|
|
#endif // PROVIDE_ARM_CODEGEN
|
|
|
|
#ifdef PROVIDE_X86_CODEGEN
|
|
|
|
class X86CodeGenerator : public CodeGenerator {
|
|
public:
|
|
X86CodeGenerator() {}
|
|
virtual ~X86CodeGenerator() {}
|
|
|
|
/* returns address to patch with local variable size
|
|
*/
|
|
virtual int functionEntry(Type* pDecl) {
|
|
o(0xe58955); /* push %ebp, mov %esp, %ebp */
|
|
return oad(0xec81, 0); /* sub $xxx, %esp */
|
|
}
|
|
|
|
virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) {
|
|
o(0xc3c9); /* leave, ret */
|
|
*(int *) localVariableAddress = localVariableSize; /* save local variables */
|
|
}
|
|
|
|
/* load immediate value */
|
|
virtual void li(int i, Type* pType) {
|
|
oad(0xb8, i); /* mov $xx, %eax */
|
|
setR0Type(pType);
|
|
}
|
|
|
|
virtual void loadFloat(int address, Type* pType) {
|
|
setR0Type(pType);
|
|
switch (pType->tag) {
|
|
case TY_FLOAT:
|
|
oad(0x05D9, address); // flds
|
|
break;
|
|
case TY_DOUBLE:
|
|
oad(0x05DD, address); // fldl
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual int gjmp(int t) {
|
|
return psym(0xe9, t);
|
|
}
|
|
|
|
/* l = 0: je, l == 1: jne */
|
|
virtual int gtst(bool l, int t) {
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag tagR0 = pR0Type->tag;
|
|
bool isFloatR0 = isFloatTag(tagR0);
|
|
if (isFloatR0) {
|
|
o(0xeed9); // fldz
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x9e); // sahf
|
|
} else {
|
|
o(0xc085); // test %eax, %eax
|
|
}
|
|
// Use two output statements to generate one instruction.
|
|
o(0x0f); // je/jne xxx
|
|
return psym(0x84 + l, t);
|
|
}
|
|
|
|
virtual void gcmp(int op, Type* pResultType) {
|
|
Type* pR0Type = getR0Type();
|
|
Type* pTOSType = getTOSType();
|
|
TypeTag tagR0 = pR0Type->tag;
|
|
TypeTag tagTOS = pTOSType->tag;
|
|
bool isFloatR0 = isFloatTag(tagR0);
|
|
bool isFloatTOS = isFloatTag(tagTOS);
|
|
if (!isFloatR0 && !isFloatTOS) {
|
|
int t = decodeOp(op);
|
|
o(0x59); /* pop %ecx */
|
|
o(0xc139); /* cmp %eax,%ecx */
|
|
li(0, NULL);
|
|
o(0x0f); /* setxx %al */
|
|
o(t + 0x90);
|
|
o(0xc0);
|
|
popType();
|
|
} else {
|
|
setupFloatOperands();
|
|
switch (op) {
|
|
case OP_EQUALS:
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x9e); // sahf
|
|
o(0xc0940f); // sete %al
|
|
o(0xc29b0f); // setnp %dl
|
|
o(0xd021); // andl %edx, %eax
|
|
break;
|
|
case OP_NOT_EQUALS:
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x9e); // sahf
|
|
o(0xc0950f); // setne %al
|
|
o(0xc29a0f); // setp %dl
|
|
o(0xd009); // orl %edx, %eax
|
|
break;
|
|
case OP_GREATER_EQUAL:
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x05c4f6); // testb $5, %ah
|
|
o(0xc0940f); // sete %al
|
|
break;
|
|
case OP_LESS:
|
|
o(0xc9d9); // fxch %st(1)
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x9e); // sahf
|
|
o(0xc0970f); // seta %al
|
|
break;
|
|
case OP_LESS_EQUAL:
|
|
o(0xc9d9); // fxch %st(1)
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x9e); // sahf
|
|
o(0xc0930f); // setea %al
|
|
break;
|
|
case OP_GREATER:
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x45c4f6); // testb $69, %ah
|
|
o(0xc0940f); // sete %al
|
|
break;
|
|
default:
|
|
error("Unknown comparison op");
|
|
}
|
|
o(0xc0b60f); // movzbl %al, %eax
|
|
}
|
|
setR0Type(pResultType);
|
|
}
|
|
|
|
virtual void genOp(int op) {
|
|
Type* pR0Type = getR0Type();
|
|
Type* pTOSType = getTOSType();
|
|
TypeTag tagR0 = pR0Type->tag;
|
|
TypeTag tagTOS = pTOSType->tag;
|
|
bool isFloatR0 = isFloatTag(tagR0);
|
|
bool isFloatTOS = isFloatTag(tagTOS);
|
|
if (!isFloatR0 && !isFloatTOS) {
|
|
// TODO: Deal with pointer arithmetic
|
|
o(0x59); /* pop %ecx */
|
|
o(decodeOp(op));
|
|
if (op == OP_MOD)
|
|
o(0x92); /* xchg %edx, %eax */
|
|
popType();
|
|
} else {
|
|
Type* pResultType = tagR0 > tagTOS ? pR0Type : pTOSType;
|
|
setupFloatOperands();
|
|
// Both float. x87 R0 == left hand, x87 R1 == right hand
|
|
switch (op) {
|
|
case OP_MUL:
|
|
o(0xc9de); // fmulp
|
|
break;
|
|
case OP_DIV:
|
|
o(0xf1de); // fdivp
|
|
break;
|
|
case OP_PLUS:
|
|
o(0xc1de); // faddp
|
|
break;
|
|
case OP_MINUS:
|
|
o(0xe1de); // fsubp
|
|
break;
|
|
default:
|
|
error("Unsupported binary floating operation.");
|
|
break;
|
|
}
|
|
setR0Type(pResultType);
|
|
}
|
|
}
|
|
|
|
virtual void gUnaryCmp(int op, Type* pResultType) {
|
|
if (op != OP_LOGICAL_NOT) {
|
|
error("Unknown unary cmp %d", op);
|
|
} else {
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag tag = collapseType(pR0Type->tag);
|
|
switch(tag) {
|
|
case TY_INT: {
|
|
oad(0xb9, 0); /* movl $0, %ecx */
|
|
int t = decodeOp(op);
|
|
o(0xc139); /* cmp %eax,%ecx */
|
|
li(0, NULL);
|
|
o(0x0f); /* setxx %al */
|
|
o(t + 0x90);
|
|
o(0xc0);
|
|
}
|
|
break;
|
|
case TY_FLOAT:
|
|
case TY_DOUBLE:
|
|
o(0xeed9); // fldz
|
|
o(0xe9da); // fucompp
|
|
o(0xe0df); // fnstsw %ax
|
|
o(0x9e); // sahf
|
|
o(0xc0950f); // setne %al
|
|
o(0xc29a0f); // setp %dl
|
|
o(0xd009); // orl %edx, %eax
|
|
o(0xc0b60f); // movzbl %al, %eax
|
|
o(0x01f083); // xorl $1, %eax
|
|
break;
|
|
default:
|
|
error("gUnaryCmp unsupported type");
|
|
break;
|
|
}
|
|
}
|
|
setR0Type(pResultType);
|
|
}
|
|
|
|
virtual void genUnaryOp(int op) {
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag tag = collapseType(pR0Type->tag);
|
|
switch(tag) {
|
|
case TY_INT:
|
|
oad(0xb9, 0); /* movl $0, %ecx */
|
|
o(decodeOp(op));
|
|
break;
|
|
case TY_FLOAT:
|
|
case TY_DOUBLE:
|
|
switch (op) {
|
|
case OP_MINUS:
|
|
o(0xe0d9); // fchs
|
|
break;
|
|
case OP_BIT_NOT:
|
|
error("Can't apply '~' operator to a float or double.");
|
|
break;
|
|
default:
|
|
error("Unknown unary op %d\n", op);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
error("genUnaryOp unsupported type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void pushR0() {
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag r0ct = collapseType(pR0Type->tag);
|
|
switch(r0ct) {
|
|
case TY_INT:
|
|
o(0x50); /* push %eax */
|
|
break;
|
|
case TY_FLOAT:
|
|
o(0x50); /* push %eax */
|
|
o(0x241cd9); // fstps 0(%esp)
|
|
break;
|
|
case TY_DOUBLE:
|
|
o(0x50); /* push %eax */
|
|
o(0x50); /* push %eax */
|
|
o(0x241cdd); // fstpl 0(%esp)
|
|
break;
|
|
default:
|
|
error("pushR0 unsupported type %d", r0ct);
|
|
break;
|
|
}
|
|
pushType();
|
|
}
|
|
|
|
virtual void storeR0ToTOS(Type* pPointerType) {
|
|
assert(pPointerType->tag == TY_POINTER);
|
|
o(0x59); /* pop %ecx */
|
|
popType();
|
|
switch (pPointerType->pHead->tag) {
|
|
case TY_INT:
|
|
o(0x0189); /* movl %eax/%al, (%ecx) */
|
|
break;
|
|
case TY_CHAR:
|
|
o(0x0188); /* movl %eax/%al, (%ecx) */
|
|
break;
|
|
case TY_FLOAT:
|
|
o(0x19d9); /* fstps (%ecx) */
|
|
break;
|
|
case TY_DOUBLE:
|
|
o(0x19dd); /* fstpl (%ecx) */
|
|
break;
|
|
default:
|
|
error("storeR0ToTOS: unsupported type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void loadR0FromR0(Type* pPointerType) {
|
|
assert(pPointerType->tag == TY_POINTER);
|
|
switch (pPointerType->pHead->tag) {
|
|
case TY_INT:
|
|
o2(0x008b); /* mov (%eax), %eax */
|
|
break;
|
|
case TY_CHAR:
|
|
o(0xbe0f); /* movsbl (%eax), %eax */
|
|
ob(0); /* add zero in code */
|
|
break;
|
|
case TY_FLOAT:
|
|
o2(0x00d9); // flds (%eax)
|
|
break;
|
|
case TY_DOUBLE:
|
|
o2(0x00dd); // fldl (%eax)
|
|
break;
|
|
default:
|
|
error("loadR0FromR0: unsupported type");
|
|
break;
|
|
}
|
|
setR0Type(pPointerType->pHead);
|
|
}
|
|
|
|
virtual void leaR0(int ea, Type* pPointerType) {
|
|
gmov(10, ea); /* leal EA, %eax */
|
|
setR0Type(pPointerType);
|
|
}
|
|
|
|
virtual void storeR0(int ea, Type* pType) {
|
|
TypeTag tag = pType->tag;
|
|
switch (tag) {
|
|
case TY_INT:
|
|
gmov(6, ea); /* mov %eax, EA */
|
|
break;
|
|
case TY_FLOAT:
|
|
if (ea < -LOCAL || ea > LOCAL) {
|
|
oad(0x1dd9, ea); // fstps ea
|
|
} else {
|
|
oad(0x9dd9, ea); // fstps ea(%ebp)
|
|
}
|
|
break;
|
|
case TY_DOUBLE:
|
|
if (ea < -LOCAL || ea > LOCAL) {
|
|
oad(0x1ddd, ea); // fstpl ea
|
|
} else {
|
|
oad(0x9ddd, ea); // fstpl ea(%ebp)
|
|
}
|
|
break;
|
|
default:
|
|
error("Unable to store to type %d", tag);
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void loadR0(int ea, bool isIncDec, int op, Type* pType) {
|
|
TypeTag tag = collapseType(pType->tag);
|
|
switch (tag) {
|
|
case TY_INT:
|
|
gmov(8, ea); /* mov EA, %eax */
|
|
if (isIncDec) {
|
|
/* Implement post-increment or post decrement.
|
|
*/
|
|
gmov(0, ea); /* 83 ADD */
|
|
o(decodeOp(op));
|
|
}
|
|
break;
|
|
case TY_FLOAT:
|
|
if (ea < -LOCAL || ea > LOCAL) {
|
|
oad(0x05d9, ea); // flds ea
|
|
} else {
|
|
oad(0x85d9, ea); // flds ea(%ebp)
|
|
}
|
|
if (isIncDec) {
|
|
error("inc/dec not implemented for float.");
|
|
}
|
|
break;
|
|
case TY_DOUBLE:
|
|
if (ea < -LOCAL || ea > LOCAL) {
|
|
oad(0x05dd, ea); // fldl ea
|
|
} else {
|
|
oad(0x85dd, ea); // fldl ea(%ebp)
|
|
}
|
|
if (isIncDec) {
|
|
error("inc/dec not implemented for double.");
|
|
}
|
|
break;
|
|
default:
|
|
error("Unable to load type %d", tag);
|
|
break;
|
|
}
|
|
setR0Type(pType);
|
|
}
|
|
|
|
virtual void convertR0(Type* pType){
|
|
Type* pR0Type = getR0Type();
|
|
if (pR0Type == NULL) {
|
|
assert(false);
|
|
setR0Type(pType);
|
|
return;
|
|
}
|
|
if (bitsSame(pType, pR0Type)) {
|
|
// do nothing special
|
|
} else if (isFloatType(pType) && isFloatType(pR0Type)) {
|
|
// do nothing special, both held in same register on x87.
|
|
} else {
|
|
TypeTag r0Tag = collapseType(pR0Type->tag);
|
|
TypeTag destTag = collapseType(pType->tag);
|
|
if (r0Tag == TY_INT && isFloatTag(destTag)) {
|
|
// Convert R0 from int to float
|
|
o(0x50); // push %eax
|
|
o(0x2404DB); // fildl 0(%esp)
|
|
o(0x58); // pop %eax
|
|
} else if (isFloatTag(r0Tag) && destTag == TY_INT) {
|
|
// Convert R0 from float to int. Complicated because
|
|
// need to save and restore the rounding mode.
|
|
o(0x50); // push %eax
|
|
o(0x50); // push %eax
|
|
o(0x02247cD9); // fnstcw 2(%esp)
|
|
o(0x2444b70f); // movzwl 2(%esp), %eax
|
|
o(0x02);
|
|
o(0x0cb4); // movb $12, %ah
|
|
o(0x24048966); // movw %ax, 0(%esp)
|
|
o(0x242cd9); // fldcw 0(%esp)
|
|
o(0x04245cdb); // fistpl 4(%esp)
|
|
o(0x02246cd9); // fldcw 2(%esp)
|
|
o(0x58); // pop %eax
|
|
o(0x58); // pop %eax
|
|
} else {
|
|
error("Incompatible types old: %d new: %d",
|
|
pR0Type->tag, pType->tag);
|
|
}
|
|
}
|
|
setR0Type(pType);
|
|
}
|
|
|
|
virtual int beginFunctionCallArguments() {
|
|
return oad(0xec81, 0); /* sub $xxx, %esp */
|
|
}
|
|
|
|
virtual size_t storeR0ToArg(int l) {
|
|
Type* pR0Type = getR0Type();
|
|
TypeTag r0ct = collapseType(pR0Type->tag);
|
|
switch(r0ct) {
|
|
case TY_INT:
|
|
oad(0x248489, l); /* movl %eax, xxx(%esp) */
|
|
return 4;
|
|
case TY_FLOAT:
|
|
oad(0x249CD9, l); /* fstps xxx(%esp) */
|
|
return 4;
|
|
case TY_DOUBLE:
|
|
oad(0x249CDD, l); /* fstpl xxx(%esp) */
|
|
return 8;
|
|
default:
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) {
|
|
* (int*) a = l;
|
|
}
|
|
|
|
virtual int callForward(int symbol, Type* pFunc) {
|
|
setR0Type(pFunc->pHead);
|
|
return psym(0xe8, symbol); /* call xxx */
|
|
}
|
|
|
|
virtual void callRelative(int t, Type* pFunc) {
|
|
setR0Type(pFunc->pHead);
|
|
psym(0xe8, t); /* call xxx */
|
|
}
|
|
|
|
virtual void callIndirect(int l, Type* pFunc) {
|
|
setR0Type(pFunc->pHead);
|
|
oad(0x2494ff, l); /* call *xxx(%esp) */
|
|
}
|
|
|
|
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) {
|
|
if (isIndirect) {
|
|
l += 4;
|
|
}
|
|
if (l > 0) {
|
|
oad(0xc481, l); /* add $xxx, %esp */
|
|
}
|
|
}
|
|
|
|
virtual int jumpOffset() {
|
|
return 5;
|
|
}
|
|
|
|
virtual int disassemble(FILE* out) {
|
|
return 0;
|
|
}
|
|
|
|
/* output a symbol and patch all calls to it */
|
|
virtual void gsym(int t) {
|
|
int n;
|
|
int pc = getPC();
|
|
while (t) {
|
|
n = *(int *) t; /* next value */
|
|
*(int *) t = pc - t - 4;
|
|
t = n;
|
|
}
|
|
}
|
|
|
|
virtual int finishCompile() {
|
|
size_t pagesize = 4096;
|
|
size_t base = (size_t) getBase() & ~ (pagesize - 1);
|
|
size_t top = ((size_t) getPC() + pagesize - 1) & ~ (pagesize - 1);
|
|
int err = mprotect((void*) base, top - base, PROT_READ | PROT_WRITE | PROT_EXEC);
|
|
if (err) {
|
|
error("mprotect() failed: %d", errno);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* Alignment (in bytes) for this type of data
|
|
*/
|
|
virtual size_t alignmentOf(Type* pType){
|
|
return 4;
|
|
}
|
|
|
|
/**
|
|
* Array element alignment (in bytes) for this type of data.
|
|
*/
|
|
virtual size_t sizeOf(Type* pType){
|
|
switch(pType->tag) {
|
|
case TY_INT:
|
|
return 4;
|
|
case TY_CHAR:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
case TY_FLOAT:
|
|
return 4;
|
|
case TY_DOUBLE:
|
|
return 8;
|
|
case TY_POINTER:
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
virtual size_t stackSizeOf(Type* pType) {
|
|
switch(pType->tag) {
|
|
case TY_DOUBLE:
|
|
return 8;
|
|
default:
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
/** Output 1 to 4 bytes.
|
|
*
|
|
*/
|
|
void o(int n) {
|
|
/* cannot use unsigned, so we must do a hack */
|
|
while (n && n != -1) {
|
|
ob(n & 0xff);
|
|
n = n >> 8;
|
|
}
|
|
}
|
|
|
|
/* Output exactly 2 bytes
|
|
*/
|
|
void o2(int n) {
|
|
ob(n & 0xff);
|
|
ob(0xff & (n >> 8));
|
|
}
|
|
|
|
/* psym is used to put an instruction with a data field which is a
|
|
reference to a symbol. It is in fact the same as oad ! */
|
|
int psym(int n, int t) {
|
|
return oad(n, t);
|
|
}
|
|
|
|
/* instruction + address */
|
|
int oad(int n, int t) {
|
|
o(n);
|
|
int result = getPC();
|
|
o4(t);
|
|
return result;
|
|
}
|
|
|
|
|
|
static const int operatorHelper[];
|
|
|
|
int decodeOp(int op) {
|
|
if (op < 0 || op > OP_COUNT) {
|
|
error("Out-of-range operator: %d\n", op);
|
|
op = 0;
|
|
}
|
|
return operatorHelper[op];
|
|
}
|
|
|
|
void gmov(int l, int t) {
|
|
o(l + 0x83);
|
|
oad((t > -LOCAL && t < LOCAL) << 7 | 5, t);
|
|
}
|
|
|
|
void setupFloatOperands() {
|
|
Type* pR0Type = getR0Type();
|
|
Type* pTOSType = getTOSType();
|
|
TypeTag tagR0 = pR0Type->tag;
|
|
TypeTag tagTOS = pTOSType->tag;
|
|
bool isFloatR0 = isFloatTag(tagR0);
|
|
bool isFloatTOS = isFloatTag(tagTOS);
|
|
if (! isFloatR0) {
|
|
// Convert R0 from int to float
|
|
o(0x50); // push %eax
|
|
o(0x2404DB); // fildl 0(%esp)
|
|
o(0x58); // pop %eax
|
|
}
|
|
if (! isFloatTOS){
|
|
o(0x2404DB); // fildl 0(%esp);
|
|
o(0x58); // pop %eax
|
|
} else {
|
|
if (tagTOS == TY_FLOAT) {
|
|
o(0x2404d9); // flds (%esp)
|
|
o(0x58); // pop %eax
|
|
} else {
|
|
o(0x2404dd); // fldl (%esp)
|
|
o(0x58); // pop %eax
|
|
o(0x58); // pop %eax
|
|
}
|
|
}
|
|
popType();
|
|
}
|
|
};
|
|
|
|
#endif // PROVIDE_X86_CODEGEN
|
|
|
|
#ifdef PROVIDE_TRACE_CODEGEN
|
|
class TraceCodeGenerator : public CodeGenerator {
|
|
private:
|
|
CodeGenerator* mpBase;
|
|
|
|
public:
|
|
TraceCodeGenerator(CodeGenerator* pBase) {
|
|
mpBase = pBase;
|
|
}
|
|
|
|
virtual ~TraceCodeGenerator() {
|
|
delete mpBase;
|
|
}
|
|
|
|
virtual void init(CodeBuf* pCodeBuf) {
|
|
mpBase->init(pCodeBuf);
|
|
}
|
|
|
|
void setErrorSink(ErrorSink* pErrorSink) {
|
|
mpBase->setErrorSink(pErrorSink);
|
|
}
|
|
|
|
/* returns address to patch with local variable size
|
|
*/
|
|
virtual int functionEntry(Type* pDecl) {
|
|
int result = mpBase->functionEntry(pDecl);
|
|
fprintf(stderr, "functionEntry(pDecl) -> %d\n", result);
|
|
return result;
|
|
}
|
|
|
|
virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) {
|
|
fprintf(stderr, "functionExit(pDecl, %d, %d)\n",
|
|
localVariableAddress, localVariableSize);
|
|
mpBase->functionExit(pDecl, localVariableAddress, localVariableSize);
|
|
}
|
|
|
|
/* load immediate value */
|
|
virtual void li(int t, Type* pType) {
|
|
fprintf(stderr, "li(%d)\n", t);
|
|
mpBase->li(t, pType);
|
|
}
|
|
|
|
virtual void loadFloat(int address, Type* pType) {
|
|
fprintf(stderr, "loadFloat(%d, type)\n", address);
|
|
mpBase->loadFloat(address, pType);
|
|
}
|
|
|
|
virtual int gjmp(int t) {
|
|
int result = mpBase->gjmp(t);
|
|
fprintf(stderr, "gjmp(%d) = %d\n", t, result);
|
|
return result;
|
|
}
|
|
|
|
/* l = 0: je, l == 1: jne */
|
|
virtual int gtst(bool l, int t) {
|
|
int result = mpBase->gtst(l, t);
|
|
fprintf(stderr, "gtst(%d,%d) = %d\n", l, t, result);
|
|
return result;
|
|
}
|
|
|
|
virtual void gcmp(int op, Type* pResultType) {
|
|
fprintf(stderr, "gcmp(%d, pResultType)\n", op);
|
|
mpBase->gcmp(op, pResultType);
|
|
}
|
|
|
|
virtual void genOp(int op) {
|
|
fprintf(stderr, "genOp(%d)\n", op);
|
|
mpBase->genOp(op);
|
|
}
|
|
|
|
|
|
virtual void gUnaryCmp(int op, Type* pResultType) {
|
|
fprintf(stderr, "gUnaryCmp(%d, pResultType)\n", op);
|
|
mpBase->gUnaryCmp(op, pResultType);
|
|
}
|
|
|
|
virtual void genUnaryOp(int op) {
|
|
fprintf(stderr, "genUnaryOp(%d)\n", op);
|
|
mpBase->genUnaryOp(op);
|
|
}
|
|
|
|
virtual void pushR0() {
|
|
fprintf(stderr, "pushR0()\n");
|
|
mpBase->pushR0();
|
|
}
|
|
|
|
virtual void storeR0ToTOS(Type* pPointerType) {
|
|
fprintf(stderr, "storeR0ToTOS(%d)\n", pPointerType->pHead->tag);
|
|
mpBase->storeR0ToTOS(pPointerType);
|
|
}
|
|
|
|
virtual void loadR0FromR0(Type* pPointerType) {
|
|
fprintf(stderr, "loadR0FromR0(%d)\n", pPointerType->pHead->tag);
|
|
mpBase->loadR0FromR0(pPointerType);
|
|
}
|
|
|
|
virtual void leaR0(int ea, Type* pPointerType) {
|
|
fprintf(stderr, "leaR0(%d)\n", ea);
|
|
mpBase->leaR0(ea, pPointerType);
|
|
}
|
|
|
|
virtual void storeR0(int ea, Type* pType) {
|
|
fprintf(stderr, "storeR0(%d, pType)\n", ea);
|
|
mpBase->storeR0(ea, pType);
|
|
}
|
|
|
|
virtual void loadR0(int ea, bool isIncDec, int op, Type* pType) {
|
|
fprintf(stderr, "loadR0(%d, %d, %d, pType)\n", ea, isIncDec, op);
|
|
mpBase->loadR0(ea, isIncDec, op, pType);
|
|
}
|
|
|
|
virtual void convertR0(Type* pType){
|
|
fprintf(stderr, "convertR0(pType)\n");
|
|
mpBase->convertR0(pType);
|
|
}
|
|
|
|
virtual int beginFunctionCallArguments() {
|
|
int result = mpBase->beginFunctionCallArguments();
|
|
fprintf(stderr, "beginFunctionCallArguments() = %d\n", result);
|
|
return result;
|
|
}
|
|
|
|
virtual size_t storeR0ToArg(int l) {
|
|
fprintf(stderr, "storeR0ToArg(%d)\n", l);
|
|
return mpBase->storeR0ToArg(l);
|
|
}
|
|
|
|
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) {
|
|
fprintf(stderr, "endFunctionCallArguments(%d, %d)\n", a, l);
|
|
mpBase->endFunctionCallArguments(pDecl, a, l);
|
|
}
|
|
|
|
virtual int callForward(int symbol, Type* pFunc) {
|
|
int result = mpBase->callForward(symbol, pFunc);
|
|
fprintf(stderr, "callForward(%d) = %d\n", symbol, result);
|
|
return result;
|
|
}
|
|
|
|
virtual void callRelative(int t, Type* pFunc) {
|
|
fprintf(stderr, "callRelative(%d)\n", t);
|
|
mpBase->callRelative(t, pFunc);
|
|
}
|
|
|
|
virtual void callIndirect(int l, Type* pFunc) {
|
|
fprintf(stderr, "callIndirect(%d)\n", l);
|
|
mpBase->callIndirect(l, pFunc);
|
|
}
|
|
|
|
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) {
|
|
fprintf(stderr, "adjustStackAfterCall(pType, %d, %d)\n", l, isIndirect);
|
|
mpBase->adjustStackAfterCall(pDecl, l, isIndirect);
|
|
}
|
|
|
|
virtual int jumpOffset() {
|
|
return mpBase->jumpOffset();
|
|
}
|
|
|
|
virtual int disassemble(FILE* out) {
|
|
return mpBase->disassemble(out);
|
|
}
|
|
|
|
/* output a symbol and patch all calls to it */
|
|
virtual void gsym(int t) {
|
|
fprintf(stderr, "gsym(%d)\n", t);
|
|
mpBase->gsym(t);
|
|
}
|
|
|
|
virtual int finishCompile() {
|
|
int result = mpBase->finishCompile();
|
|
fprintf(stderr, "finishCompile() = %d\n", result);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Alignment (in bytes) for this type of data
|
|
*/
|
|
virtual size_t alignmentOf(Type* pType){
|
|
return mpBase->alignmentOf(pType);
|
|
}
|
|
|
|
/**
|
|
* Array element alignment (in bytes) for this type of data.
|
|
*/
|
|
virtual size_t sizeOf(Type* pType){
|
|
return mpBase->sizeOf(pType);
|
|
}
|
|
|
|
|
|
virtual size_t stackSizeOf(Type* pType) {
|
|
return mpBase->stackSizeOf(pType);
|
|
}
|
|
|
|
|
|
virtual Type* getR0Type() {
|
|
return mpBase->getR0Type();
|
|
}
|
|
};
|
|
|
|
#endif // PROVIDE_TRACE_CODEGEN
|
|
|
|
class Arena {
|
|
public:
|
|
// Used to record a given allocation amount.
|
|
// Used:
|
|
// Mark mark = arena.mark();
|
|
// ... lots of arena.allocate()
|
|
// arena.free(mark);
|
|
|
|
struct Mark {
|
|
size_t chunk;
|
|
size_t offset;
|
|
};
|
|
|
|
Arena() {
|
|
mCurrentChunk = 0;
|
|
Chunk start(CHUNK_SIZE);
|
|
mData.push_back(start);
|
|
}
|
|
|
|
~Arena() {
|
|
for(size_t i = 0; i < mData.size(); i++) {
|
|
mData[i].free();
|
|
}
|
|
}
|
|
|
|
// Alloc using the standard alignment size safe for any variable
|
|
void* alloc(size_t size) {
|
|
return alloc(size, 8);
|
|
}
|
|
|
|
Mark mark(){
|
|
Mark result;
|
|
result.chunk = mCurrentChunk;
|
|
result.offset = mData[mCurrentChunk].mOffset;
|
|
return result;
|
|
}
|
|
|
|
void freeToMark(const Mark& mark) {
|
|
mCurrentChunk = mark.chunk;
|
|
mData[mCurrentChunk].mOffset = mark.offset;
|
|
}
|
|
|
|
private:
|
|
// Allocate memory aligned to a given size
|
|
// and a given power-of-two-sized alignment (e.g. 1,2,4,8,...)
|
|
// Memory is not zero filled.
|
|
|
|
void* alloc(size_t size, size_t alignment) {
|
|
while (size > mData[mCurrentChunk].remainingCapacity(alignment)) {
|
|
if (mCurrentChunk + 1 < mData.size()) {
|
|
mCurrentChunk++;
|
|
} else {
|
|
size_t allocSize = CHUNK_SIZE;
|
|
if (allocSize < size + alignment - 1) {
|
|
allocSize = size + alignment - 1;
|
|
}
|
|
Chunk chunk(allocSize);
|
|
mData.push_back(chunk);
|
|
mCurrentChunk++;
|
|
}
|
|
}
|
|
return mData[mCurrentChunk].allocate(size, alignment);
|
|
}
|
|
|
|
static const size_t CHUNK_SIZE = 128*1024;
|
|
// Note: this class does not deallocate its
|
|
// memory when it's destroyed. It depends upon
|
|
// its parent to deallocate the memory.
|
|
struct Chunk {
|
|
Chunk() {
|
|
mpData = 0;
|
|
mSize = 0;
|
|
mOffset = 0;
|
|
}
|
|
|
|
Chunk(size_t size) {
|
|
mSize = size;
|
|
mpData = (char*) malloc(size);
|
|
mOffset = 0;
|
|
}
|
|
|
|
~Chunk() {
|
|
// Doesn't deallocate memory.
|
|
}
|
|
|
|
void* allocate(size_t size, size_t alignment) {
|
|
size_t alignedOffset = aligned(mOffset, alignment);
|
|
void* result = mpData + alignedOffset;
|
|
mOffset = alignedOffset + size;
|
|
return result;
|
|
}
|
|
|
|
void free() {
|
|
if (mpData) {
|
|
::free(mpData);
|
|
mpData = 0;
|
|
}
|
|
}
|
|
|
|
size_t remainingCapacity(size_t alignment) {
|
|
return aligned(mSize, alignment) - aligned(mOffset, alignment);
|
|
}
|
|
|
|
// Assume alignment is a power of two
|
|
inline size_t aligned(size_t v, size_t alignment) {
|
|
size_t mask = alignment-1;
|
|
return (v + mask) & ~mask;
|
|
}
|
|
|
|
char* mpData;
|
|
size_t mSize;
|
|
size_t mOffset;
|
|
};
|
|
|
|
size_t mCurrentChunk;
|
|
|
|
Vector<Chunk> mData;
|
|
};
|
|
|
|
struct VariableInfo;
|
|
|
|
struct Token {
|
|
int hash;
|
|
size_t length;
|
|
char* pText;
|
|
tokenid_t id;
|
|
|
|
// Current values for the token
|
|
char* mpMacroDefinition;
|
|
VariableInfo* mpVariableInfo;
|
|
};
|
|
|
|
class TokenTable {
|
|
public:
|
|
// Don't use 0..0xff, allows characters and operators to be tokens too.
|
|
|
|
static const int TOKEN_BASE = 0x100;
|
|
TokenTable() {
|
|
mpMap = hashmapCreate(128, hashFn, equalsFn);
|
|
}
|
|
|
|
~TokenTable() {
|
|
hashmapFree(mpMap);
|
|
}
|
|
|
|
void setArena(Arena* pArena) {
|
|
mpArena = pArena;
|
|
}
|
|
|
|
// Returns a token for a given string of characters.
|
|
tokenid_t intern(const char* pText, size_t length) {
|
|
Token probe;
|
|
int hash = hashmapHash((void*) pText, length);
|
|
{
|
|
Token probe;
|
|
probe.hash = hash;
|
|
probe.length = length;
|
|
probe.pText = (char*) pText;
|
|
Token* pValue = (Token*) hashmapGet(mpMap, &probe);
|
|
if (pValue) {
|
|
return pValue->id;
|
|
}
|
|
}
|
|
|
|
Token* pToken = (Token*) mpArena->alloc(sizeof(Token));
|
|
memset(pToken, 0, sizeof(*pToken));
|
|
pToken->hash = hash;
|
|
pToken->length = length;
|
|
pToken->pText = (char*) mpArena->alloc(length + 1);
|
|
memcpy(pToken->pText, pText, length);
|
|
pToken->pText[length] = 0;
|
|
pToken->id = mTokens.size() + TOKEN_BASE;
|
|
mTokens.push_back(pToken);
|
|
hashmapPut(mpMap, pToken, pToken);
|
|
return pToken->id;
|
|
}
|
|
|
|
// Return the Token for a given tokenid.
|
|
Token& operator[](tokenid_t id) {
|
|
return *mTokens[id - TOKEN_BASE];
|
|
}
|
|
|
|
inline size_t size() {
|
|
return mTokens.size();
|
|
}
|
|
|
|
private:
|
|
|
|
static int hashFn(void* pKey) {
|
|
Token* pToken = (Token*) pKey;
|
|
return pToken->hash;
|
|
}
|
|
|
|
static bool equalsFn(void* keyA, void* keyB) {
|
|
Token* pTokenA = (Token*) keyA;
|
|
Token* pTokenB = (Token*) keyB;
|
|
// Don't need to compare hash values, they should always be equal
|
|
return pTokenA->length == pTokenB->length
|
|
&& strcmp(pTokenA->pText, pTokenB->pText) == 0;
|
|
}
|
|
|
|
Hashmap* mpMap;
|
|
Vector<Token*> mTokens;
|
|
Arena* mpArena;
|
|
};
|
|
|
|
class InputStream {
|
|
public:
|
|
virtual ~InputStream() {}
|
|
int getChar() {
|
|
if (bumpLine) {
|
|
line++;
|
|
bumpLine = false;
|
|
}
|
|
int ch = get();
|
|
if (ch == '\n') {
|
|
bumpLine = true;
|
|
}
|
|
return ch;
|
|
}
|
|
int getLine() {
|
|
return line;
|
|
}
|
|
protected:
|
|
InputStream() :
|
|
line(1), bumpLine(false) {
|
|
}
|
|
private:
|
|
virtual int get() = 0;
|
|
int line;
|
|
bool bumpLine;
|
|
};
|
|
|
|
class FileInputStream : public InputStream {
|
|
public:
|
|
FileInputStream(FILE* in) : f(in) {}
|
|
private:
|
|
virtual int get() { return fgetc(f); }
|
|
FILE* f;
|
|
};
|
|
|
|
class TextInputStream : public InputStream {
|
|
public:
|
|
TextInputStream(const char* text, size_t textLength)
|
|
: pText(text), mTextLength(textLength), mPosition(0) {
|
|
}
|
|
|
|
private:
|
|
virtual int get() {
|
|
return mPosition < mTextLength ? pText[mPosition++] : EOF;
|
|
}
|
|
|
|
const char* pText;
|
|
size_t mTextLength;
|
|
size_t mPosition;
|
|
};
|
|
|
|
class String {
|
|
public:
|
|
String() {
|
|
mpBase = 0;
|
|
mUsed = 0;
|
|
mSize = 0;
|
|
}
|
|
|
|
String(const char* item, int len, bool adopt) {
|
|
if (len < 0) {
|
|
len = strlen(item);
|
|
}
|
|
if (adopt) {
|
|
mpBase = (char*) item;
|
|
mUsed = len;
|
|
mSize = len + 1;
|
|
} else {
|
|
mpBase = 0;
|
|
mUsed = 0;
|
|
mSize = 0;
|
|
appendBytes(item, len);
|
|
}
|
|
}
|
|
|
|
String(const String& other) {
|
|
mpBase = 0;
|
|
mUsed = 0;
|
|
mSize = 0;
|
|
appendBytes(other.getUnwrapped(), other.len());
|
|
}
|
|
|
|
~String() {
|
|
if (mpBase) {
|
|
free(mpBase);
|
|
}
|
|
}
|
|
|
|
String& operator=(const String& other) {
|
|
clear();
|
|
appendBytes(other.getUnwrapped(), other.len());
|
|
return *this;
|
|
}
|
|
|
|
inline char* getUnwrapped() const {
|
|
return mpBase;
|
|
}
|
|
|
|
void clear() {
|
|
mUsed = 0;
|
|
if (mSize > 0) {
|
|
mpBase[0] = 0;
|
|
}
|
|
}
|
|
|
|
void appendCStr(const char* s) {
|
|
appendBytes(s, strlen(s));
|
|
}
|
|
|
|
void appendBytes(const char* s, int n) {
|
|
memcpy(ensure(n), s, n + 1);
|
|
}
|
|
|
|
void append(char c) {
|
|
* ensure(1) = c;
|
|
}
|
|
|
|
void append(String& other) {
|
|
appendBytes(other.getUnwrapped(), other.len());
|
|
}
|
|
|
|
char* orphan() {
|
|
char* result = mpBase;
|
|
mpBase = 0;
|
|
mUsed = 0;
|
|
mSize = 0;
|
|
return result;
|
|
}
|
|
|
|
void printf(const char* fmt,...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
void vprintf(const char* fmt, va_list ap) {
|
|
char* temp;
|
|
int numChars = vasprintf(&temp, fmt, ap);
|
|
memcpy(ensure(numChars), temp, numChars+1);
|
|
free(temp);
|
|
}
|
|
|
|
inline size_t len() const {
|
|
return mUsed;
|
|
}
|
|
|
|
private:
|
|
char* ensure(int n) {
|
|
size_t newUsed = mUsed + n;
|
|
if (newUsed > mSize) {
|
|
size_t newSize = mSize * 2 + 10;
|
|
if (newSize < newUsed) {
|
|
newSize = newUsed;
|
|
}
|
|
mpBase = (char*) realloc(mpBase, newSize + 1);
|
|
mSize = newSize;
|
|
}
|
|
mpBase[newUsed] = '\0';
|
|
char* result = mpBase + mUsed;
|
|
mUsed = newUsed;
|
|
return result;
|
|
}
|
|
|
|
char* mpBase;
|
|
size_t mUsed;
|
|
size_t mSize;
|
|
};
|
|
|
|
void internKeywords() {
|
|
// Note: order has to match TOK_ constants
|
|
static const char* keywords[] = {
|
|
"int",
|
|
"char",
|
|
"void",
|
|
"if",
|
|
"else",
|
|
"while",
|
|
"break",
|
|
"return",
|
|
"for",
|
|
"pragma",
|
|
"define",
|
|
"auto",
|
|
"case",
|
|
"const",
|
|
"continue",
|
|
"default",
|
|
"do",
|
|
"double",
|
|
"enum",
|
|
"extern",
|
|
"float",
|
|
"goto",
|
|
"long",
|
|
"register",
|
|
"short",
|
|
"signed",
|
|
"sizeof",
|
|
"static",
|
|
"struct",
|
|
"switch",
|
|
"typedef",
|
|
"union",
|
|
"unsigned",
|
|
"volatile",
|
|
"_Bool",
|
|
"_Complex",
|
|
"_Imaginary",
|
|
"inline",
|
|
"restrict",
|
|
0};
|
|
|
|
for(int i = 0; keywords[i]; i++) {
|
|
mTokenTable.intern(keywords[i], strlen(keywords[i]));
|
|
}
|
|
}
|
|
|
|
struct InputState {
|
|
InputStream* pStream;
|
|
int oldCh;
|
|
};
|
|
|
|
struct VariableInfo {
|
|
void* pAddress;
|
|
void* pForward; // For a forward direction, linked list of data to fix up
|
|
tokenid_t tok;
|
|
size_t level;
|
|
VariableInfo* pOldDefinition;
|
|
Type* pType;
|
|
};
|
|
|
|
class SymbolStack {
|
|
public:
|
|
SymbolStack() {
|
|
mpArena = 0;
|
|
mpTokenTable = 0;
|
|
}
|
|
|
|
void setArena(Arena* pArena) {
|
|
mpArena = pArena;
|
|
}
|
|
|
|
void setTokenTable(TokenTable* pTokenTable) {
|
|
mpTokenTable = pTokenTable;
|
|
}
|
|
|
|
void pushLevel() {
|
|
Mark mark;
|
|
mark.mArenaMark = mpArena->mark();
|
|
mark.mSymbolHead = mStack.size();
|
|
mLevelStack.push_back(mark);
|
|
}
|
|
|
|
void popLevel() {
|
|
// Undo any shadowing that was done:
|
|
Mark mark = mLevelStack.back();
|
|
mLevelStack.pop_back();
|
|
while (mStack.size() > mark.mSymbolHead) {
|
|
VariableInfo* pV = mStack.back();
|
|
mStack.pop_back();
|
|
(*mpTokenTable)[pV->tok].mpVariableInfo = pV->pOldDefinition;
|
|
}
|
|
mpArena->freeToMark(mark.mArenaMark);
|
|
}
|
|
|
|
bool isDefinedAtCurrentLevel(tokenid_t tok) {
|
|
VariableInfo* pV = (*mpTokenTable)[tok].mpVariableInfo;
|
|
return pV && pV->level == level();
|
|
}
|
|
|
|
VariableInfo* add(tokenid_t tok) {
|
|
Token& token = (*mpTokenTable)[tok];
|
|
VariableInfo* pOldV = token.mpVariableInfo;
|
|
VariableInfo* pNewV =
|
|
(VariableInfo*) mpArena->alloc(sizeof(VariableInfo));
|
|
memset(pNewV, 0, sizeof(VariableInfo));
|
|
pNewV->tok = tok;
|
|
pNewV->level = level();
|
|
pNewV->pOldDefinition = pOldV;
|
|
token.mpVariableInfo = pNewV;
|
|
mStack.push_back(pNewV);
|
|
return pNewV;
|
|
}
|
|
|
|
VariableInfo* add(Type* pType) {
|
|
VariableInfo* pVI = add(pType->id);
|
|
pVI->pType = pType;
|
|
return pVI;
|
|
}
|
|
|
|
void forEach(bool (*fn)(VariableInfo*, void*), void* context) {
|
|
for (size_t i = 0; i < mStack.size(); i++) {
|
|
if (! fn(mStack[i], context)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
inline size_t level() {
|
|
return mLevelStack.size();
|
|
}
|
|
|
|
struct Mark {
|
|
Arena::Mark mArenaMark;
|
|
size_t mSymbolHead;
|
|
};
|
|
|
|
Arena* mpArena;
|
|
TokenTable* mpTokenTable;
|
|
Vector<VariableInfo*> mStack;
|
|
Vector<Mark> mLevelStack;
|
|
};
|
|
|
|
int ch; // Current input character, or EOF
|
|
tokenid_t tok; // token
|
|
intptr_t tokc; // token extra info
|
|
double tokd; // floating point constant value
|
|
int tokl; // token operator level
|
|
intptr_t rsym; // return symbol
|
|
Type* pReturnType; // type of the current function's return.
|
|
intptr_t loc; // local variable index
|
|
char* glo; // global variable index
|
|
String mTokenString;
|
|
char* dptr; // Macro state: Points to macro text during macro playback.
|
|
int dch; // Macro state: Saves old value of ch during a macro playback.
|
|
char* pGlobalBase;
|
|
|
|
// Arena for the duration of the compile
|
|
Arena mGlobalArena;
|
|
// Arena for data that's only needed when compiling a single function
|
|
Arena mLocalArena;
|
|
|
|
TokenTable mTokenTable;
|
|
SymbolStack mGlobals;
|
|
SymbolStack mLocals;
|
|
|
|
// Prebuilt types, makes things slightly faster.
|
|
Type* mkpInt; // int
|
|
Type* mkpChar; // char
|
|
Type* mkpVoid; // void
|
|
Type* mkpFloat;
|
|
Type* mkpDouble;
|
|
Type* mkpIntFn;
|
|
Type* mkpIntPtr;
|
|
Type* mkpCharPtr;
|
|
Type* mkpFloatPtr;
|
|
Type* mkpDoublePtr;
|
|
Type* mkpPtrIntFn;
|
|
|
|
InputStream* file;
|
|
|
|
CodeBuf codeBuf;
|
|
CodeGenerator* pGen;
|
|
|
|
String mErrorBuf;
|
|
|
|
String mPragmas;
|
|
int mPragmaStringCount;
|
|
|
|
static const int ALLOC_SIZE = 99999;
|
|
|
|
static const int TOK_DUMMY = 1;
|
|
static const int TOK_NUM = 2;
|
|
static const int TOK_NUM_FLOAT = 3;
|
|
static const int TOK_NUM_DOUBLE = 4;
|
|
|
|
// 3..255 are character and/or operators
|
|
|
|
// Keywords start at 0x100 and increase by 1
|
|
// Order has to match string list in "internKeywords".
|
|
enum {
|
|
TOK_KEYWORD = TokenTable::TOKEN_BASE,
|
|
TOK_INT = TOK_KEYWORD,
|
|
TOK_CHAR,
|
|
TOK_VOID,
|
|
TOK_IF,
|
|
TOK_ELSE,
|
|
TOK_WHILE,
|
|
TOK_BREAK,
|
|
TOK_RETURN,
|
|
TOK_FOR,
|
|
TOK_PRAGMA,
|
|
TOK_DEFINE,
|
|
TOK_AUTO,
|
|
TOK_CASE,
|
|
TOK_CONST,
|
|
TOK_CONTINUE,
|
|
TOK_DEFAULT,
|
|
TOK_DO,
|
|
TOK_DOUBLE,
|
|
TOK_ENUM,
|
|
TOK_EXTERN,
|
|
TOK_FLOAT,
|
|
TOK_GOTO,
|
|
TOK_LONG,
|
|
TOK_REGISTER,
|
|
TOK_SHORT,
|
|
TOK_SIGNED,
|
|
TOK_SIZEOF,
|
|
TOK_STATIC,
|
|
TOK_STRUCT,
|
|
TOK_SWITCH,
|
|
TOK_TYPEDEF,
|
|
TOK_UNION,
|
|
TOK_UNSIGNED,
|
|
TOK_VOLATILE,
|
|
TOK__BOOL,
|
|
TOK__COMPLEX,
|
|
TOK__IMAGINARY,
|
|
TOK_INLINE,
|
|
TOK_RESTRICT,
|
|
// Symbols start after tokens
|
|
TOK_SYMBOL
|
|
};
|
|
|
|
static const int LOCAL = 0x200;
|
|
|
|
static const int SYM_FORWARD = 0;
|
|
static const int SYM_DEFINE = 1;
|
|
|
|
/* tokens in string heap */
|
|
static const int TAG_TOK = ' ';
|
|
|
|
static const int OP_INCREMENT = 0;
|
|
static const int OP_DECREMENT = 1;
|
|
static const int OP_MUL = 2;
|
|
static const int OP_DIV = 3;
|
|
static const int OP_MOD = 4;
|
|
static const int OP_PLUS = 5;
|
|
static const int OP_MINUS = 6;
|
|
static const int OP_SHIFT_LEFT = 7;
|
|
static const int OP_SHIFT_RIGHT = 8;
|
|
static const int OP_LESS_EQUAL = 9;
|
|
static const int OP_GREATER_EQUAL = 10;
|
|
static const int OP_LESS = 11;
|
|
static const int OP_GREATER = 12;
|
|
static const int OP_EQUALS = 13;
|
|
static const int OP_NOT_EQUALS = 14;
|
|
static const int OP_LOGICAL_AND = 15;
|
|
static const int OP_LOGICAL_OR = 16;
|
|
static const int OP_BIT_AND = 17;
|
|
static const int OP_BIT_XOR = 18;
|
|
static const int OP_BIT_OR = 19;
|
|
static const int OP_BIT_NOT = 20;
|
|
static const int OP_LOGICAL_NOT = 21;
|
|
static const int OP_COUNT = 22;
|
|
|
|
/* Operators are searched from front, the two-character operators appear
|
|
* before the single-character operators with the same first character.
|
|
* @ is used to pad out single-character operators.
|
|
*/
|
|
static const char* operatorChars;
|
|
static const char operatorLevel[];
|
|
|
|
/* Called when we detect an internal problem. Does nothing in production.
|
|
*
|
|
*/
|
|
void internalError() {
|
|
* (char*) 0 = 0;
|
|
}
|
|
|
|
void assert(bool isTrue) {
|
|
if (!isTrue) {
|
|
internalError();
|
|
}
|
|
}
|
|
|
|
bool isSymbol(tokenid_t t) {
|
|
return t >= TOK_SYMBOL &&
|
|
((size_t) (t-TOK_SYMBOL)) < mTokenTable.size();
|
|
}
|
|
|
|
bool isSymbolOrKeyword(tokenid_t t) {
|
|
return t >= TOK_KEYWORD &&
|
|
((size_t) (t-TOK_KEYWORD)) < mTokenTable.size();
|
|
}
|
|
|
|
VariableInfo* VI(tokenid_t t) {
|
|
assert(isSymbol(t));
|
|
VariableInfo* pV = mTokenTable[t].mpVariableInfo;
|
|
if (pV && pV->tok != t) {
|
|
internalError();
|
|
}
|
|
return pV;
|
|
}
|
|
|
|
inline bool isDefined(tokenid_t t) {
|
|
return t >= TOK_SYMBOL && VI(t) != 0;
|
|
}
|
|
|
|
const char* nameof(tokenid_t t) {
|
|
assert(isSymbolOrKeyword(t));
|
|
return mTokenTable[t].pText;
|
|
}
|
|
|
|
void pdef(int t) {
|
|
mTokenString.append(t);
|
|
}
|
|
|
|
void inp() {
|
|
if (dptr) {
|
|
ch = *dptr++;
|
|
if (ch == 0) {
|
|
dptr = 0;
|
|
ch = dch;
|
|
}
|
|
} else
|
|
ch = file->getChar();
|
|
#if 0
|
|
printf("ch='%c' 0x%x\n", ch, ch);
|
|
#endif
|
|
}
|
|
|
|
int isid() {
|
|
return isalnum(ch) | (ch == '_');
|
|
}
|
|
|
|
/* read a character constant, advances ch to after end of constant */
|
|
int getq() {
|
|
int val = ch;
|
|
if (ch == '\\') {
|
|
inp();
|
|
if (isoctal(ch)) {
|
|
// 1 to 3 octal characters.
|
|
val = 0;
|
|
for(int i = 0; i < 3; i++) {
|
|
if (isoctal(ch)) {
|
|
val = (val << 3) + ch - '0';
|
|
inp();
|
|
}
|
|
}
|
|
return val;
|
|
} else if (ch == 'x' || ch == 'X') {
|
|
// N hex chars
|
|
inp();
|
|
if (! isxdigit(ch)) {
|
|
error("'x' character escape requires at least one digit.");
|
|
} else {
|
|
val = 0;
|
|
while (isxdigit(ch)) {
|
|
int d = ch;
|
|
if (isdigit(d)) {
|
|
d -= '0';
|
|
} else if (d <= 'F') {
|
|
d = d - 'A' + 10;
|
|
} else {
|
|
d = d - 'a' + 10;
|
|
}
|
|
val = (val << 4) + d;
|
|
inp();
|
|
}
|
|
}
|
|
} else {
|
|
int val = ch;
|
|
switch (ch) {
|
|
case 'a':
|
|
val = '\a';
|
|
break;
|
|
case 'b':
|
|
val = '\b';
|
|
break;
|
|
case 'f':
|
|
val = '\f';
|
|
break;
|
|
case 'n':
|
|
val = '\n';
|
|
break;
|
|
case 'r':
|
|
val = '\r';
|
|
break;
|
|
case 't':
|
|
val = '\t';
|
|
break;
|
|
case 'v':
|
|
val = '\v';
|
|
break;
|
|
case '\\':
|
|
val = '\\';
|
|
break;
|
|
case '\'':
|
|
val = '\'';
|
|
break;
|
|
case '"':
|
|
val = '"';
|
|
break;
|
|
case '?':
|
|
val = '?';
|
|
break;
|
|
default:
|
|
error("Undefined character escape %c", ch);
|
|
break;
|
|
}
|
|
inp();
|
|
return val;
|
|
}
|
|
} else {
|
|
inp();
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static bool isoctal(int ch) {
|
|
return ch >= '0' && ch <= '7';
|
|
}
|
|
|
|
bool acceptCh(int c) {
|
|
bool result = c == ch;
|
|
if (result) {
|
|
pdef(ch);
|
|
inp();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool acceptDigitsCh() {
|
|
bool result = false;
|
|
while (isdigit(ch)) {
|
|
result = true;
|
|
pdef(ch);
|
|
inp();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void parseFloat() {
|
|
tok = TOK_NUM_DOUBLE;
|
|
// mTokenString already has the integral part of the number.
|
|
acceptCh('.');
|
|
acceptDigitsCh();
|
|
bool doExp = true;
|
|
if (acceptCh('e') || acceptCh('E')) {
|
|
// Don't need to do any extra work
|
|
} else if (ch == 'f' || ch == 'F') {
|
|
pdef('e'); // So it can be parsed by strtof.
|
|
inp();
|
|
tok = TOK_NUM_FLOAT;
|
|
} else {
|
|
doExp = false;
|
|
}
|
|
if (doExp) {
|
|
bool digitsRequired = acceptCh('-');
|
|
bool digitsFound = acceptDigitsCh();
|
|
if (digitsRequired && ! digitsFound) {
|
|
error("malformed exponent");
|
|
}
|
|
}
|
|
char* pText = mTokenString.getUnwrapped();
|
|
if (tok == TOK_NUM_FLOAT) {
|
|
tokd = strtof(pText, 0);
|
|
} else {
|
|
tokd = strtod(pText, 0);
|
|
}
|
|
//fprintf(stderr, "float constant: %s (%d) %g\n", pText, tok, tokd);
|
|
}
|
|
|
|
void next() {
|
|
int l, a;
|
|
|
|
while (isspace(ch) | (ch == '#')) {
|
|
if (ch == '#') {
|
|
inp();
|
|
next();
|
|
if (tok == TOK_DEFINE) {
|
|
doDefine();
|
|
} else if (tok == TOK_PRAGMA) {
|
|
doPragma();
|
|
} else {
|
|
error("Unsupported preprocessor directive \"%s\"",
|
|
mTokenString.getUnwrapped());
|
|
}
|
|
}
|
|
inp();
|
|
}
|
|
tokl = 0;
|
|
tok = ch;
|
|
/* encode identifiers & numbers */
|
|
if (isid()) {
|
|
mTokenString.clear();
|
|
while (isid()) {
|
|
pdef(ch);
|
|
inp();
|
|
}
|
|
if (isdigit(tok)) {
|
|
// Start of a numeric constant. Could be integer, float, or
|
|
// double, won't know until we look further.
|
|
if (ch == '.' || ch == 'e' || ch == 'e'
|
|
|| ch == 'f' || ch == 'F') {
|
|
parseFloat();
|
|
} else {
|
|
// It's an integer constant
|
|
tokc = strtol(mTokenString.getUnwrapped(), 0, 0);
|
|
tok = TOK_NUM;
|
|
}
|
|
} else {
|
|
tok = mTokenTable.intern(mTokenString.getUnwrapped(),
|
|
mTokenString.len());
|
|
// Is this a macro?
|
|
char* pMacroDefinition = mTokenTable[tok].mpMacroDefinition;
|
|
if(pMacroDefinition) {
|
|
// Yes, it is a macro
|
|
dptr = pMacroDefinition;
|
|
dch = ch;
|
|
inp();
|
|
next();
|
|
}
|
|
}
|
|
} else {
|
|
inp();
|
|
if (tok == '\'') {
|
|
tok = TOK_NUM;
|
|
tokc = getq();
|
|
if (ch != '\'') {
|
|
error("Expected a ' character, got %c", ch);
|
|
} else {
|
|
inp();
|
|
}
|
|
} else if ((tok == '/') & (ch == '*')) {
|
|
inp();
|
|
while (ch && ch != EOF) {
|
|
while (ch != '*' && ch != EOF)
|
|
inp();
|
|
inp();
|
|
if (ch == '/')
|
|
ch = 0;
|
|
}
|
|
if (ch == EOF) {
|
|
error("End of file inside comment.");
|
|
}
|
|
inp();
|
|
next();
|
|
} else if ((tok == '/') & (ch == '/')) {
|
|
inp();
|
|
while (ch && (ch != '\n') && (ch != EOF)) {
|
|
inp();
|
|
}
|
|
inp();
|
|
next();
|
|
} else {
|
|
const char* t = operatorChars;
|
|
int opIndex = 0;
|
|
while ((l = *t++) != 0) {
|
|
a = *t++;
|
|
tokl = operatorLevel[opIndex];
|
|
tokc = opIndex;
|
|
if ((l == tok) & ((a == ch) | (a == '@'))) {
|
|
#if 0
|
|
printf("%c%c -> tokl=%d tokc=0x%x\n",
|
|
l, a, tokl, tokc);
|
|
#endif
|
|
if (a == ch) {
|
|
inp();
|
|
tok = TOK_DUMMY; /* dummy token for double tokens */
|
|
}
|
|
break;
|
|
}
|
|
opIndex++;
|
|
}
|
|
if (l == 0) {
|
|
tokl = 0;
|
|
tokc = 0;
|
|
}
|
|
}
|
|
}
|
|
#if 0
|
|
{
|
|
String buf;
|
|
decodeToken(buf, tok);
|
|
fprintf(stderr, "%s\n", buf.getUnwrapped());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void doDefine() {
|
|
next();
|
|
tokenid_t name = tok;
|
|
String* pName = new String();
|
|
while (isspace(ch)) {
|
|
inp();
|
|
}
|
|
if (ch == '(') {
|
|
delete pName;
|
|
error("Defines with arguments not supported");
|
|
return;
|
|
}
|
|
while (isspace(ch)) {
|
|
inp();
|
|
}
|
|
String value;
|
|
while (ch != '\n' && ch != EOF) {
|
|
value.append(ch);
|
|
inp();
|
|
}
|
|
char* pDefn = (char*)mGlobalArena.alloc(value.len() + 1);
|
|
memcpy(pDefn, value.getUnwrapped(), value.len());
|
|
pDefn[value.len()] = 0;
|
|
mTokenTable[name].mpMacroDefinition = pDefn;
|
|
}
|
|
|
|
void doPragma() {
|
|
// # pragma name(val)
|
|
int state = 0;
|
|
while(ch != EOF && ch != '\n' && state < 10) {
|
|
switch(state) {
|
|
case 0:
|
|
if (isspace(ch)) {
|
|
inp();
|
|
} else {
|
|
state++;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (isalnum(ch)) {
|
|
mPragmas.append(ch);
|
|
inp();
|
|
} else if (ch == '(') {
|
|
mPragmas.append(0);
|
|
inp();
|
|
state++;
|
|
} else {
|
|
state = 11;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (isalnum(ch)) {
|
|
mPragmas.append(ch);
|
|
inp();
|
|
} else if (ch == ')') {
|
|
mPragmas.append(0);
|
|
inp();
|
|
state = 10;
|
|
} else {
|
|
state = 11;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if(state != 10) {
|
|
error("Unexpected pragma syntax");
|
|
}
|
|
mPragmaStringCount += 2;
|
|
}
|
|
|
|
virtual void verror(const char* fmt, va_list ap) {
|
|
mErrorBuf.printf("%ld: ", file->getLine());
|
|
mErrorBuf.vprintf(fmt, ap);
|
|
mErrorBuf.printf("\n");
|
|
}
|
|
|
|
void skip(intptr_t c) {
|
|
if (tok != c) {
|
|
error("'%c' expected", c);
|
|
}
|
|
next();
|
|
}
|
|
|
|
bool accept(intptr_t c) {
|
|
if (tok == c) {
|
|
next();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool acceptStringLiteral() {
|
|
if (tok == '"') {
|
|
pGen->li((int) glo, mkpCharPtr);
|
|
// This while loop merges multiple adjacent string constants.
|
|
while (tok == '"') {
|
|
while (ch != '"' && ch != EOF) {
|
|
*allocGlobalSpace(1,1) = getq();
|
|
}
|
|
if (ch != '"') {
|
|
error("Unterminated string constant.");
|
|
}
|
|
inp();
|
|
next();
|
|
}
|
|
/* Null terminate */
|
|
*glo = 0;
|
|
/* align heap */
|
|
allocGlobalSpace(1,(char*) (((intptr_t) glo + 4) & -4) - glo);
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
/* Parse and evaluate a unary expression.
|
|
* allowAssignment is true if '=' parsing wanted (quick hack)
|
|
*/
|
|
void unary(bool allowAssignment) {
|
|
intptr_t n, t, a;
|
|
t = 0;
|
|
n = 1; /* type of expression 0 = forward, 1 = value, other = lvalue */
|
|
if (acceptStringLiteral()) {
|
|
// Nothing else to do.
|
|
} else {
|
|
int c = tokl;
|
|
a = tokc;
|
|
double ad = tokd;
|
|
t = tok;
|
|
next();
|
|
if (t == TOK_NUM) {
|
|
pGen->li(a, mkpInt);
|
|
} else if (t == TOK_NUM_FLOAT) {
|
|
// Align to 4-byte boundary
|
|
glo = (char*) (((intptr_t) glo + 3) & -4);
|
|
* (float*) glo = (float) ad;
|
|
pGen->loadFloat((int) glo, mkpFloat);
|
|
glo += 4;
|
|
} else if (t == TOK_NUM_DOUBLE) {
|
|
// Align to 8-byte boundary
|
|
glo = (char*) (((intptr_t) glo + 7) & -8);
|
|
* (double*) glo = ad;
|
|
pGen->loadFloat((int) glo, mkpDouble);
|
|
glo += 8;
|
|
} else if (c == 2) {
|
|
/* -, +, !, ~ */
|
|
unary(false);
|
|
if (t == '!')
|
|
pGen->gUnaryCmp(a, mkpInt);
|
|
else if (t == '+') {
|
|
// ignore unary plus.
|
|
} else {
|
|
pGen->genUnaryOp(a);
|
|
}
|
|
} else if (t == '(') {
|
|
expr();
|
|
skip(')');
|
|
} else if (t == '*') {
|
|
/* This is a pointer dereference, but we currently only
|
|
* support a pointer dereference if it's immediately
|
|
* in front of a cast. So parse the cast right here.
|
|
*/
|
|
skip('(');
|
|
Type* pCast = expectCastTypeDeclaration(mLocalArena);
|
|
// We currently only handle 3 types of cast:
|
|
// (int*), (char*) , (int (*)())
|
|
if(typeEqual(pCast, mkpIntPtr)) {
|
|
t = TOK_INT;
|
|
} else if (typeEqual(pCast, mkpCharPtr)) {
|
|
t = TOK_CHAR;
|
|
} else if (typeEqual(pCast, mkpFloatPtr)) {
|
|
t = TOK_FLOAT;
|
|
} else if (typeEqual(pCast, mkpDoublePtr)) {
|
|
t = TOK_DOUBLE;
|
|
} else if (typeEqual(pCast, mkpPtrIntFn)){
|
|
t = 0;
|
|
} else {
|
|
String buffer;
|
|
decodeType(buffer, pCast);
|
|
error("Unsupported cast type %s", buffer.getUnwrapped());
|
|
decodeType(buffer, mkpPtrIntFn);
|
|
}
|
|
skip(')');
|
|
unary(false);
|
|
if (accept('=')) {
|
|
pGen->pushR0();
|
|
expr();
|
|
pGen->storeR0ToTOS(pCast);
|
|
} else if (t) {
|
|
pGen->loadR0FromR0(pCast);
|
|
}
|
|
// Else we fall through to the function call below, with
|
|
// t == 0 to trigger an indirect function call. Hack!
|
|
} else if (t == '&') {
|
|
VariableInfo* pVI = VI(tok);
|
|
pGen->leaR0((int) pVI->pAddress,
|
|
createPtrType(pVI->pType, mLocalArena));
|
|
next();
|
|
} else if (t == EOF ) {
|
|
error("Unexpected EOF.");
|
|
} else if (!checkSymbol(t)) {
|
|
// Don't have to do anything special here, the error
|
|
// message was printed by checkSymbol() above.
|
|
} else {
|
|
if (!isDefined(t)) {
|
|
mGlobals.add(t);
|
|
// printf("Adding new global function %s\n", nameof(t));
|
|
}
|
|
VariableInfo* pVI = VI(t);
|
|
n = (intptr_t) pVI->pAddress;
|
|
/* forward reference: try dlsym */
|
|
if (!n) {
|
|
n = (intptr_t) dlsym(RTLD_DEFAULT, nameof(t));
|
|
if (tok == '(') {
|
|
pVI->pType = mkpIntFn;
|
|
} else {
|
|
pVI->pType = mkpInt;
|
|
}
|
|
pVI->pAddress = (void*) n;
|
|
}
|
|
if ((tok == '=') & allowAssignment) {
|
|
/* assignment */
|
|
next();
|
|
expr();
|
|
pGen->storeR0(n, pVI->pType);
|
|
} else if (tok != '(') {
|
|
/* variable */
|
|
if (!n) {
|
|
error("Undefined variable %s", nameof(t));
|
|
}
|
|
pGen->loadR0(n, tokl == 11, tokc, pVI->pType);
|
|
if (tokl == 11) {
|
|
next();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* function call */
|
|
if (accept('(')) {
|
|
Type* pDecl = NULL;
|
|
VariableInfo* pVI = NULL;
|
|
if (n == 1) { // Indirect function call, push address of fn.
|
|
pDecl = pGen->getR0Type();
|
|
pGen->pushR0();
|
|
} else {
|
|
pVI = VI(t);
|
|
pDecl = pVI->pType;
|
|
}
|
|
Type* pArgList = pDecl->pTail;
|
|
bool varArgs = pArgList == NULL;
|
|
/* push args and invert order */
|
|
a = pGen->beginFunctionCallArguments();
|
|
int l = 0;
|
|
int argCount = 0;
|
|
while (tok != ')' && tok != EOF) {
|
|
if (! varArgs && !pArgList) {
|
|
error ("Unexpected argument.");
|
|
}
|
|
expr();
|
|
Type* pTargetType;
|
|
if (pArgList) {
|
|
pTargetType = pArgList->pHead;
|
|
pArgList = pArgList->pTail;
|
|
} else {
|
|
pTargetType = pGen->getR0Type();
|
|
if (pTargetType->tag == TY_FLOAT) {
|
|
pTargetType = mkpDouble;
|
|
}
|
|
}
|
|
if (pTargetType->tag == TY_VOID) {
|
|
error("Can't pass void value for argument %d",
|
|
argCount + 1);
|
|
} else {
|
|
pGen->convertR0(pTargetType);
|
|
l += pGen->storeR0ToArg(l);
|
|
}
|
|
if (accept(',')) {
|
|
// fine
|
|
} else if ( tok != ')') {
|
|
error("Expected ',' or ')'");
|
|
}
|
|
argCount += 1;
|
|
}
|
|
if (! varArgs && pArgList) {
|
|
error ("Expected more argument(s). Saw %d", argCount);
|
|
}
|
|
pGen->endFunctionCallArguments(pDecl, a, l);
|
|
skip(')');
|
|
if (!n) {
|
|
/* forward reference */
|
|
pVI->pForward = (void*) pGen->callForward((int) pVI->pForward,
|
|
pVI->pType);
|
|
} else if (n == 1) {
|
|
pGen->callIndirect(l, mkpPtrIntFn->pHead);
|
|
} else {
|
|
pGen->callRelative(n - codeBuf.getPC() - pGen->jumpOffset(),
|
|
VI(t)->pType);
|
|
}
|
|
pGen->adjustStackAfterCall(pDecl, l, n == 1);
|
|
}
|
|
}
|
|
|
|
/* Recursive descent parser for binary operations.
|
|
*/
|
|
void binaryOp(int level) {
|
|
intptr_t t, n, a;
|
|
t = 0;
|
|
if (level-- == 1)
|
|
unary(true);
|
|
else {
|
|
binaryOp(level);
|
|
a = 0;
|
|
while (level == tokl) {
|
|
n = tok;
|
|
t = tokc;
|
|
next();
|
|
|
|
if (level > 8) {
|
|
a = pGen->gtst(t == OP_LOGICAL_OR, a); /* && and || output code generation */
|
|
binaryOp(level);
|
|
} else {
|
|
pGen->pushR0();
|
|
binaryOp(level);
|
|
|
|
if ((level == 4) | (level == 5)) {
|
|
pGen->gcmp(t, mkpInt);
|
|
} else {
|
|
pGen->genOp(t);
|
|
}
|
|
}
|
|
}
|
|
/* && and || output code generation */
|
|
if (a && level > 8) {
|
|
a = pGen->gtst(t == OP_LOGICAL_OR, a);
|
|
pGen->li(t != OP_LOGICAL_OR, mkpInt);
|
|
pGen->gjmp(5); /* jmp $ + 5 (sizeof li, FIXME for ARM) */
|
|
pGen->gsym(a);
|
|
pGen->li(t == OP_LOGICAL_OR, mkpInt);
|
|
}
|
|
}
|
|
}
|
|
|
|
void expr() {
|
|
binaryOp(11);
|
|
}
|
|
|
|
int test_expr() {
|
|
expr();
|
|
return pGen->gtst(0, 0);
|
|
}
|
|
|
|
void block(intptr_t l, bool outermostFunctionBlock) {
|
|
intptr_t a, n, t;
|
|
|
|
Type* pBaseType;
|
|
if ((pBaseType = acceptPrimitiveType(mLocalArena))) {
|
|
/* declarations */
|
|
localDeclarations(pBaseType);
|
|
} else if (tok == TOK_IF) {
|
|
next();
|
|
skip('(');
|
|
a = test_expr();
|
|
skip(')');
|
|
block(l, false);
|
|
if (tok == TOK_ELSE) {
|
|
next();
|
|
n = pGen->gjmp(0); /* jmp */
|
|
pGen->gsym(a);
|
|
block(l, false);
|
|
pGen->gsym(n); /* patch else jmp */
|
|
} else {
|
|
pGen->gsym(a); /* patch if test */
|
|
}
|
|
} else if ((tok == TOK_WHILE) | (tok == TOK_FOR)) {
|
|
t = tok;
|
|
next();
|
|
skip('(');
|
|
if (t == TOK_WHILE) {
|
|
n = codeBuf.getPC(); // top of loop, target of "next" iteration
|
|
a = test_expr();
|
|
} else {
|
|
if (tok != ';')
|
|
expr();
|
|
skip(';');
|
|
n = codeBuf.getPC();
|
|
a = 0;
|
|
if (tok != ';')
|
|
a = test_expr();
|
|
skip(';');
|
|
if (tok != ')') {
|
|
t = pGen->gjmp(0);
|
|
expr();
|
|
pGen->gjmp(n - codeBuf.getPC() - pGen->jumpOffset());
|
|
pGen->gsym(t);
|
|
n = t + 4;
|
|
}
|
|
}
|
|
skip(')');
|
|
block((intptr_t) &a, false);
|
|
pGen->gjmp(n - codeBuf.getPC() - pGen->jumpOffset()); /* jmp */
|
|
pGen->gsym(a);
|
|
} else if (tok == '{') {
|
|
if (! outermostFunctionBlock) {
|
|
mLocals.pushLevel();
|
|
}
|
|
next();
|
|
while (tok != '}' && tok != EOF)
|
|
block(l, false);
|
|
skip('}');
|
|
if (! outermostFunctionBlock) {
|
|
mLocals.popLevel();
|
|
}
|
|
} else {
|
|
if (accept(TOK_RETURN)) {
|
|
if (tok != ';') {
|
|
expr();
|
|
if (pReturnType->tag == TY_VOID) {
|
|
error("Must not return a value from a void function");
|
|
} else {
|
|
pGen->convertR0(pReturnType);
|
|
}
|
|
} else {
|
|
if (pReturnType->tag != TY_VOID) {
|
|
error("Must specify a value here");
|
|
}
|
|
}
|
|
rsym = pGen->gjmp(rsym); /* jmp */
|
|
} else if (accept(TOK_BREAK)) {
|
|
*(int *) l = pGen->gjmp(*(int *) l);
|
|
} else if (tok != ';')
|
|
expr();
|
|
skip(';');
|
|
}
|
|
}
|
|
|
|
bool typeEqual(Type* a, Type* b) {
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
if (a == NULL || b == NULL) {
|
|
return false;
|
|
}
|
|
TypeTag at = a->tag;
|
|
if (at != b->tag) {
|
|
return false;
|
|
}
|
|
if (at == TY_POINTER) {
|
|
return typeEqual(a->pHead, b->pHead);
|
|
} else if (at == TY_FUNC || at == TY_PARAM) {
|
|
return typeEqual(a->pHead, b->pHead)
|
|
&& typeEqual(a->pTail, b->pTail);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Type* createType(TypeTag tag, Type* pHead, Type* pTail, Arena& arena) {
|
|
assert(tag >= TY_INT && tag <= TY_PARAM);
|
|
Type* pType = (Type*) arena.alloc(sizeof(Type));
|
|
memset(pType, 0, sizeof(*pType));
|
|
pType->tag = tag;
|
|
pType->pHead = pHead;
|
|
pType->pTail = pTail;
|
|
return pType;
|
|
}
|
|
|
|
Type* createPtrType(Type* pType, Arena& arena) {
|
|
return createType(TY_POINTER, pType, NULL, arena);
|
|
}
|
|
|
|
/**
|
|
* Try to print a type in declaration order
|
|
*/
|
|
void decodeType(String& buffer, Type* pType) {
|
|
buffer.clear();
|
|
if (pType == NULL) {
|
|
buffer.appendCStr("null");
|
|
return;
|
|
}
|
|
decodeTypeImp(buffer, pType);
|
|
}
|
|
|
|
void decodeTypeImp(String& buffer, Type* pType) {
|
|
decodeTypeImpPrefix(buffer, pType);
|
|
|
|
String temp;
|
|
if (pType->id != 0) {
|
|
decodeToken(temp, pType->id);
|
|
buffer.append(temp);
|
|
}
|
|
|
|
decodeTypeImpPostfix(buffer, pType);
|
|
}
|
|
|
|
void decodeTypeImpPrefix(String& buffer, Type* pType) {
|
|
TypeTag tag = pType->tag;
|
|
|
|
if (tag >= TY_INT && tag <= TY_VOID) {
|
|
switch (tag) {
|
|
case TY_INT:
|
|
buffer.appendCStr("int");
|
|
break;
|
|
case TY_CHAR:
|
|
buffer.appendCStr("char");
|
|
break;
|
|
case TY_VOID:
|
|
buffer.appendCStr("void");
|
|
break;
|
|
case TY_FLOAT:
|
|
buffer.appendCStr("float");
|
|
break;
|
|
case TY_DOUBLE:
|
|
buffer.appendCStr("double");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
buffer.append(' ');
|
|
}
|
|
|
|
switch (tag) {
|
|
case TY_INT:
|
|
break;
|
|
case TY_CHAR:
|
|
break;
|
|
case TY_VOID:
|
|
break;
|
|
case TY_FLOAT:
|
|
break;
|
|
case TY_DOUBLE:
|
|
break;
|
|
case TY_POINTER:
|
|
decodeTypeImpPrefix(buffer, pType->pHead);
|
|
if(pType->pHead && pType->pHead->tag == TY_FUNC) {
|
|
buffer.append('(');
|
|
}
|
|
buffer.append('*');
|
|
break;
|
|
case TY_FUNC:
|
|
decodeTypeImp(buffer, pType->pHead);
|
|
break;
|
|
case TY_PARAM:
|
|
decodeTypeImp(buffer, pType->pHead);
|
|
break;
|
|
default:
|
|
String temp;
|
|
temp.printf("Unknown tag %d", pType->tag);
|
|
buffer.append(temp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void decodeTypeImpPostfix(String& buffer, Type* pType) {
|
|
TypeTag tag = pType->tag;
|
|
|
|
switch(tag) {
|
|
case TY_POINTER:
|
|
if(pType->pHead && pType->pHead->tag == TY_FUNC) {
|
|
buffer.append(')');
|
|
}
|
|
decodeTypeImpPostfix(buffer, pType->pHead);
|
|
break;
|
|
case TY_FUNC:
|
|
buffer.append('(');
|
|
for(Type* pArg = pType->pTail; pArg; pArg = pArg->pTail) {
|
|
decodeTypeImp(buffer, pArg);
|
|
if (pArg->pTail) {
|
|
buffer.appendCStr(", ");
|
|
}
|
|
}
|
|
buffer.append(')');
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void printType(Type* pType) {
|
|
String buffer;
|
|
decodeType(buffer, pType);
|
|
fprintf(stderr, "%s\n", buffer.getUnwrapped());
|
|
}
|
|
|
|
Type* acceptPrimitiveType(Arena& arena) {
|
|
Type* pType;
|
|
if (tok == TOK_INT) {
|
|
pType = mkpInt;
|
|
} else if (tok == TOK_CHAR) {
|
|
pType = mkpChar;
|
|
} else if (tok == TOK_VOID) {
|
|
pType = mkpVoid;
|
|
} else if (tok == TOK_FLOAT) {
|
|
pType = mkpFloat;
|
|
} else if (tok == TOK_DOUBLE) {
|
|
pType = mkpDouble;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
next();
|
|
return pType;
|
|
}
|
|
|
|
Type* acceptDeclaration(Type* pType, bool nameAllowed, bool nameRequired,
|
|
Arena& arena) {
|
|
tokenid_t declName = 0;
|
|
pType = acceptDecl2(pType, declName, nameAllowed,
|
|
nameRequired, arena);
|
|
if (declName) {
|
|
// Clone the parent type so we can set a unique ID
|
|
pType = createType(pType->tag, pType->pHead,
|
|
pType->pTail, arena);
|
|
|
|
pType->id = declName;
|
|
}
|
|
// fprintf(stderr, "Parsed a declaration: ");
|
|
// printType(pType);
|
|
return pType;
|
|
}
|
|
|
|
Type* expectDeclaration(Type* pBaseType, Arena& arena) {
|
|
Type* pType = acceptDeclaration(pBaseType, true, true, arena);
|
|
if (! pType) {
|
|
error("Expected a declaration");
|
|
}
|
|
return pType;
|
|
}
|
|
|
|
/* Used for accepting types that appear in casts */
|
|
Type* acceptCastTypeDeclaration(Arena& arena) {
|
|
Type* pType = acceptPrimitiveType(arena);
|
|
if (pType) {
|
|
pType = acceptDeclaration(pType, false, false, arena);
|
|
}
|
|
return pType;
|
|
}
|
|
|
|
Type* expectCastTypeDeclaration(Arena& arena) {
|
|
Type* pType = acceptCastTypeDeclaration(arena);
|
|
if (! pType) {
|
|
error("Expected a declaration");
|
|
}
|
|
return pType;
|
|
}
|
|
|
|
Type* acceptDecl2(Type* pType, tokenid_t& declName,
|
|
bool nameAllowed, bool nameRequired, Arena& arena) {
|
|
int ptrCounter = 0;
|
|
while (accept('*')) {
|
|
ptrCounter++;
|
|
}
|
|
pType = acceptDecl3(pType, declName, nameAllowed, nameRequired, arena);
|
|
while (ptrCounter-- > 0) {
|
|
pType = createType(TY_POINTER, pType, NULL, arena);
|
|
}
|
|
return pType;
|
|
}
|
|
|
|
Type* acceptDecl3(Type* pType, tokenid_t& declName,
|
|
bool nameAllowed, bool nameRequired, Arena& arena) {
|
|
// direct-dcl :
|
|
// name
|
|
// (dcl)
|
|
// direct-dcl()
|
|
// direct-dcl[]
|
|
Type* pNewHead = NULL;
|
|
if (accept('(')) {
|
|
pNewHead = acceptDecl2(pNewHead, declName, nameAllowed,
|
|
nameRequired, arena);
|
|
skip(')');
|
|
} else if ((declName = acceptSymbol()) != 0) {
|
|
if (nameAllowed == false && declName) {
|
|
error("Symbol %s not allowed here", nameof(declName));
|
|
} else if (nameRequired && ! declName) {
|
|
String temp;
|
|
decodeToken(temp, tok);
|
|
error("Expected symbol. Got %s", temp.getUnwrapped());
|
|
}
|
|
}
|
|
while (accept('(')) {
|
|
// Function declaration
|
|
Type* pTail = acceptArgs(nameAllowed, arena);
|
|
pType = createType(TY_FUNC, pType, pTail, arena);
|
|
skip(')');
|
|
}
|
|
|
|
if (pNewHead) {
|
|
Type* pA = pNewHead;
|
|
while (pA->pHead) {
|
|
pA = pA->pHead;
|
|
}
|
|
pA->pHead = pType;
|
|
pType = pNewHead;
|
|
}
|
|
return pType;
|
|
}
|
|
|
|
Type* acceptArgs(bool nameAllowed, Arena& arena) {
|
|
Type* pHead = NULL;
|
|
Type* pTail = NULL;
|
|
for(;;) {
|
|
Type* pBaseArg = acceptPrimitiveType(arena);
|
|
if (pBaseArg) {
|
|
Type* pArg = acceptDeclaration(pBaseArg, nameAllowed, false,
|
|
arena);
|
|
if (pArg) {
|
|
Type* pParam = createType(TY_PARAM, pArg, NULL, arena);
|
|
if (!pHead) {
|
|
pHead = pParam;
|
|
pTail = pParam;
|
|
} else {
|
|
pTail->pTail = pParam;
|
|
pTail = pParam;
|
|
}
|
|
}
|
|
}
|
|
if (! accept(',')) {
|
|
break;
|
|
}
|
|
}
|
|
return pHead;
|
|
}
|
|
|
|
Type* expectPrimitiveType(Arena& arena) {
|
|
Type* pType = acceptPrimitiveType(arena);
|
|
if (!pType) {
|
|
String buf;
|
|
decodeToken(buf, tok);
|
|
error("Expected a type, got %s", buf.getUnwrapped());
|
|
}
|
|
return pType;
|
|
}
|
|
|
|
void addGlobalSymbol(Type* pDecl) {
|
|
tokenid_t t = pDecl->id;
|
|
VariableInfo* pVI = VI(t);
|
|
if(pVI && pVI->pAddress) {
|
|
reportDuplicate(t);
|
|
}
|
|
mGlobals.add(pDecl);
|
|
}
|
|
|
|
void reportDuplicate(tokenid_t t) {
|
|
error("Duplicate definition of %s", nameof(t));
|
|
}
|
|
|
|
void addLocalSymbol(Type* pDecl) {
|
|
tokenid_t t = pDecl->id;
|
|
if (mLocals.isDefinedAtCurrentLevel(t)) {
|
|
reportDuplicate(t);
|
|
}
|
|
mLocals.add(pDecl);
|
|
}
|
|
|
|
void localDeclarations(Type* pBaseType) {
|
|
intptr_t a;
|
|
|
|
while (pBaseType) {
|
|
while (tok != ';' && tok != EOF) {
|
|
Type* pDecl = expectDeclaration(pBaseType, mLocalArena);
|
|
if (!pDecl) {
|
|
break;
|
|
}
|
|
int variableAddress = 0;
|
|
addLocalSymbol(pDecl);
|
|
size_t alignment = pGen->alignmentOf(pDecl);
|
|
loc = (loc + alignment - 1) & ~ (alignment-1);
|
|
loc = loc + pGen->sizeOf(pDecl);
|
|
variableAddress = -loc;
|
|
VI(pDecl->id)->pAddress = (void*) variableAddress;
|
|
if (accept('=')) {
|
|
/* assignment */
|
|
expr();
|
|
pGen->storeR0(variableAddress, pDecl);
|
|
}
|
|
if (tok == ',')
|
|
next();
|
|
}
|
|
skip(';');
|
|
pBaseType = acceptPrimitiveType(mLocalArena);
|
|
}
|
|
}
|
|
|
|
bool checkSymbol() {
|
|
return checkSymbol(tok);
|
|
}
|
|
|
|
void decodeToken(String& buffer, tokenid_t token) {
|
|
if (token == EOF ) {
|
|
buffer.printf("EOF");
|
|
} else if (token == TOK_NUM) {
|
|
buffer.printf("numeric constant");
|
|
} else if (token >= 0 && token < 256) {
|
|
if (token < 32) {
|
|
buffer.printf("'\\x%02x'", token);
|
|
} else {
|
|
buffer.printf("'%c'", token);
|
|
}
|
|
} else if (token >= TOK_KEYWORD && token < TOK_SYMBOL) {
|
|
buffer.printf("keyword \"%s\"", nameof(token));
|
|
} else {
|
|
buffer.printf("symbol \"%s\"", nameof(token));
|
|
}
|
|
}
|
|
|
|
bool checkSymbol(tokenid_t token) {
|
|
bool result = token >= TOK_SYMBOL;
|
|
if (!result) {
|
|
String temp;
|
|
decodeToken(temp, token);
|
|
error("Expected symbol. Got %s", temp.getUnwrapped());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
tokenid_t acceptSymbol() {
|
|
tokenid_t result = 0;
|
|
if (tok >= TOK_SYMBOL) {
|
|
result = tok;
|
|
next();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void globalDeclarations() {
|
|
while (tok != EOF) {
|
|
Type* pBaseType = expectPrimitiveType(mGlobalArena);
|
|
if (!pBaseType) {
|
|
break;
|
|
}
|
|
Type* pDecl = expectDeclaration(pBaseType, mGlobalArena);
|
|
if (!pDecl) {
|
|
break;
|
|
}
|
|
if (! isDefined(pDecl->id)) {
|
|
addGlobalSymbol(pDecl);
|
|
}
|
|
VariableInfo* name = VI(pDecl->id);
|
|
if (name && name->pAddress) {
|
|
error("Already defined global %s", nameof(pDecl->id));
|
|
}
|
|
if (pDecl->tag < TY_FUNC) {
|
|
// it's a variable declaration
|
|
for(;;) {
|
|
if (name && !name->pAddress) {
|
|
name->pAddress = (int*) allocGlobalSpace(
|
|
pGen->alignmentOf(name->pType),
|
|
pGen->sizeOf(name->pType));
|
|
}
|
|
if (accept('=')) {
|
|
if (tok == TOK_NUM) {
|
|
if (name) {
|
|
* (int*) name->pAddress = tokc;
|
|
}
|
|
next();
|
|
} else {
|
|
error("Expected an integer constant");
|
|
}
|
|
}
|
|
if (!accept(',')) {
|
|
break;
|
|
}
|
|
pDecl = expectDeclaration(pBaseType, mGlobalArena);
|
|
if (!pDecl) {
|
|
break;
|
|
}
|
|
if (! isDefined(pDecl->id)) {
|
|
addGlobalSymbol(pDecl);
|
|
}
|
|
name = VI(pDecl->id);
|
|
}
|
|
skip(';');
|
|
} else {
|
|
// Function declaration
|
|
if (accept(';')) {
|
|
// forward declaration.
|
|
} else {
|
|
if (name) {
|
|
/* patch forward references (XXX: does not work for function
|
|
pointers) */
|
|
pGen->gsym((int) name->pForward);
|
|
/* put function address */
|
|
name->pAddress = (void*) codeBuf.getPC();
|
|
}
|
|
// Calculate stack offsets for parameters
|
|
mLocals.pushLevel();
|
|
intptr_t a = 8;
|
|
int argCount = 0;
|
|
for (Type* pP = pDecl->pTail; pP; pP = pP->pTail) {
|
|
Type* pArg = pP->pHead;
|
|
addLocalSymbol(pArg);
|
|
/* read param name and compute offset */
|
|
size_t alignment = pGen->alignmentOf(pArg);
|
|
a = (a + alignment - 1) & ~ (alignment-1);
|
|
VI(pArg->id)->pAddress = (void*) a;
|
|
a = a + pGen->stackSizeOf(pArg);
|
|
argCount++;
|
|
}
|
|
rsym = loc = 0;
|
|
pReturnType = pDecl->pHead;
|
|
a = pGen->functionEntry(pDecl);
|
|
block(0, true);
|
|
pGen->gsym(rsym);
|
|
pGen->functionExit(pDecl, a, loc);
|
|
mLocals.popLevel();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
char* allocGlobalSpace(size_t alignment, size_t bytes) {
|
|
size_t base = (((size_t) glo) + alignment - 1) & ~(alignment-1);
|
|
size_t end = base + bytes;
|
|
if ((end - (size_t) pGlobalBase) > (size_t) ALLOC_SIZE) {
|
|
error("Global space exhausted");
|
|
return NULL;
|
|
}
|
|
char* result = (char*) base;
|
|
glo = (char*) end;
|
|
return result;
|
|
}
|
|
|
|
void cleanup() {
|
|
if (pGlobalBase != 0) {
|
|
free(pGlobalBase);
|
|
pGlobalBase = 0;
|
|
}
|
|
if (pGen) {
|
|
delete pGen;
|
|
pGen = 0;
|
|
}
|
|
if (file) {
|
|
delete file;
|
|
file = 0;
|
|
}
|
|
}
|
|
|
|
void clear() {
|
|
tok = 0;
|
|
tokc = 0;
|
|
tokl = 0;
|
|
ch = 0;
|
|
rsym = 0;
|
|
loc = 0;
|
|
glo = 0;
|
|
dptr = 0;
|
|
dch = 0;
|
|
file = 0;
|
|
pGlobalBase = 0;
|
|
pGen = 0;
|
|
mPragmaStringCount = 0;
|
|
}
|
|
|
|
void setArchitecture(const char* architecture) {
|
|
delete pGen;
|
|
pGen = 0;
|
|
|
|
if (architecture != NULL) {
|
|
#ifdef PROVIDE_ARM_CODEGEN
|
|
if (! pGen && strcmp(architecture, "arm") == 0) {
|
|
pGen = new ARMCodeGenerator();
|
|
}
|
|
#endif
|
|
#ifdef PROVIDE_X86_CODEGEN
|
|
if (! pGen && strcmp(architecture, "x86") == 0) {
|
|
pGen = new X86CodeGenerator();
|
|
}
|
|
#endif
|
|
if (!pGen ) {
|
|
error("Unknown architecture %s\n", architecture);
|
|
}
|
|
}
|
|
|
|
if (pGen == NULL) {
|
|
#if defined(DEFAULT_ARM_CODEGEN)
|
|
pGen = new ARMCodeGenerator();
|
|
#elif defined(DEFAULT_X86_CODEGEN)
|
|
pGen = new X86CodeGenerator();
|
|
#endif
|
|
}
|
|
if (pGen == NULL) {
|
|
error("No code generator defined.");
|
|
} else {
|
|
pGen->setErrorSink(this);
|
|
}
|
|
}
|
|
|
|
public:
|
|
struct args {
|
|
args() {
|
|
architecture = 0;
|
|
}
|
|
const char* architecture;
|
|
};
|
|
|
|
Compiler() {
|
|
clear();
|
|
}
|
|
|
|
~Compiler() {
|
|
cleanup();
|
|
}
|
|
|
|
int compile(const char* text, size_t textLength) {
|
|
int result;
|
|
|
|
cleanup();
|
|
clear();
|
|
mTokenTable.setArena(&mGlobalArena);
|
|
mGlobals.setArena(&mGlobalArena);
|
|
mGlobals.setTokenTable(&mTokenTable);
|
|
mLocals.setArena(&mLocalArena);
|
|
mLocals.setTokenTable(&mTokenTable);
|
|
|
|
internKeywords();
|
|
createPrimitiveTypes();
|
|
codeBuf.init(ALLOC_SIZE);
|
|
setArchitecture(NULL);
|
|
if (!pGen) {
|
|
return -1;
|
|
}
|
|
#ifdef PROVIDE_TRACE_CODEGEN
|
|
pGen = new TraceCodeGenerator(pGen);
|
|
#endif
|
|
pGen->setErrorSink(this);
|
|
pGen->init(&codeBuf);
|
|
file = new TextInputStream(text, textLength);
|
|
pGlobalBase = (char*) calloc(1, ALLOC_SIZE);
|
|
glo = pGlobalBase;
|
|
inp();
|
|
next();
|
|
globalDeclarations();
|
|
checkForUndefinedForwardReferences();
|
|
result = pGen->finishCompile();
|
|
if (result == 0) {
|
|
if (mErrorBuf.len()) {
|
|
result = -2;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void createPrimitiveTypes() {
|
|
mkpInt = createType(TY_INT, NULL, NULL, mGlobalArena);
|
|
mkpChar = createType(TY_CHAR, NULL, NULL, mGlobalArena);
|
|
mkpVoid = createType(TY_VOID, NULL, NULL, mGlobalArena);
|
|
mkpFloat = createType(TY_FLOAT, NULL, NULL, mGlobalArena);
|
|
mkpDouble = createType(TY_DOUBLE, NULL, NULL, mGlobalArena);
|
|
mkpIntFn = createType(TY_FUNC, mkpInt, NULL, mGlobalArena);
|
|
mkpIntPtr = createPtrType(mkpInt, mGlobalArena);
|
|
mkpCharPtr = createPtrType(mkpChar, mGlobalArena);
|
|
mkpFloatPtr = createPtrType(mkpFloat, mGlobalArena);
|
|
mkpDoublePtr = createPtrType(mkpDouble, mGlobalArena);
|
|
mkpPtrIntFn = createPtrType(mkpIntFn, mGlobalArena);
|
|
}
|
|
|
|
void checkForUndefinedForwardReferences() {
|
|
mGlobals.forEach(static_ufrcFn, this);
|
|
}
|
|
|
|
static bool static_ufrcFn(VariableInfo* value, void* context) {
|
|
Compiler* pCompiler = (Compiler*) context;
|
|
return pCompiler->undefinedForwardReferenceCheck(value);
|
|
}
|
|
|
|
bool undefinedForwardReferenceCheck(VariableInfo* value) {
|
|
if (!value->pAddress && value->pForward) {
|
|
error("Undefined forward reference: %s",
|
|
mTokenTable[value->tok].pText);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int dump(FILE* out) {
|
|
fwrite(codeBuf.getBase(), 1, codeBuf.getSize(), out);
|
|
return 0;
|
|
}
|
|
|
|
int disassemble(FILE* out) {
|
|
return pGen->disassemble(out);
|
|
}
|
|
|
|
/* Look through the symbol table to find a symbol.
|
|
* If found, return its value.
|
|
*/
|
|
void* lookup(const char* name) {
|
|
tokenid_t tok = mTokenTable.intern(name, strlen(name));
|
|
VariableInfo* pVariableInfo = VI(tok);
|
|
if (pVariableInfo) {
|
|
return pVariableInfo->pAddress;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void getPragmas(ACCsizei* actualStringCount,
|
|
ACCsizei maxStringCount, ACCchar** strings) {
|
|
int stringCount = mPragmaStringCount;
|
|
if (actualStringCount) {
|
|
*actualStringCount = stringCount;
|
|
}
|
|
if (stringCount > maxStringCount) {
|
|
stringCount = maxStringCount;
|
|
}
|
|
if (strings) {
|
|
char* pPragmas = mPragmas.getUnwrapped();
|
|
while (stringCount-- > 0) {
|
|
*strings++ = pPragmas;
|
|
pPragmas += strlen(pPragmas) + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
char* getErrorMessage() {
|
|
return mErrorBuf.getUnwrapped();
|
|
}
|
|
|
|
};
|
|
|
|
const char* Compiler::operatorChars =
|
|
"++--*@/@%@+@-@<<>><=>=<@>@==!=&&||&@^@|@~@!@";
|
|
|
|
const char Compiler::operatorLevel[] =
|
|
{11, 11, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4,
|
|
5, 5, /* ==, != */
|
|
9, 10, /* &&, || */
|
|
6, 7, 8, /* & ^ | */
|
|
2, 2 /* ~ ! */
|
|
};
|
|
|
|
#ifdef PROVIDE_ARM_CODEGEN
|
|
FILE* Compiler::ARMCodeGenerator::disasmOut;
|
|
#endif
|
|
|
|
#ifdef PROVIDE_X86_CODEGEN
|
|
const int Compiler::X86CodeGenerator::operatorHelper[] = {
|
|
0x1, // ++
|
|
0xff, // --
|
|
0xc1af0f, // *
|
|
0xf9f79991, // /
|
|
0xf9f79991, // % (With manual assist to swap results)
|
|
0xc801, // +
|
|
0xd8f7c829, // -
|
|
0xe0d391, // <<
|
|
0xf8d391, // >>
|
|
0xe, // <=
|
|
0xd, // >=
|
|
0xc, // <
|
|
0xf, // >
|
|
0x4, // ==
|
|
0x5, // !=
|
|
0x0, // &&
|
|
0x1, // ||
|
|
0xc821, // &
|
|
0xc831, // ^
|
|
0xc809, // |
|
|
0xd0f7, // ~
|
|
0x4 // !
|
|
};
|
|
#endif
|
|
|
|
struct ACCscript {
|
|
ACCscript() {
|
|
text = 0;
|
|
textLength = 0;
|
|
accError = ACC_NO_ERROR;
|
|
}
|
|
|
|
~ACCscript() {
|
|
delete text;
|
|
}
|
|
|
|
void setError(ACCenum error) {
|
|
if (accError == ACC_NO_ERROR && error != ACC_NO_ERROR) {
|
|
accError = error;
|
|
}
|
|
}
|
|
|
|
ACCenum getError() {
|
|
ACCenum result = accError;
|
|
accError = ACC_NO_ERROR;
|
|
return result;
|
|
}
|
|
|
|
Compiler compiler;
|
|
char* text;
|
|
int textLength;
|
|
ACCenum accError;
|
|
};
|
|
|
|
|
|
extern "C"
|
|
ACCscript* accCreateScript() {
|
|
return new ACCscript();
|
|
}
|
|
|
|
extern "C"
|
|
ACCenum accGetError( ACCscript* script ) {
|
|
return script->getError();
|
|
}
|
|
|
|
extern "C"
|
|
void accDeleteScript(ACCscript* script) {
|
|
delete script;
|
|
}
|
|
|
|
extern "C"
|
|
void accScriptSource(ACCscript* script,
|
|
ACCsizei count,
|
|
const ACCchar ** string,
|
|
const ACCint * length) {
|
|
int totalLength = 0;
|
|
for(int i = 0; i < count; i++) {
|
|
int len = -1;
|
|
const ACCchar* s = string[i];
|
|
if (length) {
|
|
len = length[i];
|
|
}
|
|
if (len < 0) {
|
|
len = strlen(s);
|
|
}
|
|
totalLength += len;
|
|
}
|
|
delete script->text;
|
|
char* text = new char[totalLength + 1];
|
|
script->text = text;
|
|
script->textLength = totalLength;
|
|
char* dest = text;
|
|
for(int i = 0; i < count; i++) {
|
|
int len = -1;
|
|
const ACCchar* s = string[i];
|
|
if (length) {
|
|
len = length[i];
|
|
}
|
|
if (len < 0) {
|
|
len = strlen(s);
|
|
}
|
|
memcpy(dest, s, len);
|
|
dest += len;
|
|
}
|
|
text[totalLength] = '\0';
|
|
}
|
|
|
|
extern "C"
|
|
void accCompileScript(ACCscript* script) {
|
|
int result = script->compiler.compile(script->text, script->textLength);
|
|
if (result) {
|
|
script->setError(ACC_INVALID_OPERATION);
|
|
}
|
|
}
|
|
|
|
extern "C"
|
|
void accGetScriptiv(ACCscript* script,
|
|
ACCenum pname,
|
|
ACCint * params) {
|
|
switch (pname) {
|
|
case ACC_INFO_LOG_LENGTH:
|
|
*params = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
extern "C"
|
|
void accGetScriptInfoLog(ACCscript* script,
|
|
ACCsizei maxLength,
|
|
ACCsizei * length,
|
|
ACCchar * infoLog) {
|
|
char* message = script->compiler.getErrorMessage();
|
|
int messageLength = strlen(message) + 1;
|
|
if (length) {
|
|
*length = messageLength;
|
|
}
|
|
if (infoLog && maxLength > 0) {
|
|
int trimmedLength = maxLength < messageLength ?
|
|
maxLength : messageLength;
|
|
memcpy(infoLog, message, trimmedLength);
|
|
infoLog[trimmedLength] = 0;
|
|
}
|
|
}
|
|
|
|
extern "C"
|
|
void accGetScriptLabel(ACCscript* script, const ACCchar * name,
|
|
ACCvoid ** address) {
|
|
void* value = script->compiler.lookup(name);
|
|
if (value) {
|
|
*address = value;
|
|
} else {
|
|
script->setError(ACC_INVALID_VALUE);
|
|
}
|
|
}
|
|
|
|
extern "C"
|
|
void accGetPragmas(ACCscript* script, ACCsizei* actualStringCount,
|
|
ACCsizei maxStringCount, ACCchar** strings){
|
|
script->compiler.getPragmas(actualStringCount, maxStringCount, strings);
|
|
}
|
|
|
|
extern "C"
|
|
void accDisassemble(ACCscript* script) {
|
|
script->compiler.disassemble(stderr);
|
|
}
|
|
|
|
|
|
} // namespace acc
|
|
|