1964 lines
54 KiB
C++
1964 lines
54 KiB
C++
/* libs/pixelflinger/codeflinger/MIPSAssembler.cpp
|
|
**
|
|
** Copyright 2012, The Android Open Source Project
|
|
**
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
**
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
**
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*/
|
|
|
|
|
|
/* MIPS assembler and ARM->MIPS assembly translator
|
|
**
|
|
** The approach is to leave the GGLAssembler and associated files largely
|
|
** un-changed, still utilizing all Arm instruction generation. Via the
|
|
** ArmToMipsAssembler (subclassed from ArmAssemblerInterface) each Arm
|
|
** instruction is translated to one or more Mips instructions as necessary. This
|
|
** is clearly less efficient than a direct implementation within the
|
|
** GGLAssembler, but is far cleaner, more maintainable, and has yielded very
|
|
** significant performance gains on Mips compared to the generic pixel pipeline.
|
|
**
|
|
**
|
|
** GGLAssembler changes
|
|
**
|
|
** - The register allocator has been modified to re-map Arm registers 0-15 to mips
|
|
** registers 2-17. Mips register 0 cannot be used as general-purpose register,
|
|
** and register 1 has traditional uses as a short-term temporary.
|
|
**
|
|
** - Added some early bailouts for OUT_OF_REGISTERS in texturing.cpp and
|
|
** GGLAssembler.cpp, since this is not fatal, and can be retried at lower
|
|
** optimization level.
|
|
**
|
|
**
|
|
** ARMAssembler and ARMAssemblerInterface changes
|
|
**
|
|
** Refactored ARM address-mode static functions (imm(), reg_imm(), imm12_pre(), etc.)
|
|
** to virtual, so they can be overridden in MIPSAssembler. The implementation of these
|
|
** functions on ARM is moved from ARMAssemblerInterface.cpp to ARMAssembler.cpp, and
|
|
** is unchanged from the original. (This required duplicating 2 of these as static
|
|
** functions in ARMAssemblerInterface.cpp so they could be used as static initializers).
|
|
*/
|
|
|
|
|
|
#define LOG_TAG "MIPSAssembler"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <cutils/log.h>
|
|
#include <cutils/properties.h>
|
|
|
|
#if defined(WITH_LIB_HARDWARE)
|
|
#include <hardware_legacy/qemu_tracing.h>
|
|
#endif
|
|
|
|
#include <private/pixelflinger/ggl_context.h>
|
|
|
|
#include "MIPSAssembler.h"
|
|
#include "CodeCache.h"
|
|
#include "mips_disassem.h"
|
|
|
|
// Choose MIPS arch variant following gcc flags
|
|
#if defined(__mips__) && __mips==32 && __mips_isa_rev>=2
|
|
#define mips32r2 1
|
|
#else
|
|
#define mips32r2 0
|
|
#endif
|
|
|
|
|
|
#define NOT_IMPLEMENTED() LOG_ALWAYS_FATAL("Arm instruction %s not yet implemented\n", __func__)
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
namespace android {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark ArmToMipsAssembler...
|
|
#endif
|
|
|
|
ArmToMipsAssembler::ArmToMipsAssembler(const sp<Assembly>& assembly,
|
|
char *abuf, int linesz, int instr_count)
|
|
: ARMAssemblerInterface(),
|
|
mArmDisassemblyBuffer(abuf),
|
|
mArmLineLength(linesz),
|
|
mArmInstrCount(instr_count),
|
|
mInum(0),
|
|
mAssembly(assembly)
|
|
{
|
|
mMips = new MIPSAssembler(assembly, this);
|
|
mArmPC = (uint32_t **) malloc(ARM_MAX_INSTUCTIONS * sizeof(uint32_t *));
|
|
init_conditional_labels();
|
|
}
|
|
|
|
ArmToMipsAssembler::~ArmToMipsAssembler()
|
|
{
|
|
delete mMips;
|
|
free((void *) mArmPC);
|
|
}
|
|
|
|
uint32_t* ArmToMipsAssembler::pc() const
|
|
{
|
|
return mMips->pc();
|
|
}
|
|
|
|
uint32_t* ArmToMipsAssembler::base() const
|
|
{
|
|
return mMips->base();
|
|
}
|
|
|
|
void ArmToMipsAssembler::reset()
|
|
{
|
|
cond.labelnum = 0;
|
|
mInum = 0;
|
|
mMips->reset();
|
|
}
|
|
|
|
int ArmToMipsAssembler::getCodegenArch()
|
|
{
|
|
return CODEGEN_ARCH_MIPS;
|
|
}
|
|
|
|
void ArmToMipsAssembler::comment(const char* string)
|
|
{
|
|
mMips->comment(string);
|
|
}
|
|
|
|
void ArmToMipsAssembler::label(const char* theLabel)
|
|
{
|
|
mMips->label(theLabel);
|
|
}
|
|
|
|
void ArmToMipsAssembler::disassemble(const char* name)
|
|
{
|
|
mMips->disassemble(name);
|
|
}
|
|
|
|
void ArmToMipsAssembler::init_conditional_labels()
|
|
{
|
|
int i;
|
|
for (i=0;i<99; ++i) {
|
|
sprintf(cond.label[i], "cond_%d", i);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Prolog/Epilog & Generate...
|
|
#endif
|
|
|
|
void ArmToMipsAssembler::prolog()
|
|
{
|
|
mArmPC[mInum++] = pc(); // save starting PC for this instr
|
|
|
|
mMips->ADDIU(R_sp, R_sp, -(5 * 4));
|
|
mMips->SW(R_s0, R_sp, 0);
|
|
mMips->SW(R_s1, R_sp, 4);
|
|
mMips->SW(R_s2, R_sp, 8);
|
|
mMips->SW(R_s3, R_sp, 12);
|
|
mMips->SW(R_s4, R_sp, 16);
|
|
mMips->MOVE(R_v0, R_a0); // move context * passed in a0 to v0 (arm r0)
|
|
}
|
|
|
|
void ArmToMipsAssembler::epilog(uint32_t touched)
|
|
{
|
|
mArmPC[mInum++] = pc(); // save starting PC for this instr
|
|
|
|
mMips->LW(R_s0, R_sp, 0);
|
|
mMips->LW(R_s1, R_sp, 4);
|
|
mMips->LW(R_s2, R_sp, 8);
|
|
mMips->LW(R_s3, R_sp, 12);
|
|
mMips->LW(R_s4, R_sp, 16);
|
|
mMips->ADDIU(R_sp, R_sp, (5 * 4));
|
|
mMips->JR(R_ra);
|
|
|
|
}
|
|
|
|
int ArmToMipsAssembler::generate(const char* name)
|
|
{
|
|
return mMips->generate(name);
|
|
}
|
|
|
|
uint32_t* ArmToMipsAssembler::pcForLabel(const char* label)
|
|
{
|
|
return mMips->pcForLabel(label);
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Addressing modes & shifters...
|
|
#endif
|
|
|
|
|
|
// do not need this for MIPS, but it is in the Interface (virtual)
|
|
int ArmToMipsAssembler::buildImmediate(
|
|
uint32_t immediate, uint32_t& rot, uint32_t& imm)
|
|
{
|
|
// for MIPS, any 32-bit immediate is OK
|
|
rot = 0;
|
|
imm = immediate;
|
|
return 0;
|
|
}
|
|
|
|
// shifters...
|
|
|
|
bool ArmToMipsAssembler::isValidImmediate(uint32_t immediate)
|
|
{
|
|
// for MIPS, any 32-bit immediate is OK
|
|
return true;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::imm(uint32_t immediate)
|
|
{
|
|
// ALOGW("immediate value %08x at pc %08x\n", immediate, (int)pc());
|
|
amode.value = immediate;
|
|
return AMODE_IMM;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::reg_imm(int Rm, int type, uint32_t shift)
|
|
{
|
|
amode.reg = Rm;
|
|
amode.stype = type;
|
|
amode.value = shift;
|
|
return AMODE_REG_IMM;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::reg_rrx(int Rm)
|
|
{
|
|
// reg_rrx mode is not used in the GLLAssember code at this time
|
|
return AMODE_UNSUPPORTED;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::reg_reg(int Rm, int type, int Rs)
|
|
{
|
|
// reg_reg mode is not used in the GLLAssember code at this time
|
|
return AMODE_UNSUPPORTED;
|
|
}
|
|
|
|
|
|
// addressing modes...
|
|
// LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0)
|
|
uint32_t ArmToMipsAssembler::immed12_pre(int32_t immed12, int W)
|
|
{
|
|
LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
|
|
"LDR(B)/STR(B)/PLD immediate too big (%08x)",
|
|
immed12);
|
|
amode.value = immed12;
|
|
amode.writeback = W;
|
|
return AMODE_IMM_12_PRE;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::immed12_post(int32_t immed12)
|
|
{
|
|
LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
|
|
"LDR(B)/STR(B)/PLD immediate too big (%08x)",
|
|
immed12);
|
|
|
|
amode.value = immed12;
|
|
return AMODE_IMM_12_POST;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::reg_scale_pre(int Rm, int type,
|
|
uint32_t shift, int W)
|
|
{
|
|
LOG_ALWAYS_FATAL_IF(W | type | shift, "reg_scale_pre adv modes not yet implemented");
|
|
|
|
amode.reg = Rm;
|
|
// amode.stype = type; // more advanced modes not used in GGLAssembler yet
|
|
// amode.value = shift;
|
|
// amode.writeback = W;
|
|
return AMODE_REG_SCALE_PRE;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::reg_scale_post(int Rm, int type, uint32_t shift)
|
|
{
|
|
LOG_ALWAYS_FATAL("adr mode reg_scale_post not yet implemented\n");
|
|
return AMODE_UNSUPPORTED;
|
|
}
|
|
|
|
// LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0)
|
|
uint32_t ArmToMipsAssembler::immed8_pre(int32_t immed8, int W)
|
|
{
|
|
// uint32_t offset = abs(immed8);
|
|
|
|
LOG_ALWAYS_FATAL("adr mode immed8_pre not yet implemented\n");
|
|
|
|
LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
|
|
"LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
|
|
immed8);
|
|
return AMODE_IMM_8_PRE;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::immed8_post(int32_t immed8)
|
|
{
|
|
// uint32_t offset = abs(immed8);
|
|
|
|
LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
|
|
"LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
|
|
immed8);
|
|
amode.value = immed8;
|
|
return AMODE_IMM_8_POST;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::reg_pre(int Rm, int W)
|
|
{
|
|
LOG_ALWAYS_FATAL_IF(W, "reg_pre writeback not yet implemented");
|
|
amode.reg = Rm;
|
|
return AMODE_REG_PRE;
|
|
}
|
|
|
|
uint32_t ArmToMipsAssembler::reg_post(int Rm)
|
|
{
|
|
LOG_ALWAYS_FATAL("adr mode reg_post not yet implemented\n");
|
|
return AMODE_UNSUPPORTED;
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Data Processing...
|
|
#endif
|
|
|
|
|
|
static const char * const dpOpNames[] = {
|
|
"AND", "EOR", "SUB", "RSB", "ADD", "ADC", "SBC", "RSC",
|
|
"TST", "TEQ", "CMP", "CMN", "ORR", "MOV", "BIC", "MVN"
|
|
};
|
|
|
|
// check if the operand registers from a previous CMP or S-bit instruction
|
|
// would be overwritten by this instruction. If so, move the value to a
|
|
// safe register.
|
|
// Note that we cannot tell at _this_ instruction time if a future (conditional)
|
|
// instruction will _also_ use this value (a defect of the simple 1-pass, one-
|
|
// instruction-at-a-time translation). Therefore we must be conservative and
|
|
// save the value before it is overwritten. This costs an extra MOVE instr.
|
|
|
|
void ArmToMipsAssembler::protectConditionalOperands(int Rd)
|
|
{
|
|
if (Rd == cond.r1) {
|
|
mMips->MOVE(R_cmp, cond.r1);
|
|
cond.r1 = R_cmp;
|
|
}
|
|
if (cond.type == CMP_COND && Rd == cond.r2) {
|
|
mMips->MOVE(R_cmp2, cond.r2);
|
|
cond.r2 = R_cmp2;
|
|
}
|
|
}
|
|
|
|
|
|
// interprets the addressing mode, and generates the common code
|
|
// used by the majority of data-processing ops. Many MIPS instructions
|
|
// have a register-based form and a different immediate form. See
|
|
// opAND below for an example. (this could be inlined)
|
|
//
|
|
// this works with the imm(), reg_imm() methods above, which are directly
|
|
// called by the GLLAssembler.
|
|
// note: _signed parameter defaults to false (un-signed)
|
|
// note: tmpReg parameter defaults to 1, MIPS register AT
|
|
int ArmToMipsAssembler::dataProcAdrModes(int op, int& source, bool _signed, int tmpReg)
|
|
{
|
|
if (op < AMODE_REG) {
|
|
source = op;
|
|
return SRC_REG;
|
|
} else if (op == AMODE_IMM) {
|
|
if ((!_signed && amode.value > 0xffff)
|
|
|| (_signed && ((int)amode.value < -32768 || (int)amode.value > 32767) )) {
|
|
mMips->LUI(tmpReg, (amode.value >> 16));
|
|
if (amode.value & 0x0000ffff) {
|
|
mMips->ORI(tmpReg, tmpReg, (amode.value & 0x0000ffff));
|
|
}
|
|
source = tmpReg;
|
|
return SRC_REG;
|
|
} else {
|
|
source = amode.value;
|
|
return SRC_IMM;
|
|
}
|
|
} else if (op == AMODE_REG_IMM) {
|
|
switch (amode.stype) {
|
|
case LSL: mMips->SLL(tmpReg, amode.reg, amode.value); break;
|
|
case LSR: mMips->SRL(tmpReg, amode.reg, amode.value); break;
|
|
case ASR: mMips->SRA(tmpReg, amode.reg, amode.value); break;
|
|
case ROR: if (mips32r2) {
|
|
mMips->ROTR(tmpReg, amode.reg, amode.value);
|
|
} else {
|
|
mMips->RORIsyn(tmpReg, amode.reg, amode.value);
|
|
}
|
|
break;
|
|
}
|
|
source = tmpReg;
|
|
return SRC_REG;
|
|
} else { // adr mode RRX is not used in GGL Assembler at this time
|
|
// we are screwed, this should be exception, assert-fail or something
|
|
LOG_ALWAYS_FATAL("adr mode reg_rrx not yet implemented\n");
|
|
return SRC_ERROR;
|
|
}
|
|
}
|
|
|
|
|
|
void ArmToMipsAssembler::dataProcessing(int opcode, int cc,
|
|
int s, int Rd, int Rn, uint32_t Op2)
|
|
{
|
|
int src; // src is modified by dataProcAdrModes() - passed as int&
|
|
|
|
|
|
if (cc != AL) {
|
|
protectConditionalOperands(Rd);
|
|
// the branch tests register(s) set by prev CMP or instr with 'S' bit set
|
|
// inverse the condition to jump past this conditional instruction
|
|
ArmToMipsAssembler::B(cc^1, cond.label[++cond.labelnum]);
|
|
} else {
|
|
mArmPC[mInum++] = pc(); // save starting PC for this instr
|
|
}
|
|
|
|
switch (opcode) {
|
|
case opAND:
|
|
if (dataProcAdrModes(Op2, src) == SRC_REG) {
|
|
mMips->AND(Rd, Rn, src);
|
|
} else { // adr mode was SRC_IMM
|
|
mMips->ANDI(Rd, Rn, src);
|
|
}
|
|
break;
|
|
|
|
case opADD:
|
|
// set "signed" to true for adr modes
|
|
if (dataProcAdrModes(Op2, src, true) == SRC_REG) {
|
|
mMips->ADDU(Rd, Rn, src);
|
|
} else { // adr mode was SRC_IMM
|
|
mMips->ADDIU(Rd, Rn, src);
|
|
}
|
|
break;
|
|
|
|
case opSUB:
|
|
// set "signed" to true for adr modes
|
|
if (dataProcAdrModes(Op2, src, true) == SRC_REG) {
|
|
mMips->SUBU(Rd, Rn, src);
|
|
} else { // adr mode was SRC_IMM
|
|
mMips->SUBIU(Rd, Rn, src);
|
|
}
|
|
break;
|
|
|
|
case opEOR:
|
|
if (dataProcAdrModes(Op2, src) == SRC_REG) {
|
|
mMips->XOR(Rd, Rn, src);
|
|
} else { // adr mode was SRC_IMM
|
|
mMips->XORI(Rd, Rn, src);
|
|
}
|
|
break;
|
|
|
|
case opORR:
|
|
if (dataProcAdrModes(Op2, src) == SRC_REG) {
|
|
mMips->OR(Rd, Rn, src);
|
|
} else { // adr mode was SRC_IMM
|
|
mMips->ORI(Rd, Rn, src);
|
|
}
|
|
break;
|
|
|
|
case opBIC:
|
|
if (dataProcAdrModes(Op2, src) == SRC_IMM) {
|
|
// if we are 16-bit imnmediate, load to AT reg
|
|
mMips->ORI(R_at, 0, src);
|
|
src = R_at;
|
|
}
|
|
mMips->NOT(R_at, src);
|
|
mMips->AND(Rd, Rn, R_at);
|
|
break;
|
|
|
|
case opRSB:
|
|
if (dataProcAdrModes(Op2, src) == SRC_IMM) {
|
|
// if we are 16-bit imnmediate, load to AT reg
|
|
mMips->ORI(R_at, 0, src);
|
|
src = R_at;
|
|
}
|
|
mMips->SUBU(Rd, src, Rn); // subu with the parameters reversed
|
|
break;
|
|
|
|
case opMOV:
|
|
if (Op2 < AMODE_REG) { // op2 is reg # in this case
|
|
mMips->MOVE(Rd, Op2);
|
|
} else if (Op2 == AMODE_IMM) {
|
|
if (amode.value > 0xffff) {
|
|
mMips->LUI(Rd, (amode.value >> 16));
|
|
if (amode.value & 0x0000ffff) {
|
|
mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff));
|
|
}
|
|
} else {
|
|
mMips->ORI(Rd, 0, amode.value);
|
|
}
|
|
} else if (Op2 == AMODE_REG_IMM) {
|
|
switch (amode.stype) {
|
|
case LSL: mMips->SLL(Rd, amode.reg, amode.value); break;
|
|
case LSR: mMips->SRL(Rd, amode.reg, amode.value); break;
|
|
case ASR: mMips->SRA(Rd, amode.reg, amode.value); break;
|
|
case ROR: if (mips32r2) {
|
|
mMips->ROTR(Rd, amode.reg, amode.value);
|
|
} else {
|
|
mMips->RORIsyn(Rd, amode.reg, amode.value);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
// adr mode RRX is not used in GGL Assembler at this time
|
|
mMips->UNIMPL();
|
|
}
|
|
break;
|
|
|
|
case opMVN: // this is a 1's complement: NOT
|
|
if (Op2 < AMODE_REG) { // op2 is reg # in this case
|
|
mMips->NOR(Rd, Op2, 0); // NOT is NOR with 0
|
|
break;
|
|
} else if (Op2 == AMODE_IMM) {
|
|
if (amode.value > 0xffff) {
|
|
mMips->LUI(Rd, (amode.value >> 16));
|
|
if (amode.value & 0x0000ffff) {
|
|
mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff));
|
|
}
|
|
} else {
|
|
mMips->ORI(Rd, 0, amode.value);
|
|
}
|
|
} else if (Op2 == AMODE_REG_IMM) {
|
|
switch (amode.stype) {
|
|
case LSL: mMips->SLL(Rd, amode.reg, amode.value); break;
|
|
case LSR: mMips->SRL(Rd, amode.reg, amode.value); break;
|
|
case ASR: mMips->SRA(Rd, amode.reg, amode.value); break;
|
|
case ROR: if (mips32r2) {
|
|
mMips->ROTR(Rd, amode.reg, amode.value);
|
|
} else {
|
|
mMips->RORIsyn(Rd, amode.reg, amode.value);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
// adr mode RRX is not used in GGL Assembler at this time
|
|
mMips->UNIMPL();
|
|
}
|
|
mMips->NOR(Rd, Rd, 0); // NOT is NOR with 0
|
|
break;
|
|
|
|
case opCMP:
|
|
// Either operand of a CMP instr could get overwritten by a subsequent
|
|
// conditional instruction, which is ok, _UNLESS_ there is a _second_
|
|
// conditional instruction. Under MIPS, this requires doing the comparison
|
|
// again (SLT), and the original operands must be available. (and this
|
|
// pattern of multiple conditional instructions from same CMP _is_ used
|
|
// in GGL-Assembler)
|
|
//
|
|
// For now, if a conditional instr overwrites the operands, we will
|
|
// move them to dedicated temp regs. This is ugly, and inefficient,
|
|
// and should be optimized.
|
|
//
|
|
// WARNING: making an _Assumption_ that CMP operand regs will NOT be
|
|
// trashed by intervening NON-conditional instructions. In the general
|
|
// case this is legal, but it is NOT currently done in GGL-Assembler.
|
|
|
|
cond.type = CMP_COND;
|
|
cond.r1 = Rn;
|
|
if (dataProcAdrModes(Op2, src, false, R_cmp2) == SRC_REG) {
|
|
cond.r2 = src;
|
|
} else { // adr mode was SRC_IMM
|
|
mMips->ORI(R_cmp2, R_zero, src);
|
|
cond.r2 = R_cmp2;
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
case opTST:
|
|
case opTEQ:
|
|
case opCMN:
|
|
case opADC:
|
|
case opSBC:
|
|
case opRSC:
|
|
mMips->UNIMPL(); // currently unused in GGL Assembler code
|
|
break;
|
|
}
|
|
|
|
if (cc != AL) {
|
|
mMips->label(cond.label[cond.labelnum]);
|
|
}
|
|
if (s && opcode != opCMP) {
|
|
cond.type = SBIT_COND;
|
|
cond.r1 = Rd;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Multiply...
|
|
#endif
|
|
|
|
// multiply, accumulate
|
|
void ArmToMipsAssembler::MLA(int cc, int s,
|
|
int Rd, int Rm, int Rs, int Rn) {
|
|
|
|
mArmPC[mInum++] = pc(); // save starting PC for this instr
|
|
|
|
mMips->MUL(R_at, Rm, Rs);
|
|
mMips->ADDU(Rd, R_at, Rn);
|
|
if (s) {
|
|
cond.type = SBIT_COND;
|
|
cond.r1 = Rd;
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::MUL(int cc, int s,
|
|
int Rd, int Rm, int Rs) {
|
|
mArmPC[mInum++] = pc();
|
|
mMips->MUL(Rd, Rm, Rs);
|
|
if (s) {
|
|
cond.type = SBIT_COND;
|
|
cond.r1 = Rd;
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::UMULL(int cc, int s,
|
|
int RdLo, int RdHi, int Rm, int Rs) {
|
|
mArmPC[mInum++] = pc();
|
|
mMips->MULT(Rm, Rs);
|
|
mMips->MFHI(RdHi);
|
|
mMips->MFLO(RdLo);
|
|
if (s) {
|
|
cond.type = SBIT_COND;
|
|
cond.r1 = RdHi; // BUG...
|
|
LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n");
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::UMUAL(int cc, int s,
|
|
int RdLo, int RdHi, int Rm, int Rs) {
|
|
LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
|
|
"UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
|
|
// *mPC++ = (cc<<28) | (1<<23) | (1<<21) | (s<<20) |
|
|
// (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
if (s) {
|
|
cond.type = SBIT_COND;
|
|
cond.r1 = RdHi; // BUG...
|
|
LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n");
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::SMULL(int cc, int s,
|
|
int RdLo, int RdHi, int Rm, int Rs) {
|
|
LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
|
|
"SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
|
|
// *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (s<<20) |
|
|
// (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
if (s) {
|
|
cond.type = SBIT_COND;
|
|
cond.r1 = RdHi; // BUG...
|
|
LOG_ALWAYS_FATAL("Condition on SMULL must be on 64-bit result\n");
|
|
}
|
|
}
|
|
void ArmToMipsAssembler::SMUAL(int cc, int s,
|
|
int RdLo, int RdHi, int Rm, int Rs) {
|
|
LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
|
|
"SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
|
|
// *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) |
|
|
// (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
if (s) {
|
|
cond.type = SBIT_COND;
|
|
cond.r1 = RdHi; // BUG...
|
|
LOG_ALWAYS_FATAL("Condition on SMUAL must be on 64-bit result\n");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Branches...
|
|
#endif
|
|
|
|
// branches...
|
|
|
|
void ArmToMipsAssembler::B(int cc, const char* label)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
if (cond.type == SBIT_COND) { cond.r2 = R_zero; }
|
|
|
|
switch(cc) {
|
|
case EQ: mMips->BEQ(cond.r1, cond.r2, label); break;
|
|
case NE: mMips->BNE(cond.r1, cond.r2, label); break;
|
|
case HS: mMips->BGEU(cond.r1, cond.r2, label); break;
|
|
case LO: mMips->BLTU(cond.r1, cond.r2, label); break;
|
|
case MI: mMips->BLT(cond.r1, cond.r2, label); break;
|
|
case PL: mMips->BGE(cond.r1, cond.r2, label); break;
|
|
|
|
case HI: mMips->BGTU(cond.r1, cond.r2, label); break;
|
|
case LS: mMips->BLEU(cond.r1, cond.r2, label); break;
|
|
case GE: mMips->BGE(cond.r1, cond.r2, label); break;
|
|
case LT: mMips->BLT(cond.r1, cond.r2, label); break;
|
|
case GT: mMips->BGT(cond.r1, cond.r2, label); break;
|
|
case LE: mMips->BLE(cond.r1, cond.r2, label); break;
|
|
case AL: mMips->B(label); break;
|
|
case NV: /* B Never - no instruction */ break;
|
|
|
|
case VS:
|
|
case VC:
|
|
default:
|
|
LOG_ALWAYS_FATAL("Unsupported cc: %02x\n", cc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::BL(int cc, const char* label)
|
|
{
|
|
LOG_ALWAYS_FATAL("branch-and-link not supported yet\n");
|
|
mArmPC[mInum++] = pc();
|
|
}
|
|
|
|
// no use for Branches with integer PC, but they're in the Interface class ....
|
|
void ArmToMipsAssembler::B(int cc, uint32_t* to_pc)
|
|
{
|
|
LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
|
|
mArmPC[mInum++] = pc();
|
|
}
|
|
|
|
void ArmToMipsAssembler::BL(int cc, uint32_t* to_pc)
|
|
{
|
|
LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
|
|
mArmPC[mInum++] = pc();
|
|
}
|
|
|
|
void ArmToMipsAssembler::BX(int cc, int Rn)
|
|
{
|
|
LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
|
|
mArmPC[mInum++] = pc();
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Data Transfer...
|
|
#endif
|
|
|
|
// data transfer...
|
|
void ArmToMipsAssembler::LDR(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
// work-around for ARM default address mode of immed12_pre(0)
|
|
if (offset > AMODE_UNSUPPORTED) offset = 0;
|
|
switch (offset) {
|
|
case 0:
|
|
amode.value = 0;
|
|
amode.writeback = 0;
|
|
// fall thru to next case ....
|
|
case AMODE_IMM_12_PRE:
|
|
if (Rn == ARMAssemblerInterface::SP) {
|
|
Rn = R_sp; // convert LDR via Arm SP to LW via Mips SP
|
|
}
|
|
mMips->LW(Rd, Rn, amode.value);
|
|
if (amode.writeback) { // OPTIONAL writeback on pre-index mode
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
}
|
|
break;
|
|
case AMODE_IMM_12_POST:
|
|
if (Rn == ARMAssemblerInterface::SP) {
|
|
Rn = R_sp; // convert STR thru Arm SP to STR thru Mips SP
|
|
}
|
|
mMips->LW(Rd, Rn, 0);
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
break;
|
|
case AMODE_REG_SCALE_PRE:
|
|
// we only support simple base + index, no advanced modes for this one yet
|
|
mMips->ADDU(R_at, Rn, amode.reg);
|
|
mMips->LW(Rd, R_at, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::LDRB(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
// work-around for ARM default address mode of immed12_pre(0)
|
|
if (offset > AMODE_UNSUPPORTED) offset = 0;
|
|
switch (offset) {
|
|
case 0:
|
|
amode.value = 0;
|
|
amode.writeback = 0;
|
|
// fall thru to next case ....
|
|
case AMODE_IMM_12_PRE:
|
|
mMips->LBU(Rd, Rn, amode.value);
|
|
if (amode.writeback) { // OPTIONAL writeback on pre-index mode
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
}
|
|
break;
|
|
case AMODE_IMM_12_POST:
|
|
mMips->LBU(Rd, Rn, 0);
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
break;
|
|
case AMODE_REG_SCALE_PRE:
|
|
// we only support simple base + index, no advanced modes for this one yet
|
|
mMips->ADDU(R_at, Rn, amode.reg);
|
|
mMips->LBU(Rd, R_at, 0);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
void ArmToMipsAssembler::STR(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
// work-around for ARM default address mode of immed12_pre(0)
|
|
if (offset > AMODE_UNSUPPORTED) offset = 0;
|
|
switch (offset) {
|
|
case 0:
|
|
amode.value = 0;
|
|
amode.writeback = 0;
|
|
// fall thru to next case ....
|
|
case AMODE_IMM_12_PRE:
|
|
if (Rn == ARMAssemblerInterface::SP) {
|
|
Rn = R_sp; // convert STR thru Arm SP to SW thru Mips SP
|
|
}
|
|
if (amode.writeback) { // OPTIONAL writeback on pre-index mode
|
|
// If we will writeback, then update the index reg, then store.
|
|
// This correctly handles stack-push case.
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
mMips->SW(Rd, Rn, 0);
|
|
} else {
|
|
// No writeback so store offset by value
|
|
mMips->SW(Rd, Rn, amode.value);
|
|
}
|
|
break;
|
|
case AMODE_IMM_12_POST:
|
|
mMips->SW(Rd, Rn, 0);
|
|
mMips->ADDIU(Rn, Rn, amode.value); // post index always writes back
|
|
break;
|
|
case AMODE_REG_SCALE_PRE:
|
|
// we only support simple base + index, no advanced modes for this one yet
|
|
mMips->ADDU(R_at, Rn, amode.reg);
|
|
mMips->SW(Rd, R_at, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::STRB(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
// work-around for ARM default address mode of immed12_pre(0)
|
|
if (offset > AMODE_UNSUPPORTED) offset = 0;
|
|
switch (offset) {
|
|
case 0:
|
|
amode.value = 0;
|
|
amode.writeback = 0;
|
|
// fall thru to next case ....
|
|
case AMODE_IMM_12_PRE:
|
|
mMips->SB(Rd, Rn, amode.value);
|
|
if (amode.writeback) { // OPTIONAL writeback on pre-index mode
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
}
|
|
break;
|
|
case AMODE_IMM_12_POST:
|
|
mMips->SB(Rd, Rn, 0);
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
break;
|
|
case AMODE_REG_SCALE_PRE:
|
|
// we only support simple base + index, no advanced modes for this one yet
|
|
mMips->ADDU(R_at, Rn, amode.reg);
|
|
mMips->SB(Rd, R_at, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::LDRH(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
// work-around for ARM default address mode of immed8_pre(0)
|
|
if (offset > AMODE_UNSUPPORTED) offset = 0;
|
|
switch (offset) {
|
|
case 0:
|
|
amode.value = 0;
|
|
// fall thru to next case ....
|
|
case AMODE_IMM_8_PRE: // no support yet for writeback
|
|
mMips->LHU(Rd, Rn, amode.value);
|
|
break;
|
|
case AMODE_IMM_8_POST:
|
|
mMips->LHU(Rd, Rn, 0);
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
break;
|
|
case AMODE_REG_PRE:
|
|
// we only support simple base +/- index
|
|
if (amode.reg >= 0) {
|
|
mMips->ADDU(R_at, Rn, amode.reg);
|
|
} else {
|
|
mMips->SUBU(R_at, Rn, abs(amode.reg));
|
|
}
|
|
mMips->LHU(Rd, R_at, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ArmToMipsAssembler::LDRSB(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::LDRSH(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::STRH(int cc, int Rd, int Rn, uint32_t offset)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
// work-around for ARM default address mode of immed8_pre(0)
|
|
if (offset > AMODE_UNSUPPORTED) offset = 0;
|
|
switch (offset) {
|
|
case 0:
|
|
amode.value = 0;
|
|
// fall thru to next case ....
|
|
case AMODE_IMM_8_PRE: // no support yet for writeback
|
|
mMips->SH(Rd, Rn, amode.value);
|
|
break;
|
|
case AMODE_IMM_8_POST:
|
|
mMips->SH(Rd, Rn, 0);
|
|
mMips->ADDIU(Rn, Rn, amode.value);
|
|
break;
|
|
case AMODE_REG_PRE:
|
|
// we only support simple base +/- index
|
|
if (amode.reg >= 0) {
|
|
mMips->ADDU(R_at, Rn, amode.reg);
|
|
} else {
|
|
mMips->SUBU(R_at, Rn, abs(amode.reg));
|
|
}
|
|
mMips->SH(Rd, R_at, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Block Data Transfer...
|
|
#endif
|
|
|
|
// block data transfer...
|
|
void ArmToMipsAssembler::LDM(int cc, int dir,
|
|
int Rn, int W, uint32_t reg_list)
|
|
{ // ED FD EA FA IB IA DB DA
|
|
// const uint8_t P[8] = { 1, 0, 1, 0, 1, 0, 1, 0 };
|
|
// const uint8_t U[8] = { 1, 1, 0, 0, 1, 1, 0, 0 };
|
|
// *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
|
|
// (uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::STM(int cc, int dir,
|
|
int Rn, int W, uint32_t reg_list)
|
|
{ // FA EA FD ED IB IA DB DA
|
|
// const uint8_t P[8] = { 0, 1, 0, 1, 1, 0, 1, 0 };
|
|
// const uint8_t U[8] = { 0, 0, 1, 1, 1, 1, 0, 0 };
|
|
// *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
|
|
// (uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Special...
|
|
#endif
|
|
|
|
// special...
|
|
void ArmToMipsAssembler::SWP(int cc, int Rn, int Rd, int Rm) {
|
|
// *mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::SWPB(int cc, int Rn, int Rd, int Rm) {
|
|
// *mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::SWI(int cc, uint32_t comment) {
|
|
// *mPC++ = (cc<<28) | (0xF<<24) | comment;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark DSP instructions...
|
|
#endif
|
|
|
|
// DSP instructions...
|
|
void ArmToMipsAssembler::PLD(int Rn, uint32_t offset) {
|
|
LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))),
|
|
"PLD only P=1, W=0");
|
|
// *mPC++ = 0xF550F000 | (Rn<<16) | offset;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::CLZ(int cc, int Rd, int Rm)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
mMips->CLZ(Rd, Rm);
|
|
}
|
|
|
|
void ArmToMipsAssembler::QADD(int cc, int Rd, int Rm, int Rn)
|
|
{
|
|
// *mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::QDADD(int cc, int Rd, int Rm, int Rn)
|
|
{
|
|
// *mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::QSUB(int cc, int Rd, int Rm, int Rn)
|
|
{
|
|
// *mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::QDSUB(int cc, int Rd, int Rm, int Rn)
|
|
{
|
|
// *mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
// 16 x 16 signed multiply (like SMLAxx without the accumulate)
|
|
void ArmToMipsAssembler::SMUL(int cc, int xy,
|
|
int Rd, int Rm, int Rs)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
|
|
// the 16 bits may be in the top or bottom half of 32-bit source reg,
|
|
// as defined by the codes BB, BT, TB, TT (compressed param xy)
|
|
// where x corresponds to Rm and y to Rs
|
|
|
|
// select half-reg for Rm
|
|
if (xy & xyTB) {
|
|
// use top 16-bits
|
|
mMips->SRA(R_at, Rm, 16);
|
|
} else {
|
|
// use bottom 16, but sign-extend to 32
|
|
if (mips32r2) {
|
|
mMips->SEH(R_at, Rm);
|
|
} else {
|
|
mMips->SLL(R_at, Rm, 16);
|
|
mMips->SRA(R_at, R_at, 16);
|
|
}
|
|
}
|
|
// select half-reg for Rs
|
|
if (xy & xyBT) {
|
|
// use top 16-bits
|
|
mMips->SRA(R_at2, Rs, 16);
|
|
} else {
|
|
// use bottom 16, but sign-extend to 32
|
|
if (mips32r2) {
|
|
mMips->SEH(R_at2, Rs);
|
|
} else {
|
|
mMips->SLL(R_at2, Rs, 16);
|
|
mMips->SRA(R_at2, R_at2, 16);
|
|
}
|
|
}
|
|
mMips->MUL(Rd, R_at, R_at2);
|
|
}
|
|
|
|
// signed 32b x 16b multiple, save top 32-bits of 48-bit result
|
|
void ArmToMipsAssembler::SMULW(int cc, int y,
|
|
int Rd, int Rm, int Rs)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
|
|
// the selector yT or yB refers to reg Rs
|
|
if (y & yT) {
|
|
// zero the bottom 16-bits, with 2 shifts, it can affect result
|
|
mMips->SRL(R_at, Rs, 16);
|
|
mMips->SLL(R_at, R_at, 16);
|
|
|
|
} else {
|
|
// move low 16-bit half, to high half
|
|
mMips->SLL(R_at, Rs, 16);
|
|
}
|
|
mMips->MULT(Rm, R_at);
|
|
mMips->MFHI(Rd);
|
|
}
|
|
|
|
// 16 x 16 signed multiply, accumulate: Rd = Rm{16} * Rs{16} + Rn
|
|
void ArmToMipsAssembler::SMLA(int cc, int xy,
|
|
int Rd, int Rm, int Rs, int Rn)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
|
|
// the 16 bits may be in the top or bottom half of 32-bit source reg,
|
|
// as defined by the codes BB, BT, TB, TT (compressed param xy)
|
|
// where x corresponds to Rm and y to Rs
|
|
|
|
// select half-reg for Rm
|
|
if (xy & xyTB) {
|
|
// use top 16-bits
|
|
mMips->SRA(R_at, Rm, 16);
|
|
} else {
|
|
// use bottom 16, but sign-extend to 32
|
|
if (mips32r2) {
|
|
mMips->SEH(R_at, Rm);
|
|
} else {
|
|
mMips->SLL(R_at, Rm, 16);
|
|
mMips->SRA(R_at, R_at, 16);
|
|
}
|
|
}
|
|
// select half-reg for Rs
|
|
if (xy & xyBT) {
|
|
// use top 16-bits
|
|
mMips->SRA(R_at2, Rs, 16);
|
|
} else {
|
|
// use bottom 16, but sign-extend to 32
|
|
if (mips32r2) {
|
|
mMips->SEH(R_at2, Rs);
|
|
} else {
|
|
mMips->SLL(R_at2, Rs, 16);
|
|
mMips->SRA(R_at2, R_at2, 16);
|
|
}
|
|
}
|
|
|
|
mMips->MUL(R_at, R_at, R_at2);
|
|
mMips->ADDU(Rd, R_at, Rn);
|
|
}
|
|
|
|
void ArmToMipsAssembler::SMLAL(int cc, int xy,
|
|
int RdHi, int RdLo, int Rs, int Rm)
|
|
{
|
|
// *mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
void ArmToMipsAssembler::SMLAW(int cc, int y,
|
|
int Rd, int Rm, int Rs, int Rn)
|
|
{
|
|
// *mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm;
|
|
mArmPC[mInum++] = pc();
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
// used by ARMv6 version of GGLAssembler::filter32
|
|
void ArmToMipsAssembler::UXTB16(int cc, int Rd, int Rm, int rotate)
|
|
{
|
|
mArmPC[mInum++] = pc();
|
|
|
|
//Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]),
|
|
//Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
|
|
|
|
mMips->ROTR(Rm, Rm, rotate * 8);
|
|
mMips->AND(Rd, Rm, 0x00FF00FF);
|
|
}
|
|
|
|
void ArmToMipsAssembler::UBFX(int cc, int Rd, int Rn, int lsb, int width)
|
|
{
|
|
/* Placeholder for UBFX */
|
|
mArmPC[mInum++] = pc();
|
|
|
|
mMips->NOP2();
|
|
NOT_IMPLEMENTED();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark MIPS Assembler...
|
|
#endif
|
|
|
|
|
|
//**************************************************************************
|
|
//**************************************************************************
|
|
//**************************************************************************
|
|
|
|
|
|
/* mips assembler
|
|
** this is a subset of mips32r2, targeted specifically at ARM instruction
|
|
** replacement in the pixelflinger/codeflinger code.
|
|
**
|
|
** To that end, there is no need for floating point, or priviledged
|
|
** instructions. This all runs in user space, no float.
|
|
**
|
|
** The syntax makes no attempt to be as complete as the assember, with
|
|
** synthetic instructions, and automatic recognition of immedate operands
|
|
** (use the immediate form of the instruction), etc.
|
|
**
|
|
** We start with mips32r1, and may add r2 and dsp extensions if cpu
|
|
** supports. Decision will be made at compile time, based on gcc
|
|
** options. (makes sense since android will be built for a a specific
|
|
** device)
|
|
*/
|
|
|
|
MIPSAssembler::MIPSAssembler(const sp<Assembly>& assembly, ArmToMipsAssembler *parent)
|
|
: mParent(parent),
|
|
mAssembly(assembly)
|
|
{
|
|
mBase = mPC = (uint32_t *)assembly->base();
|
|
mDuration = ggl_system_time();
|
|
}
|
|
|
|
MIPSAssembler::MIPSAssembler(void* assembly)
|
|
: mParent(NULL), mAssembly(NULL)
|
|
{
|
|
mBase = mPC = (uint32_t *)assembly;
|
|
}
|
|
|
|
MIPSAssembler::~MIPSAssembler()
|
|
{
|
|
}
|
|
|
|
|
|
uint32_t* MIPSAssembler::pc() const
|
|
{
|
|
return mPC;
|
|
}
|
|
|
|
uint32_t* MIPSAssembler::base() const
|
|
{
|
|
return mBase;
|
|
}
|
|
|
|
void MIPSAssembler::reset()
|
|
{
|
|
mBase = mPC = (uint32_t *)mAssembly->base();
|
|
mBranchTargets.clear();
|
|
mLabels.clear();
|
|
mLabelsInverseMapping.clear();
|
|
mComments.clear();
|
|
}
|
|
|
|
|
|
// convert tabs to spaces, and remove any newline
|
|
// works with strings of limited size (makes a temp copy)
|
|
#define TABSTOP 8
|
|
void MIPSAssembler::string_detab(char *s)
|
|
{
|
|
char *os = s;
|
|
char temp[100];
|
|
char *t = temp;
|
|
int len = 99;
|
|
int i = TABSTOP;
|
|
|
|
while (*s && len-- > 0) {
|
|
if (*s == '\n') { s++; continue; }
|
|
if (*s == '\t') {
|
|
s++;
|
|
for ( ; i>0; i--) {*t++ = ' '; len--; }
|
|
} else {
|
|
*t++ = *s++;
|
|
}
|
|
if (i <= 0) i = TABSTOP;
|
|
i--;
|
|
}
|
|
*t = '\0';
|
|
strcpy(os, temp);
|
|
}
|
|
|
|
void MIPSAssembler::string_pad(char *s, int padded_len)
|
|
{
|
|
int len = strlen(s);
|
|
s += len;
|
|
for (int i = padded_len - len; i > 0; --i) {
|
|
*s++ = ' ';
|
|
}
|
|
*s = '\0';
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void MIPSAssembler::disassemble(const char* name)
|
|
{
|
|
char di_buf[140];
|
|
|
|
if (name) {
|
|
ALOGW("%s:\n", name);
|
|
}
|
|
|
|
bool arm_disasm_fmt = (mParent->mArmDisassemblyBuffer == NULL) ? false : true;
|
|
|
|
typedef char dstr[40];
|
|
dstr *lines = (dstr *)mParent->mArmDisassemblyBuffer;
|
|
|
|
if (mParent->mArmDisassemblyBuffer != NULL) {
|
|
for (int i=0; i<mParent->mArmInstrCount; ++i) {
|
|
string_detab(lines[i]);
|
|
}
|
|
}
|
|
|
|
// iArm is an index to Arm instructions 1...n for this assembly sequence
|
|
// mArmPC[iArm] holds the value of the Mips-PC for the first MIPS
|
|
// instruction corresponding to that Arm instruction number
|
|
|
|
int iArm = 0;
|
|
size_t count = pc()-base();
|
|
uint32_t* mipsPC = base();
|
|
while (count--) {
|
|
ssize_t label = mLabelsInverseMapping.indexOfKey(mipsPC);
|
|
if (label >= 0) {
|
|
ALOGW("%s:\n", mLabelsInverseMapping.valueAt(label));
|
|
}
|
|
ssize_t comment = mComments.indexOfKey(mipsPC);
|
|
if (comment >= 0) {
|
|
ALOGW("; %s\n", mComments.valueAt(comment));
|
|
}
|
|
// ALOGW("%08x: %08x ", int(i), int(i[0]));
|
|
::mips_disassem(mipsPC, di_buf, arm_disasm_fmt);
|
|
string_detab(di_buf);
|
|
string_pad(di_buf, 30);
|
|
ALOGW("%08x: %08x %s", uintptr_t(mipsPC), uint32_t(*mipsPC), di_buf);
|
|
mipsPC++;
|
|
}
|
|
}
|
|
|
|
void MIPSAssembler::comment(const char* string)
|
|
{
|
|
mComments.add(pc(), string);
|
|
}
|
|
|
|
void MIPSAssembler::label(const char* theLabel)
|
|
{
|
|
mLabels.add(theLabel, pc());
|
|
mLabelsInverseMapping.add(pc(), theLabel);
|
|
}
|
|
|
|
|
|
void MIPSAssembler::prolog()
|
|
{
|
|
// empty - done in ArmToMipsAssembler
|
|
}
|
|
|
|
void MIPSAssembler::epilog(uint32_t touched)
|
|
{
|
|
// empty - done in ArmToMipsAssembler
|
|
}
|
|
|
|
int MIPSAssembler::generate(const char* name)
|
|
{
|
|
// fixup all the branches
|
|
size_t count = mBranchTargets.size();
|
|
while (count--) {
|
|
const branch_target_t& bt = mBranchTargets[count];
|
|
uint32_t* target_pc = mLabels.valueFor(bt.label);
|
|
LOG_ALWAYS_FATAL_IF(!target_pc,
|
|
"error resolving branch targets, target_pc is null");
|
|
int32_t offset = int32_t(target_pc - (bt.pc+1));
|
|
*bt.pc |= offset & 0x00FFFF;
|
|
}
|
|
|
|
mAssembly->resize( int(pc()-base())*4 );
|
|
|
|
// the instruction & data caches are flushed by CodeCache
|
|
const int64_t duration = ggl_system_time() - mDuration;
|
|
const char * const format = "generated %s (%d ins) at [%p:%p] in %lld ns\n";
|
|
ALOGI(format, name, int(pc()-base()), base(), pc(), duration);
|
|
|
|
#if defined(WITH_LIB_HARDWARE)
|
|
if (__builtin_expect(mQemuTracing, 0)) {
|
|
int err = qemu_add_mapping(uintptr_t(base()), name);
|
|
mQemuTracing = (err >= 0);
|
|
}
|
|
#endif
|
|
|
|
char value[PROPERTY_VALUE_MAX];
|
|
value[0] = '\0';
|
|
|
|
property_get("debug.pf.disasm", value, "0");
|
|
|
|
if (atoi(value) != 0) {
|
|
disassemble(name);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
uint32_t* MIPSAssembler::pcForLabel(const char* label)
|
|
{
|
|
return mLabels.valueFor(label);
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Arithmetic...
|
|
#endif
|
|
|
|
void MIPSAssembler::ADDU(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (addu_fn<<FUNC_SHF)
|
|
| (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF);
|
|
}
|
|
|
|
// MD00086 pdf says this is: ADDIU rt, rs, imm -- they do not use Rd
|
|
void MIPSAssembler::ADDIU(int Rt, int Rs, int16_t imm)
|
|
{
|
|
*mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
|
|
}
|
|
|
|
|
|
void MIPSAssembler::SUBU(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (subu_fn<<FUNC_SHF) |
|
|
(Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ;
|
|
}
|
|
|
|
|
|
void MIPSAssembler::SUBIU(int Rt, int Rs, int16_t imm) // really addiu(d, s, -j)
|
|
{
|
|
*mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | ((-imm) & MSK_16);
|
|
}
|
|
|
|
|
|
void MIPSAssembler::NEGU(int Rd, int Rs) // really subu(d, zero, s)
|
|
{
|
|
MIPSAssembler::SUBU(Rd, 0, Rs);
|
|
}
|
|
|
|
void MIPSAssembler::MUL(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec2_op<<OP_SHF) | (mul_fn<<FUNC_SHF) |
|
|
(Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ;
|
|
}
|
|
|
|
void MIPSAssembler::MULT(int Rs, int Rt) // dest is hi,lo
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (mult_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MULTU(int Rs, int Rt) // dest is hi,lo
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (multu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MADD(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt
|
|
{
|
|
*mPC++ = (spec2_op<<OP_SHF) | (madd_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MADDU(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt
|
|
{
|
|
*mPC++ = (spec2_op<<OP_SHF) | (maddu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
|
|
void MIPSAssembler::MSUB(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt
|
|
{
|
|
*mPC++ = (spec2_op<<OP_SHF) | (msub_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MSUBU(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt
|
|
{
|
|
*mPC++ = (spec2_op<<OP_SHF) | (msubu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
|
|
void MIPSAssembler::SEB(int Rd, int Rt) // sign-extend byte (mips32r2)
|
|
{
|
|
*mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seb_fn << SA_SHF) |
|
|
(Rt<<RT_SHF) | (Rd<<RD_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SEH(int Rd, int Rt) // sign-extend half-word (mips32r2)
|
|
{
|
|
*mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seh_fn << SA_SHF) |
|
|
(Rt<<RT_SHF) | (Rd<<RD_SHF);
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Comparisons...
|
|
#endif
|
|
|
|
void MIPSAssembler::SLT(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (slt_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SLTI(int Rt, int Rs, int16_t imm)
|
|
{
|
|
*mPC++ = (slti_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
|
|
}
|
|
|
|
|
|
void MIPSAssembler::SLTU(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (sltu_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SLTIU(int Rt, int Rs, int16_t imm)
|
|
{
|
|
*mPC++ = (sltiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Logical...
|
|
#endif
|
|
|
|
void MIPSAssembler::AND(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (and_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::ANDI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate
|
|
{
|
|
*mPC++ = (andi_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
|
|
}
|
|
|
|
|
|
void MIPSAssembler::OR(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::ORI(int Rt, int Rs, uint16_t imm)
|
|
{
|
|
*mPC++ = (ori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::NOR(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (nor_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::NOT(int Rd, int Rs)
|
|
{
|
|
MIPSAssembler::NOR(Rd, Rs, 0); // NOT(d,s) = NOR(d,s,zero)
|
|
}
|
|
|
|
void MIPSAssembler::XOR(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (xor_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::XORI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate
|
|
{
|
|
*mPC++ = (xori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::SLL(int Rd, int Rt, int shft)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SLLV(int Rd, int Rt, int Rs)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (sllv_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SRL(int Rd, int Rt, int shft)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SRLV(int Rd, int Rt, int Rs)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SRA(int Rd, int Rt, int shft)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (sra_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::SRAV(int Rd, int Rt, int Rs)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (srav_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::ROTR(int Rd, int Rt, int shft) // mips32r2
|
|
{
|
|
// note weird encoding (SRL + 1)
|
|
*mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) |
|
|
(1<<RS_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::ROTRV(int Rd, int Rt, int Rs) // mips32r2
|
|
{
|
|
// note weird encoding (SRLV + 1)
|
|
*mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (1<<RE_SHF);
|
|
}
|
|
|
|
// uses at2 register (mapped to some appropriate mips reg)
|
|
void MIPSAssembler::RORsyn(int Rd, int Rt, int Rs)
|
|
{
|
|
// synthetic: d = t rotated by s
|
|
MIPSAssembler::NEGU(R_at2, Rs);
|
|
MIPSAssembler::SLLV(R_at2, Rt, R_at2);
|
|
MIPSAssembler::SRLV(Rd, Rt, Rs);
|
|
MIPSAssembler::OR(Rd, Rd, R_at2);
|
|
}
|
|
|
|
// immediate version - uses at2 register (mapped to some appropriate mips reg)
|
|
void MIPSAssembler::RORIsyn(int Rd, int Rt, int rot)
|
|
{
|
|
// synthetic: d = t rotated by immed rot
|
|
// d = s >> rot | s << (32-rot)
|
|
MIPSAssembler::SLL(R_at2, Rt, 32-rot);
|
|
MIPSAssembler::SRL(Rd, Rt, rot);
|
|
MIPSAssembler::OR(Rd, Rd, R_at2);
|
|
}
|
|
|
|
void MIPSAssembler::CLO(int Rd, int Rs)
|
|
{
|
|
// Rt field must have same gpr # as Rd
|
|
*mPC++ = (spec2_op<<OP_SHF) | (clo_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::CLZ(int Rd, int Rs)
|
|
{
|
|
// Rt field must have same gpr # as Rd
|
|
*mPC++ = (spec2_op<<OP_SHF) | (clz_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::WSBH(int Rd, int Rt) // mips32r2
|
|
{
|
|
*mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (wsbh_fn << SA_SHF) |
|
|
(Rt<<RT_SHF) | (Rd<<RD_SHF);
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Load/store...
|
|
#endif
|
|
|
|
void MIPSAssembler::LW(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (lw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::SW(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (sw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
// lb is sign-extended
|
|
void MIPSAssembler::LB(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (lb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::LBU(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (lbu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::SB(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (sb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
// lh is sign-extended
|
|
void MIPSAssembler::LH(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (lh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::LHU(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (lhu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::SH(int Rt, int Rbase, int16_t offset)
|
|
{
|
|
*mPC++ = (sh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
void MIPSAssembler::LUI(int Rt, int16_t offset)
|
|
{
|
|
*mPC++ = (lui_op<<OP_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Register move...
|
|
#endif
|
|
|
|
void MIPSAssembler::MOVE(int Rd, int Rs)
|
|
{
|
|
// encoded as "or rd, rs, zero"
|
|
*mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (0<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MOVN(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (movn_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MOVZ(int Rd, int Rs, int Rt)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (movz_fn<<FUNC_SHF) |
|
|
(Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MFHI(int Rd)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (mfhi_fn<<FUNC_SHF) | (Rd<<RD_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MFLO(int Rd)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (mflo_fn<<FUNC_SHF) | (Rd<<RD_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MTHI(int Rs)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (mthi_fn<<FUNC_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
void MIPSAssembler::MTLO(int Rs)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (mtlo_fn<<FUNC_SHF) | (Rs<<RS_SHF);
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Branch...
|
|
#endif
|
|
|
|
// temporarily forcing a NOP into branch-delay slot, just to be safe
|
|
// todo: remove NOP, optimze use of delay slots
|
|
void MIPSAssembler::B(const char* label)
|
|
{
|
|
mBranchTargets.add(branch_target_t(label, mPC));
|
|
|
|
// encoded as BEQ zero, zero, offset
|
|
*mPC++ = (beq_op<<OP_SHF) | (0<<RT_SHF)
|
|
| (0<<RS_SHF) | 0; // offset filled in later
|
|
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
void MIPSAssembler::BEQ(int Rs, int Rt, const char* label)
|
|
{
|
|
mBranchTargets.add(branch_target_t(label, mPC));
|
|
*mPC++ = (beq_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0;
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
void MIPSAssembler::BNE(int Rs, int Rt, const char* label)
|
|
{
|
|
mBranchTargets.add(branch_target_t(label, mPC));
|
|
*mPC++ = (bne_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0;
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
void MIPSAssembler::BLEZ(int Rs, const char* label)
|
|
{
|
|
mBranchTargets.add(branch_target_t(label, mPC));
|
|
*mPC++ = (blez_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0;
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
void MIPSAssembler::BLTZ(int Rs, const char* label)
|
|
{
|
|
mBranchTargets.add(branch_target_t(label, mPC));
|
|
*mPC++ = (regimm_op<<OP_SHF) | (bltz_fn<<RT_SHF) | (Rs<<RS_SHF) | 0;
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
void MIPSAssembler::BGTZ(int Rs, const char* label)
|
|
{
|
|
mBranchTargets.add(branch_target_t(label, mPC));
|
|
*mPC++ = (bgtz_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0;
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
|
|
void MIPSAssembler::BGEZ(int Rs, const char* label)
|
|
{
|
|
mBranchTargets.add(branch_target_t(label, mPC));
|
|
*mPC++ = (regimm_op<<OP_SHF) | (bgez_fn<<RT_SHF) | (Rs<<RS_SHF) | 0;
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
void MIPSAssembler::JR(int Rs)
|
|
{
|
|
*mPC++ = (spec_op<<OP_SHF) | (Rs<<RS_SHF) | (jr_fn << FUNC_SHF);
|
|
MIPSAssembler::NOP();
|
|
}
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Synthesized Branch...
|
|
#endif
|
|
|
|
// synthetic variants of branches (using slt & friends)
|
|
void MIPSAssembler::BEQZ(int Rs, const char* label)
|
|
{
|
|
BEQ(Rs, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BNEZ(int Rs, const char* label)
|
|
{
|
|
BNE(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BGE(int Rs, int Rt, const char* label)
|
|
{
|
|
SLT(R_at, Rs, Rt);
|
|
BEQ(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BGEU(int Rs, int Rt, const char* label)
|
|
{
|
|
SLTU(R_at, Rs, Rt);
|
|
BEQ(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BGT(int Rs, int Rt, const char* label)
|
|
{
|
|
SLT(R_at, Rt, Rs); // rev
|
|
BNE(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BGTU(int Rs, int Rt, const char* label)
|
|
{
|
|
SLTU(R_at, Rt, Rs); // rev
|
|
BNE(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BLE(int Rs, int Rt, const char* label)
|
|
{
|
|
SLT(R_at, Rt, Rs); // rev
|
|
BEQ(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BLEU(int Rs, int Rt, const char* label)
|
|
{
|
|
SLTU(R_at, Rt, Rs); // rev
|
|
BEQ(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BLT(int Rs, int Rt, const char* label)
|
|
{
|
|
SLT(R_at, Rs, Rt);
|
|
BNE(R_at, R_zero, label);
|
|
}
|
|
|
|
void MIPSAssembler::BLTU(int Rs, int Rt, const char* label)
|
|
{
|
|
SLTU(R_at, Rs, Rt);
|
|
BNE(R_at, R_zero, label);
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
#pragma mark -
|
|
#pragma mark Misc...
|
|
#endif
|
|
|
|
void MIPSAssembler::NOP(void)
|
|
{
|
|
// encoded as "sll zero, zero, 0", which is all zero
|
|
*mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF);
|
|
}
|
|
|
|
// using this as special opcode for not-yet-implemented ARM instruction
|
|
void MIPSAssembler::NOP2(void)
|
|
{
|
|
// encoded as "sll zero, zero, 2", still a nop, but a unique code
|
|
*mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (2 << RE_SHF);
|
|
}
|
|
|
|
// using this as special opcode for purposefully NOT implemented ARM instruction
|
|
void MIPSAssembler::UNIMPL(void)
|
|
{
|
|
// encoded as "sll zero, zero, 3", still a nop, but a unique code
|
|
*mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (3 << RE_SHF);
|
|
}
|
|
|
|
|
|
}; // namespace android:
|
|
|
|
|