1321 lines
44 KiB
C++
1321 lines
44 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <libgen.h>
|
|
#include <paths.h>
|
|
#include <signal.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/epoll.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/types.h>
|
|
#include <sys/un.h>
|
|
#include <sys/wait.h>
|
|
#include <unistd.h>
|
|
|
|
#include <selinux/selinux.h>
|
|
#include <selinux/label.h>
|
|
#include <selinux/android.h>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/stringprintf.h>
|
|
#include <android-base/strings.h>
|
|
#include <android-base/unique_fd.h>
|
|
#include <cutils/fs.h>
|
|
#include <cutils/iosched_policy.h>
|
|
#include <cutils/list.h>
|
|
#include <cutils/sockets.h>
|
|
#include <libavb/libavb.h>
|
|
#include <private/android_filesystem_config.h>
|
|
|
|
#include <fstream>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include "action.h"
|
|
#include "bootchart.h"
|
|
#include "devices.h"
|
|
#include "fs_mgr.h"
|
|
#include "import_parser.h"
|
|
#include "init.h"
|
|
#include "init_parser.h"
|
|
#include "keychords.h"
|
|
#include "log.h"
|
|
#include "property_service.h"
|
|
#include "service.h"
|
|
#include "signal_handler.h"
|
|
#include "ueventd.h"
|
|
#include "util.h"
|
|
#include "watchdogd.h"
|
|
|
|
using android::base::StringPrintf;
|
|
|
|
struct selabel_handle *sehandle;
|
|
struct selabel_handle *sehandle_prop;
|
|
|
|
static int property_triggers_enabled = 0;
|
|
|
|
static char qemu[32];
|
|
|
|
std::string default_console = "/dev/console";
|
|
static time_t process_needs_restart_at;
|
|
|
|
const char *ENV[32];
|
|
|
|
static std::unique_ptr<Timer> waiting_for_exec(nullptr);
|
|
|
|
static int epoll_fd = -1;
|
|
|
|
static std::unique_ptr<Timer> waiting_for_prop(nullptr);
|
|
static std::string wait_prop_name;
|
|
static std::string wait_prop_value;
|
|
|
|
void register_epoll_handler(int fd, void (*fn)()) {
|
|
epoll_event ev;
|
|
ev.events = EPOLLIN;
|
|
ev.data.ptr = reinterpret_cast<void*>(fn);
|
|
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) {
|
|
PLOG(ERROR) << "epoll_ctl failed";
|
|
}
|
|
}
|
|
|
|
/* add_environment - add "key=value" to the current environment */
|
|
int add_environment(const char *key, const char *val)
|
|
{
|
|
size_t n;
|
|
size_t key_len = strlen(key);
|
|
|
|
/* The last environment entry is reserved to terminate the list */
|
|
for (n = 0; n < (arraysize(ENV) - 1); n++) {
|
|
|
|
/* Delete any existing entry for this key */
|
|
if (ENV[n] != NULL) {
|
|
size_t entry_key_len = strcspn(ENV[n], "=");
|
|
if ((entry_key_len == key_len) && (strncmp(ENV[n], key, entry_key_len) == 0)) {
|
|
free((char*)ENV[n]);
|
|
ENV[n] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Add entry if a free slot is available */
|
|
if (ENV[n] == NULL) {
|
|
char* entry;
|
|
asprintf(&entry, "%s=%s", key, val);
|
|
ENV[n] = entry;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
LOG(ERROR) << "No env. room to store: '" << key << "':'" << val << "'";
|
|
|
|
return -1;
|
|
}
|
|
|
|
bool start_waiting_for_exec()
|
|
{
|
|
if (waiting_for_exec) {
|
|
return false;
|
|
}
|
|
waiting_for_exec.reset(new Timer());
|
|
return true;
|
|
}
|
|
|
|
void stop_waiting_for_exec()
|
|
{
|
|
if (waiting_for_exec) {
|
|
LOG(INFO) << "Wait for exec took " << *waiting_for_exec;
|
|
waiting_for_exec.reset();
|
|
}
|
|
}
|
|
|
|
bool start_waiting_for_property(const char *name, const char *value)
|
|
{
|
|
if (waiting_for_prop) {
|
|
return false;
|
|
}
|
|
if (property_get(name) != value) {
|
|
// Current property value is not equal to expected value
|
|
wait_prop_name = name;
|
|
wait_prop_value = value;
|
|
waiting_for_prop.reset(new Timer());
|
|
} else {
|
|
LOG(INFO) << "start_waiting_for_property(\""
|
|
<< name << "\", \"" << value << "\"): already set";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void property_changed(const char *name, const char *value)
|
|
{
|
|
if (property_triggers_enabled)
|
|
ActionManager::GetInstance().QueuePropertyTrigger(name, value);
|
|
if (waiting_for_prop) {
|
|
if (wait_prop_name == name && wait_prop_value == value) {
|
|
wait_prop_name.clear();
|
|
wait_prop_value.clear();
|
|
LOG(INFO) << "Wait for property took " << *waiting_for_prop;
|
|
waiting_for_prop.reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restart_processes()
|
|
{
|
|
process_needs_restart_at = 0;
|
|
ServiceManager::GetInstance().ForEachServiceWithFlags(SVC_RESTARTING, [](Service* s) {
|
|
s->RestartIfNeeded(&process_needs_restart_at);
|
|
});
|
|
}
|
|
|
|
void handle_control_message(const std::string& msg, const std::string& name) {
|
|
Service* svc = ServiceManager::GetInstance().FindServiceByName(name);
|
|
if (svc == nullptr) {
|
|
LOG(ERROR) << "no such service '" << name << "'";
|
|
return;
|
|
}
|
|
|
|
if (msg == "start") {
|
|
svc->Start();
|
|
} else if (msg == "stop") {
|
|
svc->Stop();
|
|
} else if (msg == "restart") {
|
|
svc->Restart();
|
|
} else {
|
|
LOG(ERROR) << "unknown control msg '" << msg << "'";
|
|
}
|
|
}
|
|
|
|
static int wait_for_coldboot_done_action(const std::vector<std::string>& args) {
|
|
Timer t;
|
|
|
|
LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE "...";
|
|
|
|
// Historically we had a 1s timeout here because we weren't otherwise
|
|
// tracking boot time, and many OEMs made their sepolicy regular
|
|
// expressions too expensive (http://b/19899875).
|
|
|
|
// Now we're tracking boot time, just log the time taken to a system
|
|
// property. We still panic if it takes more than a minute though,
|
|
// because any build that slow isn't likely to boot at all, and we'd
|
|
// rather any test lab devices fail back to the bootloader.
|
|
if (wait_for_file(COLDBOOT_DONE, 60s) < 0) {
|
|
LOG(ERROR) << "Timed out waiting for " COLDBOOT_DONE;
|
|
panic();
|
|
}
|
|
|
|
property_set("ro.boottime.init.cold_boot_wait", std::to_string(t.duration_ms()).c_str());
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Writes 512 bytes of output from Hardware RNG (/dev/hw_random, backed
|
|
* by Linux kernel's hw_random framework) into Linux RNG's via /dev/urandom.
|
|
* Does nothing if Hardware RNG is not present.
|
|
*
|
|
* Since we don't yet trust the quality of Hardware RNG, these bytes are not
|
|
* mixed into the primary pool of Linux RNG and the entropy estimate is left
|
|
* unmodified.
|
|
*
|
|
* If the HW RNG device /dev/hw_random is present, we require that at least
|
|
* 512 bytes read from it are written into Linux RNG. QA is expected to catch
|
|
* devices/configurations where these I/O operations are blocking for a long
|
|
* time. We do not reboot or halt on failures, as this is a best-effort
|
|
* attempt.
|
|
*/
|
|
static int mix_hwrng_into_linux_rng_action(const std::vector<std::string>& args)
|
|
{
|
|
int result = -1;
|
|
int hwrandom_fd = -1;
|
|
int urandom_fd = -1;
|
|
char buf[512];
|
|
ssize_t chunk_size;
|
|
size_t total_bytes_written = 0;
|
|
|
|
hwrandom_fd = TEMP_FAILURE_RETRY(
|
|
open("/dev/hw_random", O_RDONLY | O_NOFOLLOW | O_CLOEXEC));
|
|
if (hwrandom_fd == -1) {
|
|
if (errno == ENOENT) {
|
|
LOG(ERROR) << "/dev/hw_random not found";
|
|
// It's not an error to not have a Hardware RNG.
|
|
result = 0;
|
|
} else {
|
|
PLOG(ERROR) << "Failed to open /dev/hw_random";
|
|
}
|
|
goto ret;
|
|
}
|
|
|
|
urandom_fd = TEMP_FAILURE_RETRY(
|
|
open("/dev/urandom", O_WRONLY | O_NOFOLLOW | O_CLOEXEC));
|
|
if (urandom_fd == -1) {
|
|
PLOG(ERROR) << "Failed to open /dev/urandom";
|
|
goto ret;
|
|
}
|
|
|
|
while (total_bytes_written < sizeof(buf)) {
|
|
chunk_size = TEMP_FAILURE_RETRY(
|
|
read(hwrandom_fd, buf, sizeof(buf) - total_bytes_written));
|
|
if (chunk_size == -1) {
|
|
PLOG(ERROR) << "Failed to read from /dev/hw_random";
|
|
goto ret;
|
|
} else if (chunk_size == 0) {
|
|
LOG(ERROR) << "Failed to read from /dev/hw_random: EOF";
|
|
goto ret;
|
|
}
|
|
|
|
chunk_size = TEMP_FAILURE_RETRY(write(urandom_fd, buf, chunk_size));
|
|
if (chunk_size == -1) {
|
|
PLOG(ERROR) << "Failed to write to /dev/urandom";
|
|
goto ret;
|
|
}
|
|
total_bytes_written += chunk_size;
|
|
}
|
|
|
|
LOG(INFO) << "Mixed " << total_bytes_written << " bytes from /dev/hw_random into /dev/urandom";
|
|
result = 0;
|
|
|
|
ret:
|
|
if (hwrandom_fd != -1) {
|
|
close(hwrandom_fd);
|
|
}
|
|
if (urandom_fd != -1) {
|
|
close(urandom_fd);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void security_failure() {
|
|
LOG(ERROR) << "Security failure...";
|
|
panic();
|
|
}
|
|
|
|
static bool set_highest_available_option_value(std::string path, int min, int max)
|
|
{
|
|
std::ifstream inf(path, std::fstream::in);
|
|
if (!inf) {
|
|
LOG(ERROR) << "Cannot open for reading: " << path;
|
|
return false;
|
|
}
|
|
|
|
int current = max;
|
|
while (current >= min) {
|
|
// try to write out new value
|
|
std::string str_val = std::to_string(current);
|
|
std::ofstream of(path, std::fstream::out);
|
|
if (!of) {
|
|
LOG(ERROR) << "Cannot open for writing: " << path;
|
|
return false;
|
|
}
|
|
of << str_val << std::endl;
|
|
of.close();
|
|
|
|
// check to make sure it was recorded
|
|
inf.seekg(0);
|
|
std::string str_rec;
|
|
inf >> str_rec;
|
|
if (str_val.compare(str_rec) == 0) {
|
|
break;
|
|
}
|
|
current--;
|
|
}
|
|
inf.close();
|
|
|
|
if (current < min) {
|
|
LOG(ERROR) << "Unable to set minimum option value " << min << " in " << path;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define MMAP_RND_PATH "/proc/sys/vm/mmap_rnd_bits"
|
|
#define MMAP_RND_COMPAT_PATH "/proc/sys/vm/mmap_rnd_compat_bits"
|
|
|
|
/* __attribute__((unused)) due to lack of mips support: see mips block
|
|
* in set_mmap_rnd_bits_action */
|
|
static bool __attribute__((unused)) set_mmap_rnd_bits_min(int start, int min, bool compat) {
|
|
std::string path;
|
|
if (compat) {
|
|
path = MMAP_RND_COMPAT_PATH;
|
|
} else {
|
|
path = MMAP_RND_PATH;
|
|
}
|
|
|
|
return set_highest_available_option_value(path, min, start);
|
|
}
|
|
|
|
/*
|
|
* Set /proc/sys/vm/mmap_rnd_bits and potentially
|
|
* /proc/sys/vm/mmap_rnd_compat_bits to the maximum supported values.
|
|
* Returns -1 if unable to set these to an acceptable value.
|
|
*
|
|
* To support this sysctl, the following upstream commits are needed:
|
|
*
|
|
* d07e22597d1d mm: mmap: add new /proc tunable for mmap_base ASLR
|
|
* e0c25d958f78 arm: mm: support ARCH_MMAP_RND_BITS
|
|
* 8f0d3aa9de57 arm64: mm: support ARCH_MMAP_RND_BITS
|
|
* 9e08f57d684a x86: mm: support ARCH_MMAP_RND_BITS
|
|
* ec9ee4acd97c drivers: char: random: add get_random_long()
|
|
* 5ef11c35ce86 mm: ASLR: use get_random_long()
|
|
*/
|
|
static int set_mmap_rnd_bits_action(const std::vector<std::string>& args)
|
|
{
|
|
int ret = -1;
|
|
|
|
/* values are arch-dependent */
|
|
#if defined(__aarch64__)
|
|
/* arm64 supports 18 - 33 bits depending on pagesize and VA_SIZE */
|
|
if (set_mmap_rnd_bits_min(33, 24, false)
|
|
&& set_mmap_rnd_bits_min(16, 16, true)) {
|
|
ret = 0;
|
|
}
|
|
#elif defined(__x86_64__)
|
|
/* x86_64 supports 28 - 32 bits */
|
|
if (set_mmap_rnd_bits_min(32, 32, false)
|
|
&& set_mmap_rnd_bits_min(16, 16, true)) {
|
|
ret = 0;
|
|
}
|
|
#elif defined(__arm__) || defined(__i386__)
|
|
/* check to see if we're running on 64-bit kernel */
|
|
bool h64 = !access(MMAP_RND_COMPAT_PATH, F_OK);
|
|
/* supported 32-bit architecture must have 16 bits set */
|
|
if (set_mmap_rnd_bits_min(16, 16, h64)) {
|
|
ret = 0;
|
|
}
|
|
#elif defined(__mips__) || defined(__mips64__)
|
|
// TODO: add mips support b/27788820
|
|
ret = 0;
|
|
#else
|
|
LOG(ERROR) << "Unknown architecture";
|
|
#endif
|
|
|
|
if (ret == -1) {
|
|
LOG(ERROR) << "Unable to set adequate mmap entropy value!";
|
|
security_failure();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define KPTR_RESTRICT_PATH "/proc/sys/kernel/kptr_restrict"
|
|
#define KPTR_RESTRICT_MINVALUE 2
|
|
#define KPTR_RESTRICT_MAXVALUE 4
|
|
|
|
/* Set kptr_restrict to the highest available level.
|
|
*
|
|
* Aborts if unable to set this to an acceptable value.
|
|
*/
|
|
static int set_kptr_restrict_action(const std::vector<std::string>& args)
|
|
{
|
|
std::string path = KPTR_RESTRICT_PATH;
|
|
|
|
if (!set_highest_available_option_value(path, KPTR_RESTRICT_MINVALUE, KPTR_RESTRICT_MAXVALUE)) {
|
|
LOG(ERROR) << "Unable to set adequate kptr_restrict value!";
|
|
security_failure();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int keychord_init_action(const std::vector<std::string>& args)
|
|
{
|
|
keychord_init();
|
|
return 0;
|
|
}
|
|
|
|
static int console_init_action(const std::vector<std::string>& args)
|
|
{
|
|
std::string console = property_get("ro.boot.console");
|
|
if (!console.empty()) {
|
|
default_console = "/dev/" + console;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) {
|
|
if (key.empty()) return;
|
|
|
|
if (for_emulator) {
|
|
// In the emulator, export any kernel option with the "ro.kernel." prefix.
|
|
property_set(StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str());
|
|
return;
|
|
}
|
|
|
|
if (key == "qemu") {
|
|
strlcpy(qemu, value.c_str(), sizeof(qemu));
|
|
} else if (android::base::StartsWith(key, "androidboot.")) {
|
|
property_set(StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(), value.c_str());
|
|
}
|
|
}
|
|
|
|
static void export_oem_lock_status() {
|
|
if (property_get("ro.oem_unlock_supported") != "1") {
|
|
return;
|
|
}
|
|
|
|
std::string value = property_get("ro.boot.verifiedbootstate");
|
|
|
|
if (!value.empty()) {
|
|
property_set("ro.boot.flash.locked", value == "orange" ? "0" : "1");
|
|
}
|
|
}
|
|
|
|
static void export_kernel_boot_props() {
|
|
struct {
|
|
const char *src_prop;
|
|
const char *dst_prop;
|
|
const char *default_value;
|
|
} prop_map[] = {
|
|
{ "ro.boot.serialno", "ro.serialno", "", },
|
|
{ "ro.boot.mode", "ro.bootmode", "unknown", },
|
|
{ "ro.boot.baseband", "ro.baseband", "unknown", },
|
|
{ "ro.boot.bootloader", "ro.bootloader", "unknown", },
|
|
{ "ro.boot.hardware", "ro.hardware", "unknown", },
|
|
{ "ro.boot.revision", "ro.revision", "0", },
|
|
};
|
|
for (size_t i = 0; i < arraysize(prop_map); i++) {
|
|
std::string value = property_get(prop_map[i].src_prop);
|
|
property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value);
|
|
}
|
|
}
|
|
|
|
static constexpr char android_dt_dir[] = "/proc/device-tree/firmware/android";
|
|
|
|
static bool is_dt_compatible() {
|
|
std::string dt_value;
|
|
std::string file_name = StringPrintf("%s/compatible", android_dt_dir);
|
|
|
|
if (android::base::ReadFileToString(file_name, &dt_value)) {
|
|
// trim the trailing '\0' out, otherwise the comparison
|
|
// will produce false-negatives.
|
|
dt_value.resize(dt_value.size() - 1);
|
|
if (dt_value == "android,firmware") {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool is_dt_fstab_compatible() {
|
|
std::string dt_value;
|
|
std::string file_name = StringPrintf("%s/%s/compatible", android_dt_dir, "fstab");
|
|
|
|
if (android::base::ReadFileToString(file_name, &dt_value)) {
|
|
dt_value.resize(dt_value.size() - 1);
|
|
if (dt_value == "android,fstab") {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void process_kernel_dt() {
|
|
if (!is_dt_compatible()) return;
|
|
|
|
std::unique_ptr<DIR, int(*)(DIR*)>dir(opendir(android_dt_dir), closedir);
|
|
if (!dir) return;
|
|
|
|
std::string dt_file;
|
|
struct dirent *dp;
|
|
while ((dp = readdir(dir.get())) != NULL) {
|
|
if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) {
|
|
continue;
|
|
}
|
|
|
|
std::string file_name = StringPrintf("%s/%s", android_dt_dir, dp->d_name);
|
|
|
|
android::base::ReadFileToString(file_name, &dt_file);
|
|
std::replace(dt_file.begin(), dt_file.end(), ',', '.');
|
|
|
|
std::string property_name = StringPrintf("ro.boot.%s", dp->d_name);
|
|
property_set(property_name.c_str(), dt_file.c_str());
|
|
}
|
|
}
|
|
|
|
static void process_kernel_cmdline() {
|
|
// The first pass does the common stuff, and finds if we are in qemu.
|
|
// The second pass is only necessary for qemu to export all kernel params
|
|
// as properties.
|
|
import_kernel_cmdline(false, import_kernel_nv);
|
|
if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv);
|
|
}
|
|
|
|
static int property_enable_triggers_action(const std::vector<std::string>& args)
|
|
{
|
|
/* Enable property triggers. */
|
|
property_triggers_enabled = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int queue_property_triggers_action(const std::vector<std::string>& args)
|
|
{
|
|
ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger");
|
|
ActionManager::GetInstance().QueueAllPropertyTriggers();
|
|
return 0;
|
|
}
|
|
|
|
static void selinux_init_all_handles(void)
|
|
{
|
|
sehandle = selinux_android_file_context_handle();
|
|
selinux_android_set_sehandle(sehandle);
|
|
sehandle_prop = selinux_android_prop_context_handle();
|
|
}
|
|
|
|
enum selinux_enforcing_status { SELINUX_PERMISSIVE, SELINUX_ENFORCING };
|
|
|
|
static selinux_enforcing_status selinux_status_from_cmdline() {
|
|
selinux_enforcing_status status = SELINUX_ENFORCING;
|
|
|
|
import_kernel_cmdline(false, [&](const std::string& key, const std::string& value, bool in_qemu) {
|
|
if (key == "androidboot.selinux" && value == "permissive") {
|
|
status = SELINUX_PERMISSIVE;
|
|
}
|
|
});
|
|
|
|
return status;
|
|
}
|
|
|
|
static bool selinux_is_enforcing(void)
|
|
{
|
|
if (ALLOW_PERMISSIVE_SELINUX) {
|
|
return selinux_status_from_cmdline() == SELINUX_ENFORCING;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int audit_callback(void *data, security_class_t /*cls*/, char *buf, size_t len) {
|
|
|
|
property_audit_data *d = reinterpret_cast<property_audit_data*>(data);
|
|
|
|
if (!d || !d->name || !d->cr) {
|
|
LOG(ERROR) << "audit_callback invoked with null data arguments!";
|
|
return 0;
|
|
}
|
|
|
|
snprintf(buf, len, "property=%s pid=%d uid=%d gid=%d", d->name,
|
|
d->cr->pid, d->cr->uid, d->cr->gid);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Forks, executes the provided program in the child, and waits for the completion in the parent.
|
|
* Child's stderr is captured and logged using LOG(ERROR).
|
|
*
|
|
* Returns true if the child exited with status code 0, returns false otherwise.
|
|
*/
|
|
static bool fork_execve_and_wait_for_completion(const char* filename, char* const argv[],
|
|
char* const envp[]) {
|
|
// Create a pipe used for redirecting child process's output.
|
|
// * pipe_fds[0] is the FD the parent will use for reading.
|
|
// * pipe_fds[1] is the FD the child will use for writing.
|
|
int pipe_fds[2];
|
|
if (pipe(pipe_fds) == -1) {
|
|
PLOG(ERROR) << "Failed to create pipe";
|
|
return false;
|
|
}
|
|
|
|
pid_t child_pid = fork();
|
|
if (child_pid == -1) {
|
|
PLOG(ERROR) << "Failed to fork for " << filename;
|
|
return false;
|
|
}
|
|
|
|
if (child_pid == 0) {
|
|
// fork succeeded -- this is executing in the child process
|
|
|
|
// Close the pipe FD not used by this process
|
|
TEMP_FAILURE_RETRY(close(pipe_fds[0]));
|
|
|
|
// Redirect stderr to the pipe FD provided by the parent
|
|
if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) {
|
|
PLOG(ERROR) << "Failed to redirect stderr of " << filename;
|
|
_exit(127);
|
|
return false;
|
|
}
|
|
TEMP_FAILURE_RETRY(close(pipe_fds[1]));
|
|
|
|
if (execve(filename, argv, envp) == -1) {
|
|
PLOG(ERROR) << "Failed to execve " << filename;
|
|
return false;
|
|
}
|
|
// Unreachable because execve will have succeeded and replaced this code
|
|
// with child process's code.
|
|
_exit(127);
|
|
return false;
|
|
} else {
|
|
// fork succeeded -- this is executing in the original/parent process
|
|
|
|
// Close the pipe FD not used by this process
|
|
TEMP_FAILURE_RETRY(close(pipe_fds[1]));
|
|
|
|
// Log the redirected output of the child process.
|
|
// It's unfortunate that there's no standard way to obtain an istream for a file descriptor.
|
|
// As a result, we're buffering all output and logging it in one go at the end of the
|
|
// invocation, instead of logging it as it comes in.
|
|
const int child_out_fd = pipe_fds[0];
|
|
std::string child_output;
|
|
if (!android::base::ReadFdToString(child_out_fd, &child_output)) {
|
|
PLOG(ERROR) << "Failed to capture full output of " << filename;
|
|
}
|
|
TEMP_FAILURE_RETRY(close(child_out_fd));
|
|
if (!child_output.empty()) {
|
|
// Log captured output, line by line, because LOG expects to be invoked for each line
|
|
std::istringstream in(child_output);
|
|
std::string line;
|
|
while (std::getline(in, line)) {
|
|
LOG(ERROR) << filename << ": " << line;
|
|
}
|
|
}
|
|
|
|
// Wait for child to terminate
|
|
int status;
|
|
if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) {
|
|
PLOG(ERROR) << "Failed to wait for " << filename;
|
|
return false;
|
|
}
|
|
|
|
if (WIFEXITED(status)) {
|
|
int status_code = WEXITSTATUS(status);
|
|
if (status_code == 0) {
|
|
return true;
|
|
} else {
|
|
LOG(ERROR) << filename << " exited with status " << status_code;
|
|
}
|
|
} else if (WIFSIGNALED(status)) {
|
|
LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status);
|
|
} else if (WIFSTOPPED(status)) {
|
|
LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status);
|
|
} else {
|
|
LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool read_first_line(const char* file, std::string* line) {
|
|
line->clear();
|
|
|
|
std::string contents;
|
|
if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) {
|
|
return false;
|
|
}
|
|
std::istringstream in(contents);
|
|
std::getline(in, *line);
|
|
return true;
|
|
}
|
|
|
|
static bool selinux_find_precompiled_split_policy(std::string* file) {
|
|
file->clear();
|
|
|
|
static constexpr const char precompiled_sepolicy[] = "/vendor/etc/selinux/precompiled_sepolicy";
|
|
if (access(precompiled_sepolicy, R_OK) == -1) {
|
|
return false;
|
|
}
|
|
std::string actual_plat_id;
|
|
if (!read_first_line("/system/etc/selinux/plat_sepolicy.cil.sha256", &actual_plat_id)) {
|
|
PLOG(INFO) << "Failed to read /system/etc/selinux/plat_sepolicy.cil.sha256";
|
|
return false;
|
|
}
|
|
std::string precompiled_plat_id;
|
|
if (!read_first_line("/vendor/etc/selinux/precompiled_sepolicy.plat.sha256",
|
|
&precompiled_plat_id)) {
|
|
PLOG(INFO) << "Failed to read /vendor/etc/selinux/precompiled_sepolicy.plat.sha256";
|
|
return false;
|
|
}
|
|
if ((actual_plat_id.empty()) || (actual_plat_id != precompiled_plat_id)) {
|
|
return false;
|
|
}
|
|
|
|
*file = precompiled_sepolicy;
|
|
return true;
|
|
}
|
|
|
|
static constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil";
|
|
|
|
static bool selinux_is_split_policy_device() { return access(plat_policy_cil_file, R_OK) != -1; }
|
|
|
|
/*
|
|
* Loads SELinux policy split across platform/system and non-platform/vendor files.
|
|
*
|
|
* Returns true upon success, false otherwise (failure cause is logged).
|
|
*/
|
|
static bool selinux_load_split_policy() {
|
|
// IMPLEMENTATION NOTE: Split policy consists of three CIL files:
|
|
// * platform -- policy needed due to logic contained in the system image,
|
|
// * non-platform -- policy needed due to logic contained in the vendor image,
|
|
// * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy
|
|
// with newer versions of platform policy.
|
|
//
|
|
// secilc is invoked to compile the above three policy files into a single monolithic policy
|
|
// file. This file is then loaded into the kernel.
|
|
|
|
// Load precompiled policy from vendor image, if a matching policy is found there. The policy
|
|
// must match the platform policy on the system image.
|
|
std::string precompiled_sepolicy_file;
|
|
if (selinux_find_precompiled_split_policy(&precompiled_sepolicy_file)) {
|
|
android::base::unique_fd fd(
|
|
open(precompiled_sepolicy_file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY));
|
|
if (fd != -1) {
|
|
if (selinux_android_load_policy_from_fd(fd, precompiled_sepolicy_file.c_str()) < 0) {
|
|
LOG(ERROR) << "Failed to load SELinux policy from " << precompiled_sepolicy_file;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
// No suitable precompiled policy could be loaded
|
|
|
|
LOG(INFO) << "Compiling SELinux policy";
|
|
|
|
// Determine the highest policy language version supported by the kernel
|
|
set_selinuxmnt("/sys/fs/selinux");
|
|
int max_policy_version = security_policyvers();
|
|
if (max_policy_version == -1) {
|
|
PLOG(ERROR) << "Failed to determine highest policy version supported by kernel";
|
|
return false;
|
|
}
|
|
|
|
// We store the output of the compilation on /dev because this is the most convenient tmpfs
|
|
// storage mount available this early in the boot sequence.
|
|
char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX";
|
|
android::base::unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC));
|
|
if (compiled_sepolicy_fd < 0) {
|
|
PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy;
|
|
return false;
|
|
}
|
|
|
|
// clang-format off
|
|
const char* compile_args[] = {
|
|
"/system/bin/secilc",
|
|
plat_policy_cil_file,
|
|
"-M", "true",
|
|
// Target the highest policy language version supported by the kernel
|
|
"-c", std::to_string(max_policy_version).c_str(),
|
|
"/vendor/etc/selinux/mapping_sepolicy.cil",
|
|
"/vendor/etc/selinux/nonplat_sepolicy.cil",
|
|
"-o", compiled_sepolicy,
|
|
// We don't care about file_contexts output by the compiler
|
|
"-f", "/sys/fs/selinux/null", // /dev/null is not yet available
|
|
nullptr};
|
|
// clang-format on
|
|
|
|
if (!fork_execve_and_wait_for_completion(compile_args[0], (char**)compile_args, (char**)ENV)) {
|
|
unlink(compiled_sepolicy);
|
|
return false;
|
|
}
|
|
unlink(compiled_sepolicy);
|
|
|
|
LOG(INFO) << "Loading compiled SELinux policy";
|
|
if (selinux_android_load_policy_from_fd(compiled_sepolicy_fd, compiled_sepolicy) < 0) {
|
|
LOG(ERROR) << "Failed to load SELinux policy from " << compiled_sepolicy;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Loads SELinux policy from a monolithic file.
|
|
*
|
|
* Returns true upon success, false otherwise (failure cause is logged).
|
|
*/
|
|
static bool selinux_load_monolithic_policy() {
|
|
LOG(VERBOSE) << "Loading SELinux policy from monolithic file";
|
|
if (selinux_android_load_policy() < 0) {
|
|
PLOG(ERROR) << "Failed to load monolithic SELinux policy";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Loads SELinux policy into the kernel.
|
|
*
|
|
* Returns true upon success, false otherwise (failure cause is logged).
|
|
*/
|
|
static bool selinux_load_policy() {
|
|
return selinux_is_split_policy_device() ? selinux_load_split_policy()
|
|
: selinux_load_monolithic_policy();
|
|
}
|
|
|
|
static void selinux_initialize(bool in_kernel_domain) {
|
|
Timer t;
|
|
|
|
selinux_callback cb;
|
|
cb.func_log = selinux_klog_callback;
|
|
selinux_set_callback(SELINUX_CB_LOG, cb);
|
|
cb.func_audit = audit_callback;
|
|
selinux_set_callback(SELINUX_CB_AUDIT, cb);
|
|
|
|
if (in_kernel_domain) {
|
|
LOG(INFO) << "Loading SELinux policy";
|
|
if (!selinux_load_policy()) {
|
|
panic();
|
|
}
|
|
|
|
bool kernel_enforcing = (security_getenforce() == 1);
|
|
bool is_enforcing = selinux_is_enforcing();
|
|
if (kernel_enforcing != is_enforcing) {
|
|
if (security_setenforce(is_enforcing)) {
|
|
PLOG(ERROR) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false");
|
|
security_failure();
|
|
}
|
|
}
|
|
|
|
if (!write_file("/sys/fs/selinux/checkreqprot", "0")) {
|
|
security_failure();
|
|
}
|
|
|
|
// init's first stage can't set properties, so pass the time to the second stage.
|
|
setenv("INIT_SELINUX_TOOK", std::to_string(t.duration_ms()).c_str(), 1);
|
|
} else {
|
|
selinux_init_all_handles();
|
|
}
|
|
}
|
|
|
|
// Set the UDC controller for the ConfigFS USB Gadgets.
|
|
// Read the UDC controller in use from "/sys/class/udc".
|
|
// In case of multiple UDC controllers select the first one.
|
|
static void set_usb_controller() {
|
|
std::unique_ptr<DIR, decltype(&closedir)>dir(opendir("/sys/class/udc"), closedir);
|
|
if (!dir) return;
|
|
|
|
dirent* dp;
|
|
while ((dp = readdir(dir.get())) != nullptr) {
|
|
if (dp->d_name[0] == '.') continue;
|
|
|
|
property_set("sys.usb.controller", dp->d_name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool early_mount_one(struct fstab_rec* rec) {
|
|
if (rec && fs_mgr_is_verified(rec)) {
|
|
// setup verity and create the dm-XX block device
|
|
// needed to mount this partition
|
|
int ret = fs_mgr_setup_verity(rec, false);
|
|
if (ret == FS_MGR_SETUP_VERITY_FAIL) {
|
|
PLOG(ERROR) << "early_mount: Failed to setup verity for '" << rec->mount_point << "'";
|
|
return false;
|
|
}
|
|
|
|
// The exact block device name is added as a mount source by
|
|
// fs_mgr_setup_verity() in ->blk_device as "/dev/block/dm-XX"
|
|
// We create that device by running coldboot on /sys/block/dm-XX
|
|
std::string dm_device(basename(rec->blk_device));
|
|
std::string syspath = StringPrintf("/sys/block/%s", dm_device.c_str());
|
|
device_init(syspath.c_str(), [&](uevent* uevent) -> coldboot_action_t {
|
|
if (uevent->device_name && !strcmp(dm_device.c_str(), uevent->device_name)) {
|
|
LOG(VERBOSE) << "early_mount: creating dm-verity device : " << dm_device;
|
|
return COLDBOOT_STOP;
|
|
}
|
|
return COLDBOOT_CONTINUE;
|
|
});
|
|
}
|
|
|
|
if (rec && fs_mgr_do_mount_one(rec)) {
|
|
PLOG(ERROR) << "early_mount: Failed to mount '" << rec->mount_point << "'";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Creates devices with uevent->partition_name matching one in the in/out
|
|
// partition_names. Note that the partition_names MUST have A/B suffix
|
|
// when A/B is used. Found partitions will then be removed from the
|
|
// partition_names for caller to check which devices are NOT created.
|
|
static void early_device_init(std::set<std::string>* partition_names) {
|
|
if (partition_names->empty()) {
|
|
return;
|
|
}
|
|
device_init(nullptr, [=](uevent* uevent) -> coldboot_action_t {
|
|
if (!strncmp(uevent->subsystem, "firmware", 8)) {
|
|
return COLDBOOT_CONTINUE;
|
|
}
|
|
|
|
// we need platform devices to create symlinks
|
|
if (!strncmp(uevent->subsystem, "platform", 8)) {
|
|
return COLDBOOT_CREATE;
|
|
}
|
|
|
|
// Ignore everything that is not a block device
|
|
if (strncmp(uevent->subsystem, "block", 5)) {
|
|
return COLDBOOT_CONTINUE;
|
|
}
|
|
|
|
if (uevent->partition_name) {
|
|
// match partition names to create device nodes for partitions
|
|
// both partition_names and uevent->partition_name have A/B suffix when A/B is used
|
|
auto iter = partition_names->find(uevent->partition_name);
|
|
if (iter != partition_names->end()) {
|
|
LOG(VERBOSE) << "early_mount: found partition: " << *iter;
|
|
partition_names->erase(iter);
|
|
if (partition_names->empty()) {
|
|
return COLDBOOT_STOP; // found all partitions, stop coldboot
|
|
} else {
|
|
return COLDBOOT_CREATE; // create this device and continue to find others
|
|
}
|
|
}
|
|
}
|
|
// Not found a partition or find an unneeded partition, continue to find others
|
|
return COLDBOOT_CONTINUE;
|
|
});
|
|
}
|
|
|
|
static bool get_early_partitions(const std::vector<fstab_rec*>& early_fstab_recs,
|
|
std::set<std::string>* out_partitions, bool* out_need_verity) {
|
|
std::string meta_partition;
|
|
out_partitions->clear();
|
|
*out_need_verity = false;
|
|
|
|
for (auto fstab_rec : early_fstab_recs) {
|
|
// don't allow verifyatboot for early mounted partitions
|
|
if (fs_mgr_is_verifyatboot(fstab_rec)) {
|
|
LOG(ERROR) << "early_mount: partitions can't be verified at boot";
|
|
return false;
|
|
}
|
|
// check for verified partitions
|
|
if (fs_mgr_is_verified(fstab_rec)) {
|
|
*out_need_verity = true;
|
|
}
|
|
// check if verity metadata is on a separate partition and get partition
|
|
// name from the end of the ->verity_loc path. verity state is not partition
|
|
// specific, so there must be only 1 additional partition that carries
|
|
// verity state.
|
|
if (fstab_rec->verity_loc) {
|
|
if (!meta_partition.empty()) {
|
|
LOG(ERROR) << "early_mount: more than one meta partition found: " << meta_partition
|
|
<< ", " << basename(fstab_rec->verity_loc);
|
|
return false;
|
|
} else {
|
|
meta_partition = basename(fstab_rec->verity_loc);
|
|
}
|
|
}
|
|
}
|
|
|
|
// includes those early mount partitions and meta_partition (if any)
|
|
// note that fstab_rec->blk_device has A/B suffix updated by fs_mgr when A/B is used
|
|
for (auto fstab_rec : early_fstab_recs) {
|
|
out_partitions->emplace(basename(fstab_rec->blk_device));
|
|
}
|
|
|
|
if (!meta_partition.empty()) {
|
|
out_partitions->emplace(std::move(meta_partition));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Early mount vendor and ODM partitions. The fstab is read from device-tree. */
|
|
static bool early_mount() {
|
|
// skip early mount if we're in recovery mode
|
|
if (access("/sbin/recovery", F_OK) == 0) {
|
|
LOG(INFO) << "Early mount skipped (recovery mode)";
|
|
return true;
|
|
}
|
|
|
|
// first check if device tree fstab entries are compatible
|
|
if (!is_dt_fstab_compatible()) {
|
|
LOG(INFO) << "Early mount skipped (missing/incompatible fstab in device tree)";
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> tab(
|
|
fs_mgr_read_fstab_dt(), fs_mgr_free_fstab);
|
|
if (!tab) {
|
|
LOG(ERROR) << "Early mount failed to read fstab from device tree";
|
|
return false;
|
|
}
|
|
|
|
// find out fstab records for odm, system and vendor
|
|
std::vector<fstab_rec*> early_fstab_recs;
|
|
for (auto mount_point : {"/odm", "/system", "/vendor"}) {
|
|
fstab_rec* fstab_rec = fs_mgr_get_entry_for_mount_point(tab.get(), mount_point);
|
|
if (fstab_rec != nullptr) {
|
|
early_fstab_recs.push_back(fstab_rec);
|
|
}
|
|
}
|
|
|
|
// nothing to early mount
|
|
if (early_fstab_recs.empty()) return true;
|
|
|
|
bool need_verity;
|
|
std::set<std::string> partition_names;
|
|
// partition_names MUST have A/B suffix when A/B is used
|
|
if (!get_early_partitions(early_fstab_recs, &partition_names, &need_verity)) {
|
|
return false;
|
|
}
|
|
|
|
bool success = false;
|
|
// create the devices we need..
|
|
early_device_init(&partition_names);
|
|
|
|
// early_device_init will remove found partitions from partition_names
|
|
// So if the partition_names is not empty here, means some partitions
|
|
// are not found
|
|
if (!partition_names.empty()) {
|
|
LOG(ERROR) << "early_mount: partition(s) not found: "
|
|
<< android::base::Join(partition_names, ", ");
|
|
goto done;
|
|
}
|
|
|
|
if (need_verity) {
|
|
// create /dev/device mapper
|
|
device_init("/sys/devices/virtual/misc/device-mapper",
|
|
[&](uevent* uevent) -> coldboot_action_t { return COLDBOOT_STOP; });
|
|
}
|
|
|
|
for (auto fstab_rec : early_fstab_recs) {
|
|
if (!early_mount_one(fstab_rec)) goto done;
|
|
}
|
|
success = true;
|
|
|
|
done:
|
|
device_close();
|
|
return success;
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
if (!strcmp(basename(argv[0]), "ueventd")) {
|
|
return ueventd_main(argc, argv);
|
|
}
|
|
|
|
if (!strcmp(basename(argv[0]), "watchdogd")) {
|
|
return watchdogd_main(argc, argv);
|
|
}
|
|
|
|
boot_clock::time_point start_time = boot_clock::now();
|
|
|
|
// Clear the umask.
|
|
umask(0);
|
|
|
|
add_environment("PATH", _PATH_DEFPATH);
|
|
|
|
bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);
|
|
|
|
// Don't expose the raw commandline to unprivileged processes.
|
|
chmod("/proc/cmdline", 0440);
|
|
|
|
// Get the basic filesystem setup we need put together in the initramdisk
|
|
// on / and then we'll let the rc file figure out the rest.
|
|
if (is_first_stage) {
|
|
mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
|
|
mkdir("/dev/pts", 0755);
|
|
mkdir("/dev/socket", 0755);
|
|
mount("devpts", "/dev/pts", "devpts", 0, NULL);
|
|
#define MAKE_STR(x) __STRING(x)
|
|
mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC));
|
|
gid_t groups[] = { AID_READPROC };
|
|
setgroups(arraysize(groups), groups);
|
|
mount("sysfs", "/sys", "sysfs", 0, NULL);
|
|
mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL);
|
|
mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11));
|
|
mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));
|
|
mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));
|
|
}
|
|
|
|
// Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
|
|
// talk to the outside world...
|
|
InitKernelLogging(argv);
|
|
|
|
LOG(INFO) << "init " << (is_first_stage ? "first" : "second") << " stage started!";
|
|
|
|
if (is_first_stage) {
|
|
if (!early_mount()) {
|
|
LOG(ERROR) << "Failed to mount required partitions early ...";
|
|
panic();
|
|
}
|
|
|
|
// Set up SELinux, loading the SELinux policy.
|
|
selinux_initialize(true);
|
|
|
|
// We're in the kernel domain, so re-exec init to transition to the init domain now
|
|
// that the SELinux policy has been loaded.
|
|
if (restorecon("/init") == -1) {
|
|
PLOG(ERROR) << "restorecon failed";
|
|
security_failure();
|
|
}
|
|
|
|
setenv("INIT_SECOND_STAGE", "true", 1);
|
|
|
|
static constexpr uint32_t kNanosecondsPerMillisecond = 1e6;
|
|
uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond;
|
|
setenv("INIT_STARTED_AT", StringPrintf("%" PRIu64, start_ms).c_str(), 1);
|
|
|
|
char* path = argv[0];
|
|
char* args[] = { path, nullptr };
|
|
if (execv(path, args) == -1) {
|
|
PLOG(ERROR) << "execv(\"" << path << "\") failed";
|
|
security_failure();
|
|
}
|
|
} else {
|
|
// Indicate that booting is in progress to background fw loaders, etc.
|
|
close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
|
|
|
|
property_init();
|
|
|
|
// If arguments are passed both on the command line and in DT,
|
|
// properties set in DT always have priority over the command-line ones.
|
|
process_kernel_dt();
|
|
process_kernel_cmdline();
|
|
|
|
// Propagate the kernel variables to internal variables
|
|
// used by init as well as the current required properties.
|
|
export_kernel_boot_props();
|
|
|
|
// Make the time that init started available for bootstat to log.
|
|
property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));
|
|
property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));
|
|
|
|
// Set libavb version for Framework-only OTA match in Treble build.
|
|
property_set("ro.boot.init.avb_version", std::to_string(AVB_MAJOR_VERSION).c_str());
|
|
|
|
// Clean up our environment.
|
|
unsetenv("INIT_SECOND_STAGE");
|
|
unsetenv("INIT_STARTED_AT");
|
|
unsetenv("INIT_SELINUX_TOOK");
|
|
|
|
// Now set up SELinux for second stage.
|
|
selinux_initialize(false);
|
|
}
|
|
|
|
// These directories were necessarily created before initial policy load
|
|
// and therefore need their security context restored to the proper value.
|
|
// This must happen before /dev is populated by ueventd.
|
|
LOG(INFO) << "Running restorecon...";
|
|
restorecon("/dev");
|
|
restorecon("/dev/kmsg");
|
|
restorecon("/dev/socket");
|
|
restorecon("/dev/random");
|
|
restorecon("/dev/urandom");
|
|
restorecon("/dev/__properties__");
|
|
restorecon("/plat_property_contexts");
|
|
restorecon("/nonplat_property_contexts");
|
|
restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
|
|
restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
|
|
restorecon("/dev/device-mapper");
|
|
|
|
epoll_fd = epoll_create1(EPOLL_CLOEXEC);
|
|
if (epoll_fd == -1) {
|
|
PLOG(ERROR) << "epoll_create1 failed";
|
|
exit(1);
|
|
}
|
|
|
|
signal_handler_init();
|
|
|
|
property_load_boot_defaults();
|
|
export_oem_lock_status();
|
|
start_property_service();
|
|
set_usb_controller();
|
|
|
|
const BuiltinFunctionMap function_map;
|
|
Action::set_function_map(&function_map);
|
|
|
|
Parser& parser = Parser::GetInstance();
|
|
parser.AddSectionParser("service",std::make_unique<ServiceParser>());
|
|
parser.AddSectionParser("on", std::make_unique<ActionParser>());
|
|
parser.AddSectionParser("import", std::make_unique<ImportParser>());
|
|
std::string bootscript = property_get("ro.boot.init_rc");
|
|
if (bootscript.empty()) {
|
|
parser.ParseConfig("/init.rc");
|
|
parser.set_is_system_etc_init_loaded(
|
|
parser.ParseConfig("/system/etc/init"));
|
|
parser.set_is_vendor_etc_init_loaded(
|
|
parser.ParseConfig("/vendor/etc/init"));
|
|
parser.set_is_odm_etc_init_loaded(parser.ParseConfig("/odm/etc/init"));
|
|
} else {
|
|
parser.ParseConfig(bootscript);
|
|
parser.set_is_system_etc_init_loaded(true);
|
|
parser.set_is_vendor_etc_init_loaded(true);
|
|
parser.set_is_odm_etc_init_loaded(true);
|
|
}
|
|
|
|
// Turning this on and letting the INFO logging be discarded adds 0.2s to
|
|
// Nexus 9 boot time, so it's disabled by default.
|
|
if (false) parser.DumpState();
|
|
|
|
ActionManager& am = ActionManager::GetInstance();
|
|
|
|
am.QueueEventTrigger("early-init");
|
|
|
|
// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
|
|
am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
|
|
// ... so that we can start queuing up actions that require stuff from /dev.
|
|
am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
|
|
am.QueueBuiltinAction(set_mmap_rnd_bits_action, "set_mmap_rnd_bits");
|
|
am.QueueBuiltinAction(set_kptr_restrict_action, "set_kptr_restrict");
|
|
am.QueueBuiltinAction(keychord_init_action, "keychord_init");
|
|
am.QueueBuiltinAction(console_init_action, "console_init");
|
|
|
|
// Trigger all the boot actions to get us started.
|
|
am.QueueEventTrigger("init");
|
|
|
|
// Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
|
|
// wasn't ready immediately after wait_for_coldboot_done
|
|
am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
|
|
|
|
// Don't mount filesystems or start core system services in charger mode.
|
|
std::string bootmode = property_get("ro.bootmode");
|
|
if (bootmode == "charger") {
|
|
am.QueueEventTrigger("charger");
|
|
} else {
|
|
am.QueueEventTrigger("late-init");
|
|
}
|
|
|
|
// Run all property triggers based on current state of the properties.
|
|
am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
|
|
|
|
while (true) {
|
|
if (!(waiting_for_exec || waiting_for_prop)) {
|
|
am.ExecuteOneCommand();
|
|
restart_processes();
|
|
}
|
|
|
|
// By default, sleep until something happens.
|
|
int epoll_timeout_ms = -1;
|
|
|
|
// If there's a process that needs restarting, wake up in time for that.
|
|
if (process_needs_restart_at != 0) {
|
|
epoll_timeout_ms = (process_needs_restart_at - time(nullptr)) * 1000;
|
|
if (epoll_timeout_ms < 0) epoll_timeout_ms = 0;
|
|
}
|
|
|
|
// If there's more work to do, wake up again immediately.
|
|
if (am.HasMoreCommands()) epoll_timeout_ms = 0;
|
|
|
|
epoll_event ev;
|
|
int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));
|
|
if (nr == -1) {
|
|
PLOG(ERROR) << "epoll_wait failed";
|
|
} else if (nr == 1) {
|
|
((void (*)()) ev.data.ptr)();
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|