platform_system_core/fastboot/fastboot.cpp

1831 lines
65 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <chrono>
#include <functional>
#include <thread>
#include <utility>
#include <vector>
#include <android-base/file.h>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/parsenetaddress.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/test_utils.h>
#include <android-base/unique_fd.h>
#include <sparse/sparse.h>
#include <ziparchive/zip_archive.h>
#include "bootimg_utils.h"
#include "diagnose_usb.h"
#include "fastboot.h"
#include "fs.h"
#include "tcp.h"
#include "transport.h"
#include "udp.h"
#include "usb.h"
using android::base::unique_fd;
#ifndef O_BINARY
#define O_BINARY 0
#endif
char cur_product[FB_RESPONSE_SZ + 1];
static const char* serial = nullptr;
static const char* cmdline = nullptr;
static unsigned short vendor_id = 0;
static int long_listing = 0;
// Don't resparse files in too-big chunks.
// libsparse will support INT_MAX, but this results in large allocations, so
// let's keep it at 1GB to avoid memory pressure on the host.
static constexpr int64_t RESPARSE_LIMIT = 1 * 1024 * 1024 * 1024;
static int64_t sparse_limit = -1;
static int64_t target_sparse_limit = -1;
static unsigned page_size = 2048;
static unsigned base_addr = 0x10000000;
static unsigned kernel_offset = 0x00008000;
static unsigned ramdisk_offset = 0x01000000;
static unsigned second_offset = 0x00f00000;
static unsigned tags_offset = 0x00000100;
static const std::string convert_fbe_marker_filename("convert_fbe");
enum fb_buffer_type {
FB_BUFFER_FD,
FB_BUFFER_SPARSE,
};
struct fastboot_buffer {
enum fb_buffer_type type;
void* data;
int64_t sz;
int fd;
};
static struct {
const char* nickname;
const char* img_name;
const char* sig_name;
const char* part_name;
bool is_optional;
bool is_secondary;
} images[] = {
// clang-format off
{ "boot", "boot.img", "boot.sig", "boot", false, false },
{ nullptr, "boot_other.img", "boot.sig", "boot", true, true },
{ "dtbo", "dtbo.img", "dtbo.sig", "dtbo", true, false },
{ "dts", "dt.img", "dt.sig", "dts", true, false },
{ "recovery", "recovery.img", "recovery.sig", "recovery", true, false },
{ "system", "system.img", "system.sig", "system", false, false },
{ nullptr, "system_other.img", "system.sig", "system", true, true },
{ "vbmeta", "vbmeta.img", "vbmeta.sig", "vbmeta", true, false },
{ "vendor", "vendor.img", "vendor.sig", "vendor", true, false },
{ nullptr, "vendor_other.img", "vendor.sig", "vendor", true, true },
// clang-format on
};
static std::string find_item_given_name(const char* img_name) {
char* dir = getenv("ANDROID_PRODUCT_OUT");
if (dir == nullptr || dir[0] == '\0') {
die("ANDROID_PRODUCT_OUT not set");
}
return android::base::StringPrintf("%s/%s", dir, img_name);
}
static std::string find_item(const std::string& item) {
for (size_t i = 0; i < arraysize(images); ++i) {
if (images[i].nickname && item == images[i].nickname) {
return find_item_given_name(images[i].img_name);
}
}
if (item == "userdata") return find_item_given_name("userdata.img");
if (item == "cache") return find_item_given_name("cache.img");
fprintf(stderr, "unknown partition '%s'\n", item.c_str());
return "";
}
static int64_t get_file_size(int fd) {
struct stat sb;
return fstat(fd, &sb) == -1 ? -1 : sb.st_size;
}
static void* load_fd(int fd, int64_t* sz) {
int errno_tmp;
char* data = nullptr;
*sz = get_file_size(fd);
if (*sz < 0) {
goto oops;
}
data = (char*) malloc(*sz);
if (data == nullptr) goto oops;
if(read(fd, data, *sz) != *sz) goto oops;
close(fd);
return data;
oops:
errno_tmp = errno;
close(fd);
if(data != 0) free(data);
errno = errno_tmp;
return 0;
}
static void* load_file(const std::string& path, int64_t* sz) {
int fd = open(path.c_str(), O_RDONLY | O_BINARY);
if (fd == -1) return nullptr;
return load_fd(fd, sz);
}
static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) {
// Require a matching vendor id if the user specified one with -i.
if (vendor_id != 0 && info->dev_vendor != vendor_id) {
return -1;
}
if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) {
return -1;
}
// require matching serial number or device path if requested
// at the command line with the -s option.
if (local_serial && (strcmp(local_serial, info->serial_number) != 0 &&
strcmp(local_serial, info->device_path) != 0)) return -1;
return 0;
}
static int match_fastboot(usb_ifc_info* info) {
return match_fastboot_with_serial(info, serial);
}
static int list_devices_callback(usb_ifc_info* info) {
if (match_fastboot_with_serial(info, nullptr) == 0) {
std::string serial = info->serial_number;
if (!info->writable) {
serial = UsbNoPermissionsShortHelpText();
}
if (!serial[0]) {
serial = "????????????";
}
// output compatible with "adb devices"
if (!long_listing) {
printf("%s\tfastboot", serial.c_str());
} else {
printf("%-22s fastboot", serial.c_str());
if (strlen(info->device_path) > 0) printf(" %s", info->device_path);
}
putchar('\n');
}
return -1;
}
// Opens a new Transport connected to a device. If |serial| is non-null it will be used to identify
// a specific device, otherwise the first USB device found will be used.
//
// If |serial| is non-null but invalid, this prints an error message to stderr and returns nullptr.
// Otherwise it blocks until the target is available.
//
// The returned Transport is a singleton, so multiple calls to this function will return the same
// object, and the caller should not attempt to delete the returned Transport.
static Transport* open_device() {
static Transport* transport = nullptr;
bool announce = true;
if (transport != nullptr) {
return transport;
}
Socket::Protocol protocol = Socket::Protocol::kTcp;
std::string host;
int port = 0;
if (serial != nullptr) {
const char* net_address = nullptr;
if (android::base::StartsWith(serial, "tcp:")) {
protocol = Socket::Protocol::kTcp;
port = tcp::kDefaultPort;
net_address = serial + strlen("tcp:");
} else if (android::base::StartsWith(serial, "udp:")) {
protocol = Socket::Protocol::kUdp;
port = udp::kDefaultPort;
net_address = serial + strlen("udp:");
}
if (net_address != nullptr) {
std::string error;
if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) {
fprintf(stderr, "error: Invalid network address '%s': %s\n", net_address,
error.c_str());
return nullptr;
}
}
}
while (true) {
if (!host.empty()) {
std::string error;
if (protocol == Socket::Protocol::kTcp) {
transport = tcp::Connect(host, port, &error).release();
} else if (protocol == Socket::Protocol::kUdp) {
transport = udp::Connect(host, port, &error).release();
}
if (transport == nullptr && announce) {
fprintf(stderr, "error: %s\n", error.c_str());
}
} else {
transport = usb_open(match_fastboot);
}
if (transport != nullptr) {
return transport;
}
if (announce) {
announce = false;
fprintf(stderr, "< waiting for %s >\n", serial ? serial : "any device");
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
static void list_devices() {
// We don't actually open a USB device here,
// just getting our callback called so we can
// list all the connected devices.
usb_open(list_devices_callback);
}
static void syntax_error(const char* fmt, ...) {
fprintf(stderr, "fastboot: usage: ");
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
static int show_help() {
// clang-format off
fprintf(stdout,
/* 1234567890123456789012345678901234567890123456789012345678901234567890123456 */
"usage: fastboot [ <option> ] <command>\n"
"\n"
"commands:\n"
" update <filename> Reflash device from update.zip.\n"
" Sets the flashed slot as active.\n"
" flashall Flash boot, system, vendor, and --\n"
" if found -- recovery. If the device\n"
" supports slots, the slot that has\n"
" been flashed to is set as active.\n"
" Secondary images may be flashed to\n"
" an inactive slot.\n"
" flash <partition> [ <filename> ] Write a file to a flash partition.\n"
" flashing lock Locks the device. Prevents flashing.\n"
" flashing unlock Unlocks the device. Allows flashing\n"
" any partition except\n"
" bootloader-related partitions.\n"
" flashing lock_critical Prevents flashing bootloader-related\n"
" partitions.\n"
" flashing unlock_critical Enables flashing bootloader-related\n"
" partitions.\n"
" flashing get_unlock_ability Queries bootloader to see if the\n"
" device is unlocked.\n"
" flashing get_unlock_bootloader_nonce Queries the bootloader to get the\n"
" unlock nonce.\n"
" flashing unlock_bootloader <request> Issue unlock bootloader using request.\n"
" flashing lock_bootloader Locks the bootloader to prevent\n"
" bootloader version rollback.\n"
" erase <partition> Erase a flash partition.\n"
" format[:[<fs type>][:[<size>]] <partition>\n"
" Format a flash partition. Can\n"
" override the fs type and/or size\n"
" the bootloader reports.\n"
" getvar <variable> Display a bootloader variable.\n"
" set_active <slot> Sets the active slot. If slots are\n"
" not supported, this does nothing.\n"
" boot <kernel> [ <ramdisk> [ <second> ] ] Download and boot kernel.\n"
" flash:raw <bootable-partition> <kernel> [ <ramdisk> [ <second> ] ]\n"
" Create bootimage and flash it.\n"
" devices [-l] List all connected devices [with\n"
" device paths].\n"
" continue Continue with autoboot.\n"
" reboot [bootloader|emergency] Reboot device [into bootloader or emergency mode].\n"
" reboot-bootloader Reboot device into bootloader.\n"
" oem <parameter1> ... <parameterN> Executes oem specific command.\n"
" stage <infile> Sends contents of <infile> to stage for\n"
" the next command. Supported only on\n"
" Android Things devices.\n"
" get_staged <outfile> Receives data to <outfile> staged by the\n"
" last command. Supported only on Android\n"
" Things devices.\n"
" help Show this help message.\n"
"\n"
"options:\n"
" -w Erase userdata and cache (and format\n"
" if supported by partition type).\n"
" -u Do not erase partition before\n"
" formatting.\n"
" -s <specific device> Specify a device. For USB, provide either\n"
" a serial number or path to device port.\n"
" For ethernet, provide an address in the\n"
" form <protocol>:<hostname>[:port] where\n"
" <protocol> is either tcp or udp.\n"
" -c <cmdline> Override kernel commandline.\n"
" -i <vendor id> Specify a custom USB vendor id.\n"
" -b, --base <base_addr> Specify a custom kernel base\n"
" address (default: 0x10000000).\n"
" --kernel-offset Specify a custom kernel offset.\n"
" (default: 0x00008000)\n"
" --ramdisk-offset Specify a custom ramdisk offset.\n"
" (default: 0x01000000)\n"
" --tags-offset Specify a custom tags offset.\n"
" (default: 0x00000100)\n"
" -n, --page-size <page size> Specify the nand page size\n"
" (default: 2048).\n"
" -S <size>[K|M|G] Automatically sparse files greater\n"
" than 'size'. 0 to disable.\n"
" --slot <slot> Specify slot name to be used if the\n"
" device supports slots. All operations\n"
" on partitions that support slots will\n"
" be done on the slot specified.\n"
" 'all' can be given to refer to all slots.\n"
" 'other' can be given to refer to a\n"
" non-current slot. If this flag is not\n"
" used, slotted partitions will default\n"
" to the current active slot.\n"
" -a, --set-active[=<slot>] Sets the active slot. If no slot is\n"
" provided, this will default to the value\n"
" given by --slot. If slots are not\n"
" supported, this does nothing. This will\n"
" run after all non-reboot commands.\n"
" --skip-secondary Will not flash secondary slots when\n"
" performing a flashall or update. This\n"
" will preserve data on other slots.\n"
" --skip-reboot Will not reboot the device when\n"
" performing commands that normally\n"
" trigger a reboot.\n"
#if !defined(_WIN32)
" --wipe-and-use-fbe On devices which support it,\n"
" erase userdata and cache, and\n"
" enable file-based encryption\n"
#endif
" --unbuffered Do not buffer input or output.\n"
" --version Display version.\n"
" -h, --help show this message.\n"
);
// clang-format off
return 0;
}
static void* load_bootable_image(const std::string& kernel, const std::string& ramdisk,
const std::string& second_stage, int64_t* sz,
const char* cmdline) {
int64_t ksize;
void* kdata = load_file(kernel.c_str(), &ksize);
if (kdata == nullptr) die("cannot load '%s': %s\n", kernel.c_str(), strerror(errno));
// Is this actually a boot image?
if (!memcmp(kdata, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
if (cmdline) bootimg_set_cmdline((boot_img_hdr*) kdata, cmdline);
if (!ramdisk.empty()) die("cannot boot a boot.img *and* ramdisk\n");
*sz = ksize;
return kdata;
}
void* rdata = nullptr;
int64_t rsize = 0;
if (!ramdisk.empty()) {
rdata = load_file(ramdisk.c_str(), &rsize);
if (rdata == nullptr) die("cannot load '%s': %s\n", ramdisk.c_str(), strerror(errno));
}
void* sdata = nullptr;
int64_t ssize = 0;
if (!second_stage.empty()) {
sdata = load_file(second_stage.c_str(), &ssize);
if (sdata == nullptr) die("cannot load '%s': %s\n", second_stage.c_str(), strerror(errno));
}
fprintf(stderr,"creating boot image...\n");
int64_t bsize = 0;
void* bdata = mkbootimg(kdata, ksize, kernel_offset,
rdata, rsize, ramdisk_offset,
sdata, ssize, second_offset,
page_size, base_addr, tags_offset, &bsize);
if (bdata == nullptr) die("failed to create boot.img\n");
if (cmdline) bootimg_set_cmdline((boot_img_hdr*) bdata, cmdline);
fprintf(stderr, "creating boot image - %" PRId64 " bytes\n", bsize);
*sz = bsize;
return bdata;
}
static void* unzip_file(ZipArchiveHandle zip, const char* entry_name, int64_t* sz) {
ZipString zip_entry_name(entry_name);
ZipEntry zip_entry;
if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name);
return 0;
}
*sz = zip_entry.uncompressed_length;
fprintf(stderr, "extracting %s (%" PRId64 " MB)...\n", entry_name, *sz / 1024 / 1024);
uint8_t* data = reinterpret_cast<uint8_t*>(malloc(zip_entry.uncompressed_length));
if (data == nullptr) {
fprintf(stderr, "failed to allocate %" PRId64 " bytes for '%s'\n", *sz, entry_name);
return 0;
}
int error = ExtractToMemory(zip, &zip_entry, data, zip_entry.uncompressed_length);
if (error != 0) {
fprintf(stderr, "failed to extract '%s': %s\n", entry_name, ErrorCodeString(error));
free(data);
return 0;
}
return data;
}
#if defined(_WIN32)
// TODO: move this to somewhere it can be shared.
#include <windows.h>
// Windows' tmpfile(3) requires administrator rights because
// it creates temporary files in the root directory.
static FILE* win32_tmpfile() {
char temp_path[PATH_MAX];
DWORD nchars = GetTempPath(sizeof(temp_path), temp_path);
if (nchars == 0 || nchars >= sizeof(temp_path)) {
fprintf(stderr, "GetTempPath failed, error %ld\n", GetLastError());
return nullptr;
}
char filename[PATH_MAX];
if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) {
fprintf(stderr, "GetTempFileName failed, error %ld\n", GetLastError());
return nullptr;
}
return fopen(filename, "w+bTD");
}
#define tmpfile win32_tmpfile
static std::string make_temporary_directory() {
fprintf(stderr, "make_temporary_directory not supported under Windows, sorry!");
return "";
}
static int make_temporary_fd() {
// TODO: reimplement to avoid leaking a FILE*.
return fileno(tmpfile());
}
#else
static std::string make_temporary_template() {
const char* tmpdir = getenv("TMPDIR");
if (tmpdir == nullptr) tmpdir = P_tmpdir;
return std::string(tmpdir) + "/fastboot_userdata_XXXXXX";
}
static std::string make_temporary_directory() {
std::string result(make_temporary_template());
if (mkdtemp(&result[0]) == nullptr) {
fprintf(stderr, "Unable to create temporary directory: %s\n", strerror(errno));
return "";
}
return result;
}
static int make_temporary_fd() {
std::string path_template(make_temporary_template());
int fd = mkstemp(&path_template[0]);
if (fd == -1) {
fprintf(stderr, "Unable to create temporary file: %s\n", strerror(errno));
return -1;
}
unlink(path_template.c_str());
return fd;
}
#endif
static std::string create_fbemarker_tmpdir() {
std::string dir = make_temporary_directory();
if (dir.empty()) {
fprintf(stderr, "Unable to create local temp directory for FBE marker\n");
return "";
}
std::string marker_file = dir + "/" + convert_fbe_marker_filename;
int fd = open(marker_file.c_str(), O_CREAT | O_WRONLY | O_CLOEXEC, 0666);
if (fd == -1) {
fprintf(stderr, "Unable to create FBE marker file %s locally: %d, %s\n",
marker_file.c_str(), errno, strerror(errno));
return "";
}
close(fd);
return dir;
}
static void delete_fbemarker_tmpdir(const std::string& dir) {
std::string marker_file = dir + "/" + convert_fbe_marker_filename;
if (unlink(marker_file.c_str()) == -1) {
fprintf(stderr, "Unable to delete FBE marker file %s locally: %d, %s\n",
marker_file.c_str(), errno, strerror(errno));
return;
}
if (rmdir(dir.c_str()) == -1) {
fprintf(stderr, "Unable to delete FBE marker directory %s locally: %d, %s\n",
dir.c_str(), errno, strerror(errno));
return;
}
}
static int unzip_to_file(ZipArchiveHandle zip, const char* entry_name) {
unique_fd fd(make_temporary_fd());
if (fd == -1) {
fprintf(stderr, "failed to create temporary file for '%s': %s\n",
entry_name, strerror(errno));
return -1;
}
ZipString zip_entry_name(entry_name);
ZipEntry zip_entry;
if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name);
return -1;
}
fprintf(stderr, "extracting %s (%" PRIu32 " MB)...\n", entry_name,
zip_entry.uncompressed_length / 1024 / 1024);
int error = ExtractEntryToFile(zip, &zip_entry, fd);
if (error != 0) {
fprintf(stderr, "failed to extract '%s': %s\n", entry_name, ErrorCodeString(error));
return -1;
}
lseek(fd, 0, SEEK_SET);
// TODO: We're leaking 'fp' here.
return fd.release();
}
static char *strip(char *s)
{
int n;
while(*s && isspace(*s)) s++;
n = strlen(s);
while(n-- > 0) {
if(!isspace(s[n])) break;
s[n] = 0;
}
return s;
}
#define MAX_OPTIONS 32
static int setup_requirement_line(char *name)
{
char *val[MAX_OPTIONS];
char *prod = nullptr;
unsigned n, count;
char *x;
int invert = 0;
if (!strncmp(name, "reject ", 7)) {
name += 7;
invert = 1;
} else if (!strncmp(name, "require ", 8)) {
name += 8;
invert = 0;
} else if (!strncmp(name, "require-for-product:", 20)) {
// Get the product and point name past it
prod = name + 20;
name = strchr(name, ' ');
if (!name) return -1;
*name = 0;
name += 1;
invert = 0;
}
x = strchr(name, '=');
if (x == 0) return 0;
*x = 0;
val[0] = x + 1;
for(count = 1; count < MAX_OPTIONS; count++) {
x = strchr(val[count - 1],'|');
if (x == 0) break;
*x = 0;
val[count] = x + 1;
}
name = strip(name);
for(n = 0; n < count; n++) val[n] = strip(val[n]);
name = strip(name);
if (name == 0) return -1;
const char* var = name;
// Work around an unfortunate name mismatch.
if (!strcmp(name,"board")) var = "product";
const char** out = reinterpret_cast<const char**>(malloc(sizeof(char*) * count));
if (out == 0) return -1;
for(n = 0; n < count; n++) {
out[n] = strdup(strip(val[n]));
if (out[n] == 0) {
for(size_t i = 0; i < n; ++i) {
free((char*) out[i]);
}
free(out);
return -1;
}
}
fb_queue_require(prod, var, invert, n, out);
return 0;
}
static void setup_requirements(char* data, int64_t sz) {
char* s = data;
while (sz-- > 0) {
if (*s == '\n') {
*s++ = 0;
if (setup_requirement_line(data)) {
die("out of memory");
}
data = s;
} else {
s++;
}
}
}
static void queue_info_dump() {
fb_queue_notice("--------------------------------------------");
fb_queue_display("version-bootloader", "Bootloader Version...");
fb_queue_display("version-baseband", "Baseband Version.....");
fb_queue_display("serialno", "Serial Number........");
fb_queue_notice("--------------------------------------------");
}
static struct sparse_file **load_sparse_files(int fd, int max_size)
{
struct sparse_file* s = sparse_file_import_auto(fd, false, true);
if (!s) {
die("cannot sparse read file\n");
}
int files = sparse_file_resparse(s, max_size, nullptr, 0);
if (files < 0) {
die("Failed to resparse\n");
}
sparse_file** out_s = reinterpret_cast<sparse_file**>(calloc(sizeof(struct sparse_file *), files + 1));
if (!out_s) {
die("Failed to allocate sparse file array\n");
}
files = sparse_file_resparse(s, max_size, out_s, files);
if (files < 0) {
die("Failed to resparse\n");
}
return out_s;
}
static int64_t get_target_sparse_limit(Transport* transport) {
std::string max_download_size;
if (!fb_getvar(transport, "max-download-size", &max_download_size) ||
max_download_size.empty()) {
fprintf(stderr, "target didn't report max-download-size\n");
return 0;
}
// Some bootloaders (angler, for example) send spurious whitespace too.
max_download_size = android::base::Trim(max_download_size);
uint64_t limit;
if (!android::base::ParseUint(max_download_size, &limit)) {
fprintf(stderr, "couldn't parse max-download-size '%s'\n", max_download_size.c_str());
return 0;
}
if (limit > 0) {
fprintf(stderr, "target reported max download size of %" PRId64 " bytes\n", limit);
}
return limit;
}
static int64_t get_sparse_limit(Transport* transport, int64_t size) {
int64_t limit;
if (sparse_limit == 0) {
return 0;
} else if (sparse_limit > 0) {
limit = sparse_limit;
} else {
if (target_sparse_limit == -1) {
target_sparse_limit = get_target_sparse_limit(transport);
}
if (target_sparse_limit > 0) {
limit = target_sparse_limit;
} else {
return 0;
}
}
if (size > limit) {
return std::min(limit, RESPARSE_LIMIT);
}
return 0;
}
// Until we get lazy inode table init working in make_ext4fs, we need to
// erase partitions of type ext4 before flashing a filesystem so no stale
// inodes are left lying around. Otherwise, e2fsck gets very upset.
static bool needs_erase(Transport* transport, const char* partition) {
std::string partition_type;
if (!fb_getvar(transport, std::string("partition-type:") + partition, &partition_type)) {
return false;
}
return partition_type == "ext4";
}
static bool load_buf_fd(Transport* transport, int fd, struct fastboot_buffer* buf) {
int64_t sz = get_file_size(fd);
if (sz == -1) {
return false;
}
lseek64(fd, 0, SEEK_SET);
int64_t limit = get_sparse_limit(transport, sz);
if (limit) {
sparse_file** s = load_sparse_files(fd, limit);
if (s == nullptr) {
return false;
}
buf->type = FB_BUFFER_SPARSE;
buf->data = s;
} else {
buf->type = FB_BUFFER_FD;
buf->data = nullptr;
buf->fd = fd;
buf->sz = sz;
}
return true;
}
static bool load_buf(Transport* transport, const char* fname, struct fastboot_buffer* buf) {
unique_fd fd(TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_BINARY)));
if (fd == -1) {
return false;
}
struct stat s;
if (fstat(fd, &s)) {
return false;
}
if (!S_ISREG(s.st_mode)) {
errno = S_ISDIR(s.st_mode) ? EISDIR : EINVAL;
return false;
}
return load_buf_fd(transport, fd.release(), buf);
}
static void flash_buf(const char *pname, struct fastboot_buffer *buf)
{
sparse_file** s;
switch (buf->type) {
case FB_BUFFER_SPARSE: {
std::vector<std::pair<sparse_file*, int64_t>> sparse_files;
s = reinterpret_cast<sparse_file**>(buf->data);
while (*s) {
int64_t sz = sparse_file_len(*s, true, false);
sparse_files.emplace_back(*s, sz);
++s;
}
for (size_t i = 0; i < sparse_files.size(); ++i) {
const auto& pair = sparse_files[i];
fb_queue_flash_sparse(pname, pair.first, pair.second, i + 1, sparse_files.size());
}
break;
}
case FB_BUFFER_FD:
fb_queue_flash_fd(pname, buf->fd, buf->sz);
break;
default:
die("unknown buffer type: %d", buf->type);
}
}
static std::string get_current_slot(Transport* transport)
{
std::string current_slot;
if (fb_getvar(transport, "current-slot", &current_slot)) {
if (current_slot == "_a") return "a"; // Legacy support
if (current_slot == "_b") return "b"; // Legacy support
return current_slot;
}
return "";
}
// Legacy support
static std::vector<std::string> get_suffixes_obsolete(Transport* transport) {
std::vector<std::string> suffixes;
std::string suffix_list;
if (!fb_getvar(transport, "slot-suffixes", &suffix_list)) {
return suffixes;
}
suffixes = android::base::Split(suffix_list, ",");
// Unfortunately some devices will return an error message in the
// guise of a valid value. If we only see only one suffix, it's probably
// not real.
if (suffixes.size() == 1) {
suffixes.clear();
}
return suffixes;
}
// Legacy support
static bool supports_AB_obsolete(Transport* transport) {
return !get_suffixes_obsolete(transport).empty();
}
static int get_slot_count(Transport* transport) {
std::string var;
int count;
if (!fb_getvar(transport, "slot-count", &var)) {
if (supports_AB_obsolete(transport)) return 2; // Legacy support
}
if (!android::base::ParseInt(var, &count)) return 0;
return count;
}
static bool supports_AB(Transport* transport) {
return get_slot_count(transport) >= 2;
}
// Given a current slot, this returns what the 'other' slot is.
static std::string get_other_slot(const std::string& current_slot, int count) {
if (count == 0) return "";
char next = (current_slot[0] - 'a' + 1)%count + 'a';
return std::string(1, next);
}
static std::string get_other_slot(Transport* transport, const std::string& current_slot) {
return get_other_slot(current_slot, get_slot_count(transport));
}
static std::string get_other_slot(Transport* transport, int count) {
return get_other_slot(get_current_slot(transport), count);
}
static std::string get_other_slot(Transport* transport) {
return get_other_slot(get_current_slot(transport), get_slot_count(transport));
}
static std::string verify_slot(Transport* transport, const std::string& slot_name, bool allow_all) {
std::string slot = slot_name;
if (slot == "_a") slot = "a"; // Legacy support
if (slot == "_b") slot = "b"; // Legacy support
if (slot == "all") {
if (allow_all) {
return "all";
} else {
int count = get_slot_count(transport);
if (count > 0) {
return "a";
} else {
die("No known slots.");
}
}
}
int count = get_slot_count(transport);
if (count == 0) die("Device does not support slots.\n");
if (slot == "other") {
std::string other = get_other_slot(transport, count);
if (other == "") {
die("No known slots.");
}
return other;
}
if (slot.size() == 1 && (slot[0]-'a' >= 0 && slot[0]-'a' < count)) return slot;
fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot.c_str());
for (int i=0; i<count; i++) {
fprintf(stderr, "%c\n", (char)(i + 'a'));
}
exit(1);
}
static std::string verify_slot(Transport* transport, const std::string& slot) {
return verify_slot(transport, slot, true);
}
static void do_for_partition(Transport* transport, const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
std::string current_slot;
if (!fb_getvar(transport, "has-slot:" + part, &has_slot)) {
/* If has-slot is not supported, the answer is no. */
has_slot = "no";
}
if (has_slot == "yes") {
if (slot == "") {
current_slot = get_current_slot(transport);
if (current_slot == "") {
die("Failed to identify current slot.\n");
}
func(part + "_" + current_slot);
} else {
func(part + '_' + slot);
}
} else {
if (force_slot && slot != "") {
fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n",
part.c_str(), slot.c_str());
}
func(part);
}
}
/* This function will find the real partition name given a base name, and a slot. If slot is NULL or
* empty, it will use the current slot. If slot is "all", it will return a list of all possible
* partition names. If force_slot is true, it will fail if a slot is specified, and the given
* partition does not support slots.
*/
static void do_for_partitions(Transport* transport, const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
if (slot == "all") {
if (!fb_getvar(transport, "has-slot:" + part, &has_slot)) {
die("Could not check if partition %s has slot.", part.c_str());
}
if (has_slot == "yes") {
for (int i=0; i < get_slot_count(transport); i++) {
do_for_partition(transport, part, std::string(1, (char)(i + 'a')), func, force_slot);
}
} else {
do_for_partition(transport, part, "", func, force_slot);
}
} else {
do_for_partition(transport, part, slot, func, force_slot);
}
}
static void do_flash(Transport* transport, const char* pname, const char* fname) {
struct fastboot_buffer buf;
if (!load_buf(transport, fname, &buf)) {
die("cannot load '%s': %s", fname, strerror(errno));
}
flash_buf(pname, &buf);
}
static void do_update_signature(ZipArchiveHandle zip, const char* filename) {
int64_t sz;
void* data = unzip_file(zip, filename, &sz);
if (data == nullptr) return;
fb_queue_download("signature", data, sz);
fb_queue_command("signature", "installing signature");
}
// Sets slot_override as the active slot. If slot_override is blank,
// set current slot as active instead. This clears slot-unbootable.
static void set_active(Transport* transport, const std::string& slot_override) {
std::string separator = "";
if (!supports_AB(transport)) {
if (supports_AB_obsolete(transport)) {
separator = "_"; // Legacy support
} else {
return;
}
}
if (slot_override != "") {
fb_set_active((separator + slot_override).c_str());
} else {
std::string current_slot = get_current_slot(transport);
if (current_slot != "") {
fb_set_active((separator + current_slot).c_str());
}
}
}
static void do_update(Transport* transport, const char* filename, const std::string& slot_override, bool erase_first, bool skip_secondary) {
queue_info_dump();
fb_queue_query_save("product", cur_product, sizeof(cur_product));
ZipArchiveHandle zip;
int error = OpenArchive(filename, &zip);
if (error != 0) {
CloseArchive(zip);
die("failed to open zip file '%s': %s", filename, ErrorCodeString(error));
}
int64_t sz;
void* data = unzip_file(zip, "android-info.txt", &sz);
if (data == nullptr) {
CloseArchive(zip);
die("update package '%s' has no android-info.txt", filename);
}
setup_requirements(reinterpret_cast<char*>(data), sz);
std::string secondary;
if (!skip_secondary) {
if (slot_override != "") {
secondary = get_other_slot(transport, slot_override);
} else {
secondary = get_other_slot(transport);
}
if (secondary == "") {
if (supports_AB(transport)) {
fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n");
}
skip_secondary = true;
}
}
for (size_t i = 0; i < arraysize(images); ++i) {
const char* slot = slot_override.c_str();
if (images[i].is_secondary) {
if (!skip_secondary) {
slot = secondary.c_str();
} else {
continue;
}
}
int fd = unzip_to_file(zip, images[i].img_name);
if (fd == -1) {
if (images[i].is_optional) {
continue;
}
CloseArchive(zip);
exit(1); // unzip_to_file already explained why.
}
fastboot_buffer buf;
if (!load_buf_fd(transport, fd, &buf)) {
die("cannot load %s from flash: %s", images[i].img_name, strerror(errno));
}
auto update = [&](const std::string &partition) {
do_update_signature(zip, images[i].sig_name);
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
flash_buf(partition.c_str(), &buf);
/* not closing the fd here since the sparse code keeps the fd around
* but hasn't mmaped data yet. The temporary file will get cleaned up when the
* program exits.
*/
};
do_for_partitions(transport, images[i].part_name, slot, update, false);
}
CloseArchive(zip);
if (slot_override == "all") {
set_active(transport, "a");
} else {
set_active(transport, slot_override);
}
}
static void do_send_signature(const std::string& fn) {
std::size_t extension_loc = fn.find(".img");
if (extension_loc == std::string::npos) return;
std::string fs_sig = fn.substr(0, extension_loc) + ".sig";
int64_t sz;
void* data = load_file(fs_sig.c_str(), &sz);
if (data == nullptr) return;
fb_queue_download("signature", data, sz);
fb_queue_command("signature", "installing signature");
}
static void do_flashall(Transport* transport, const std::string& slot_override, int erase_first, bool skip_secondary) {
std::string fname;
queue_info_dump();
fb_queue_query_save("product", cur_product, sizeof(cur_product));
fname = find_item_given_name("android-info.txt");
if (fname.empty()) die("cannot find android-info.txt");
int64_t sz;
void* data = load_file(fname.c_str(), &sz);
if (data == nullptr) die("could not load android-info.txt: %s", strerror(errno));
setup_requirements(reinterpret_cast<char*>(data), sz);
std::string secondary;
if (!skip_secondary) {
if (slot_override != "") {
secondary = get_other_slot(transport, slot_override);
} else {
secondary = get_other_slot(transport);
}
if (secondary == "") {
if (supports_AB(transport)) {
fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n");
}
skip_secondary = true;
}
}
for (size_t i = 0; i < arraysize(images); i++) {
const char* slot = NULL;
if (images[i].is_secondary) {
if (!skip_secondary) slot = secondary.c_str();
} else {
slot = slot_override.c_str();
}
if (!slot) continue;
fname = find_item_given_name(images[i].img_name);
fastboot_buffer buf;
if (!load_buf(transport, fname.c_str(), &buf)) {
if (images[i].is_optional) continue;
die("could not load '%s': %s\n", images[i].img_name, strerror(errno));
}
auto flashall = [&](const std::string &partition) {
do_send_signature(fname.c_str());
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
flash_buf(partition.c_str(), &buf);
};
do_for_partitions(transport, images[i].part_name, slot, flashall, false);
}
if (slot_override == "all") {
set_active(transport, "a");
} else {
set_active(transport, slot_override);
}
}
static std::string next_arg(std::vector<std::string>* args) {
if (args->empty()) syntax_error("expected argument");
std::string result = args->front();
args->erase(args->begin());
return result;
}
static void do_bypass_unlock_command(std::vector<std::string>* args) {
if (args->empty()) syntax_error("missing unlock_bootloader request");
std::string filename = next_arg(args);
int64_t sz;
void* data = load_file(filename.c_str(), &sz);
if (data == nullptr) die("could not load '%s': %s", filename.c_str(), strerror(errno));
fb_queue_download("unlock_message", data, sz);
fb_queue_command("flashing unlock_bootloader", "unlocking bootloader");
}
static void do_oem_command(const std::string& cmd, std::vector<std::string>* args) {
if (args->empty()) syntax_error("empty oem command");
std::string command(cmd);
while (!args->empty()) {
command += " " + next_arg(args);
}
fb_queue_command(command.c_str(), "");
}
static int64_t parse_num(const char *arg)
{
char *endptr;
unsigned long long num;
num = strtoull(arg, &endptr, 0);
if (endptr == arg) {
return -1;
}
if (*endptr == 'k' || *endptr == 'K') {
if (num >= (-1ULL) / 1024) {
return -1;
}
num *= 1024LL;
endptr++;
} else if (*endptr == 'm' || *endptr == 'M') {
if (num >= (-1ULL) / (1024 * 1024)) {
return -1;
}
num *= 1024LL * 1024LL;
endptr++;
} else if (*endptr == 'g' || *endptr == 'G') {
if (num >= (-1ULL) / (1024 * 1024 * 1024)) {
return -1;
}
num *= 1024LL * 1024LL * 1024LL;
endptr++;
}
if (*endptr != '\0') {
return -1;
}
if (num > INT64_MAX) {
return -1;
}
return num;
}
static std::string fb_fix_numeric_var(std::string var) {
// Some bootloaders (angler, for example), send spurious leading whitespace.
var = android::base::Trim(var);
// Some bootloaders (hammerhead, for example) use implicit hex.
// This code used to use strtol with base 16.
if (!android::base::StartsWith(var, "0x")) var = "0x" + var;
return var;
}
static unsigned fb_get_flash_block_size(Transport* transport, std::string name) {
std::string sizeString;
if (!fb_getvar(transport, name.c_str(), &sizeString)) {
/* This device does not report flash block sizes, so return 0 */
return 0;
}
sizeString = fb_fix_numeric_var(sizeString);
unsigned size;
if (!android::base::ParseUint(sizeString, &size)) {
fprintf(stderr, "Couldn't parse %s '%s'.\n", name.c_str(), sizeString.c_str());
return 0;
}
if (size < 4096 || (size & (size - 1)) != 0) {
fprintf(stderr, "Invalid %s %u: must be a power of 2 and at least 4096.\n",
name.c_str(), size);
return 0;
}
return size;
}
static void fb_perform_format(Transport* transport,
const char* partition, int skip_if_not_supported,
const std::string& type_override, const std::string& size_override,
const std::string& initial_dir) {
std::string partition_type, partition_size;
struct fastboot_buffer buf;
const char* errMsg = nullptr;
const struct fs_generator* gen = nullptr;
TemporaryFile output;
unique_fd fd;
unsigned int limit = INT_MAX;
if (target_sparse_limit > 0 && target_sparse_limit < limit) {
limit = target_sparse_limit;
}
if (sparse_limit > 0 && sparse_limit < limit) {
limit = sparse_limit;
}
if (!fb_getvar(transport, std::string("partition-type:") + partition, &partition_type)) {
errMsg = "Can't determine partition type.\n";
goto failed;
}
if (!type_override.empty()) {
if (partition_type != type_override) {
fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n",
partition, partition_type.c_str(), type_override.c_str());
}
partition_type = type_override;
}
if (!fb_getvar(transport, std::string("partition-size:") + partition, &partition_size)) {
errMsg = "Unable to get partition size\n";
goto failed;
}
if (!size_override.empty()) {
if (partition_size != size_override) {
fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n",
partition, partition_size.c_str(), size_override.c_str());
}
partition_size = size_override;
}
partition_size = fb_fix_numeric_var(partition_size);
gen = fs_get_generator(partition_type);
if (!gen) {
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str());
return;
}
fprintf(stderr, "Formatting is not supported for file system with type '%s'.\n",
partition_type.c_str());
return;
}
int64_t size;
if (!android::base::ParseInt(partition_size, &size)) {
fprintf(stderr, "Couldn't parse partition size '%s'.\n", partition_size.c_str());
return;
}
unsigned eraseBlkSize, logicalBlkSize;
eraseBlkSize = fb_get_flash_block_size(transport, "erase-block-size");
logicalBlkSize = fb_get_flash_block_size(transport, "logical-block-size");
if (fs_generator_generate(gen, output.path, size, initial_dir,
eraseBlkSize, logicalBlkSize)) {
fprintf(stderr, "Cannot generate image: %s\n", strerror(errno));
return;
}
fd.reset(open(output.path, O_RDONLY));
if (fd == -1) {
fprintf(stderr, "Cannot open generated image: %s\n", strerror(errno));
return;
}
if (!load_buf_fd(transport, fd.release(), &buf)) {
fprintf(stderr, "Cannot read image: %s\n", strerror(errno));
return;
}
flash_buf(partition, &buf);
return;
failed:
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
if (errMsg) fprintf(stderr, "%s", errMsg);
}
fprintf(stderr, "FAILED (%s)\n", fb_get_error().c_str());
}
int main(int argc, char **argv)
{
bool wants_wipe = false;
bool wants_reboot = false;
bool wants_reboot_bootloader = false;
bool wants_reboot_emergency = false;
bool skip_reboot = false;
bool wants_set_active = false;
bool skip_secondary = false;
bool erase_first = true;
bool set_fbe_marker = false;
void *data;
int64_t sz;
int longindex;
std::string slot_override;
std::string next_active;
const struct option longopts[] = {
{"base", required_argument, 0, 'b'},
{"kernel_offset", required_argument, 0, 'k'},
{"kernel-offset", required_argument, 0, 'k'},
{"page_size", required_argument, 0, 'n'},
{"page-size", required_argument, 0, 'n'},
{"ramdisk_offset", required_argument, 0, 'r'},
{"ramdisk-offset", required_argument, 0, 'r'},
{"tags_offset", required_argument, 0, 't'},
{"tags-offset", required_argument, 0, 't'},
{"help", no_argument, 0, 'h'},
{"unbuffered", no_argument, 0, 0},
{"version", no_argument, 0, 0},
{"slot", required_argument, 0, 0},
{"set_active", optional_argument, 0, 'a'},
{"set-active", optional_argument, 0, 'a'},
{"skip-secondary", no_argument, 0, 0},
{"skip-reboot", no_argument, 0, 0},
#if !defined(_WIN32)
{"wipe-and-use-fbe", no_argument, 0, 0},
#endif
{0, 0, 0, 0}
};
serial = getenv("ANDROID_SERIAL");
while (1) {
int c = getopt_long(argc, argv, "wub:k:n:r:t:s:S:lc:i:m:ha::", longopts, &longindex);
if (c < 0) {
break;
}
/* Alphabetical cases */
switch (c) {
case 'a':
wants_set_active = true;
if (optarg)
next_active = optarg;
break;
case 'b':
base_addr = strtoul(optarg, 0, 16);
break;
case 'c':
cmdline = optarg;
break;
case 'h':
return show_help();
case 'i': {
char *endptr = nullptr;
unsigned long val;
val = strtoul(optarg, &endptr, 0);
if (!endptr || *endptr != '\0' || (val & ~0xffff))
die("invalid vendor id '%s'", optarg);
vendor_id = (unsigned short)val;
break;
}
case 'k':
kernel_offset = strtoul(optarg, 0, 16);
break;
case 'l':
long_listing = 1;
break;
case 'n':
page_size = (unsigned)strtoul(optarg, nullptr, 0);
if (!page_size) die("invalid page size");
break;
case 'r':
ramdisk_offset = strtoul(optarg, 0, 16);
break;
case 't':
tags_offset = strtoul(optarg, 0, 16);
break;
case 's':
serial = optarg;
break;
case 'S':
sparse_limit = parse_num(optarg);
if (sparse_limit < 0) {
die("invalid sparse limit");
}
break;
case 'u':
erase_first = false;
break;
case 'w':
wants_wipe = true;
break;
case '?':
return 1;
case 0:
if (strcmp("unbuffered", longopts[longindex].name) == 0) {
setvbuf(stdout, nullptr, _IONBF, 0);
setvbuf(stderr, nullptr, _IONBF, 0);
} else if (strcmp("version", longopts[longindex].name) == 0) {
fprintf(stdout, "fastboot version %s\n", FASTBOOT_VERSION);
fprintf(stdout, "Installed as %s\n", android::base::GetExecutablePath().c_str());
return 0;
} else if (strcmp("slot", longopts[longindex].name) == 0) {
slot_override = std::string(optarg);
} else if (strcmp("skip-secondary", longopts[longindex].name) == 0 ) {
skip_secondary = true;
} else if (strcmp("skip-reboot", longopts[longindex].name) == 0 ) {
skip_reboot = true;
#if !defined(_WIN32)
} else if (strcmp("wipe-and-use-fbe", longopts[longindex].name) == 0) {
wants_wipe = true;
set_fbe_marker = true;
#endif
} else {
fprintf(stderr, "Internal error in options processing for %s\n",
longopts[longindex].name);
return 1;
}
break;
default:
abort();
}
}
argc -= optind;
argv += optind;
if (argc == 0 && !wants_wipe && !wants_set_active) syntax_error("no command");
if (argc > 0 && !strcmp(*argv, "devices")) {
list_devices();
return 0;
}
if (argc > 0 && !strcmp(*argv, "help")) {
return show_help();
}
Transport* transport = open_device();
if (transport == nullptr) {
return 1;
}
if (!supports_AB(transport) && supports_AB_obsolete(transport)) {
fprintf(stderr, "Warning: Device A/B support is outdated. Bootloader update required.\n");
}
if (slot_override != "") slot_override = verify_slot(transport, slot_override);
if (next_active != "") next_active = verify_slot(transport, next_active, false);
if (wants_set_active) {
if (next_active == "") {
if (slot_override == "") {
std::string current_slot;
if (fb_getvar(transport, "current-slot", &current_slot)) {
next_active = verify_slot(transport, current_slot, false);
} else {
wants_set_active = false;
}
} else {
next_active = verify_slot(transport, slot_override, false);
}
}
}
std::vector<std::string> args(argv, argv + argc);
while (!args.empty()) {
std::string command = next_arg(&args);
if (command == "getvar") {
std::string variable = next_arg(&args);
fb_queue_display(variable.c_str(), variable.c_str());
} else if (command == "erase") {
std::string partition = next_arg(&args);
auto erase = [&](const std::string& partition) {
std::string partition_type;
if (fb_getvar(transport, std::string("partition-type:") + partition,
&partition_type) &&
fs_get_generator(partition_type) != nullptr) {
fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n",
partition_type.c_str());
}
fb_queue_erase(partition.c_str());
};
do_for_partitions(transport, partition, slot_override, erase, true);
} else if (android::base::StartsWith(command, "format")) {
// Parsing for: "format[:[type][:[size]]]"
// Some valid things:
// - select only the size, and leave default fs type:
// format::0x4000000 userdata
// - default fs type and size:
// format userdata
// format:: userdata
std::vector<std::string> pieces = android::base::Split(command, ":");
std::string type_override;
if (pieces.size() > 1) type_override = pieces[1].c_str();
std::string size_override;
if (pieces.size() > 2) size_override = pieces[2].c_str();
std::string partition = next_arg(&args);
auto format = [&](const std::string& partition) {
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
fb_perform_format(transport, partition.c_str(), 0, type_override, size_override,
"");
};
do_for_partitions(transport, partition.c_str(), slot_override, format, true);
} else if (command == "signature") {
std::string filename = next_arg(&args);
data = load_file(filename.c_str(), &sz);
if (data == nullptr) die("could not load '%s': %s", filename.c_str(), strerror(errno));
if (sz != 256) die("signature must be 256 bytes");
fb_queue_download("signature", data, sz);
fb_queue_command("signature", "installing signature");
} else if (command == "reboot") {
wants_reboot = true;
if (args.size() == 1) {
std::string what = next_arg(&args);
if (what == "bootloader") {
wants_reboot = false;
wants_reboot_bootloader = true;
} else if (what == "emergency") {
wants_reboot = false;
wants_reboot_emergency = true;
} else {
syntax_error("unknown reboot target %s", what.c_str());
}
}
if (!args.empty()) syntax_error("junk after reboot command");
} else if (command == "reboot-bootloader") {
wants_reboot_bootloader = true;
} else if (command == "continue") {
fb_queue_command("continue", "resuming boot");
} else if (command == "boot") {
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
data = load_bootable_image(kernel, ramdisk, second_stage, &sz, cmdline);
fb_queue_download("boot.img", data, sz);
fb_queue_command("boot", "booting");
} else if (command == "flash") {
std::string pname = next_arg(&args);
std::string fname;
if (!args.empty()) {
fname = next_arg(&args);
} else {
fname = find_item(pname);
}
if (fname.empty()) die("cannot determine image filename for '%s'", pname.c_str());
auto flash = [&](const std::string &partition) {
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
do_flash(transport, partition.c_str(), fname.c_str());
};
do_for_partitions(transport, pname.c_str(), slot_override, flash, true);
} else if (command == "flash:raw") {
std::string partition = next_arg(&args);
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
data = load_bootable_image(kernel, ramdisk, second_stage, &sz, cmdline);
auto flashraw = [&](const std::string& partition) {
fb_queue_flash(partition.c_str(), data, sz);
};
do_for_partitions(transport, partition, slot_override, flashraw, true);
} else if (command == "flashall") {
if (slot_override == "all") {
fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
do_flashall(transport, slot_override, erase_first, true);
} else {
do_flashall(transport, slot_override, erase_first, skip_secondary);
}
wants_reboot = true;
} else if (command == "update") {
bool slot_all = (slot_override == "all");
if (slot_all) {
fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
}
std::string filename = "update.zip";
if (!args.empty()) {
filename = next_arg(&args);
}
do_update(transport, filename.c_str(), slot_override, erase_first,
skip_secondary || slot_all);
wants_reboot = true;
} else if (command == "set_active") {
std::string slot = verify_slot(transport, next_arg(&args), false);
// Legacy support: verify_slot() removes leading underscores, we need to put them back
// in for old bootloaders. Legacy bootloaders do not have the slot-count variable but
// do have slot-suffixes.
std::string var;
if (!fb_getvar(transport, "slot-count", &var) &&
fb_getvar(transport, "slot-suffixes", &var)) {
slot = "_" + slot;
}
fb_set_active(slot.c_str());
} else if (command == "stage") {
std::string filename = next_arg(&args);
struct fastboot_buffer buf;
if (!load_buf(transport, filename.c_str(), &buf) || buf.type != FB_BUFFER_FD) {
die("cannot load '%s'", filename.c_str());
}
fb_queue_download_fd(filename.c_str(), buf.fd, buf.sz);
} else if (command == "get_staged") {
std::string filename = next_arg(&args);
fb_queue_upload(filename.c_str());
} else if (command == "oem") {
do_oem_command("oem", &args);
} else if (command == "flashing") {
if (args.empty()) {
syntax_error("missing 'flashing' command");
} else if (args.size() == 1 && (args[0] == "unlock" || args[0] == "lock" ||
args[0] == "unlock_critical" ||
args[0] == "lock_critical" ||
args[0] == "get_unlock_ability" ||
args[0] == "get_unlock_bootloader_nonce" ||
args[0] == "lock_bootloader")) {
do_oem_command("flashing", &args);
} else if (args.size() == 2 && args[0] == "unlock_bootloader") {
do_bypass_unlock_command(&args);
} else {
syntax_error("unknown 'flashing' command %s", args[0].c_str());
}
} else {
syntax_error("unknown command %s", command.c_str());
}
}
if (wants_wipe) {
fprintf(stderr, "wiping userdata...\n");
fb_queue_erase("userdata");
if (set_fbe_marker) {
fprintf(stderr, "setting FBE marker...\n");
std::string initial_userdata_dir = create_fbemarker_tmpdir();
if (initial_userdata_dir.empty()) {
return 1;
}
fb_perform_format(transport, "userdata", 1, "", "", initial_userdata_dir);
delete_fbemarker_tmpdir(initial_userdata_dir);
} else {
fb_perform_format(transport, "userdata", 1, "", "", "");
}
std::string cache_type;
if (fb_getvar(transport, "partition-type:cache", &cache_type) && !cache_type.empty()) {
fprintf(stderr, "wiping cache...\n");
fb_queue_erase("cache");
fb_perform_format(transport, "cache", 1, "", "", "");
}
}
if (wants_set_active) {
fb_set_active(next_active.c_str());
}
if (wants_reboot && !skip_reboot) {
fb_queue_reboot();
fb_queue_wait_for_disconnect();
} else if (wants_reboot_bootloader) {
fb_queue_command("reboot-bootloader", "rebooting into bootloader");
fb_queue_wait_for_disconnect();
} else if (wants_reboot_emergency) {
fb_queue_command("reboot-emergency", "rebooting into emergency download (EDL) mode");
fb_queue_wait_for_disconnect();
}
return fb_execute_queue(transport) ? EXIT_FAILURE : EXIT_SUCCESS;
}