platform_system_core/libpixelflinger/codeflinger/MIPS64Assembler.h

405 lines
13 KiB
C++

/* libs/pixelflinger/codeflinger/MIPS64Assembler.h
**
** Copyright 2015, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#ifndef ANDROID_MIPS64ASSEMBLER_H
#define ANDROID_MIPS64ASSEMBLER_H
#include <stdint.h>
#include <sys/types.h>
#include "utils/KeyedVector.h"
#include "utils/Vector.h"
#include "tinyutils/smartpointer.h"
#include "ARMAssemblerInterface.h"
#include "MIPSAssembler.h"
#include "CodeCache.h"
namespace android {
class MIPS64Assembler; // forward reference
// this class mimics ARMAssembler interface
// intent is to translate each ARM instruction to 1 or more MIPS instr
// implementation calls MIPS64Assembler class to generate mips code
class ArmToMips64Assembler : public ARMAssemblerInterface
{
public:
ArmToMips64Assembler(const sp<Assembly>& assembly,
char *abuf = 0, int linesz = 0, int instr_count = 0);
ArmToMips64Assembler(void* assembly);
virtual ~ArmToMips64Assembler();
uint32_t* base() const;
uint32_t* pc() const;
void disassemble(const char* name);
virtual void reset();
virtual int generate(const char* name);
virtual int getCodegenArch();
virtual void prolog();
virtual void epilog(uint32_t touched);
virtual void comment(const char* string);
// for testing purposes
void fix_branches();
void set_condition(int mode, int R1, int R2);
// -----------------------------------------------------------------------
// shifters and addressing modes
// -----------------------------------------------------------------------
// shifters...
virtual bool isValidImmediate(uint32_t immed);
virtual int buildImmediate(uint32_t i, uint32_t& rot, uint32_t& imm);
virtual uint32_t imm(uint32_t immediate);
virtual uint32_t reg_imm(int Rm, int type, uint32_t shift);
virtual uint32_t reg_rrx(int Rm);
virtual uint32_t reg_reg(int Rm, int type, int Rs);
// addressing modes...
// LDR(B)/STR(B)/PLD
// (immediate and Rm can be negative, which indicates U=0)
virtual uint32_t immed12_pre(int32_t immed12, int W=0);
virtual uint32_t immed12_post(int32_t immed12);
virtual uint32_t reg_scale_pre(int Rm, int type=0, uint32_t shift=0, int W=0);
virtual uint32_t reg_scale_post(int Rm, int type=0, uint32_t shift=0);
// LDRH/LDRSB/LDRSH/STRH
// (immediate and Rm can be negative, which indicates U=0)
virtual uint32_t immed8_pre(int32_t immed8, int W=0);
virtual uint32_t immed8_post(int32_t immed8);
virtual uint32_t reg_pre(int Rm, int W=0);
virtual uint32_t reg_post(int Rm);
virtual void dataProcessing(int opcode, int cc, int s,
int Rd, int Rn,
uint32_t Op2);
virtual void MLA(int cc, int s,
int Rd, int Rm, int Rs, int Rn);
virtual void MUL(int cc, int s,
int Rd, int Rm, int Rs);
virtual void UMULL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void UMUAL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void SMULL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void SMUAL(int cc, int s,
int RdLo, int RdHi, int Rm, int Rs);
virtual void B(int cc, uint32_t* pc);
virtual void BL(int cc, uint32_t* pc);
virtual void BX(int cc, int Rn);
virtual void label(const char* theLabel);
virtual void B(int cc, const char* label);
virtual void BL(int cc, const char* label);
virtual uint32_t* pcForLabel(const char* label);
virtual void LDR (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRB(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void STR (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void STRB(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRH (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRSB(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDRSH(int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void STRH (int cc, int Rd,
int Rn, uint32_t offset = 0);
virtual void LDM(int cc, int dir,
int Rn, int W, uint32_t reg_list);
virtual void STM(int cc, int dir,
int Rn, int W, uint32_t reg_list);
virtual void SWP(int cc, int Rn, int Rd, int Rm);
virtual void SWPB(int cc, int Rn, int Rd, int Rm);
virtual void SWI(int cc, uint32_t comment);
virtual void PLD(int Rn, uint32_t offset);
virtual void CLZ(int cc, int Rd, int Rm);
virtual void QADD(int cc, int Rd, int Rm, int Rn);
virtual void QDADD(int cc, int Rd, int Rm, int Rn);
virtual void QSUB(int cc, int Rd, int Rm, int Rn);
virtual void QDSUB(int cc, int Rd, int Rm, int Rn);
virtual void SMUL(int cc, int xy,
int Rd, int Rm, int Rs);
virtual void SMULW(int cc, int y,
int Rd, int Rm, int Rs);
virtual void SMLA(int cc, int xy,
int Rd, int Rm, int Rs, int Rn);
virtual void SMLAL(int cc, int xy,
int RdHi, int RdLo, int Rs, int Rm);
virtual void SMLAW(int cc, int y,
int Rd, int Rm, int Rs, int Rn);
// byte/half word extract...
virtual void UXTB16(int cc, int Rd, int Rm, int rotate);
// bit manipulation...
virtual void UBFX(int cc, int Rd, int Rn, int lsb, int width);
// Address loading/storing/manipulation
virtual void ADDR_LDR(int cc, int Rd, int Rn, uint32_t offset = __immed12_pre(0));
virtual void ADDR_STR(int cc, int Rd, int Rn, uint32_t offset = __immed12_pre(0));
virtual void ADDR_ADD(int cc, int s, int Rd, int Rn, uint32_t Op2);
virtual void ADDR_SUB(int cc, int s, int Rd, int Rn, uint32_t Op2);
// this is some crap to share is MIPS64Assembler class for debug
char * mArmDisassemblyBuffer;
int mArmLineLength;
int mArmInstrCount;
int mInum; // current arm instuction number (0..n)
uint32_t** mArmPC; // array: PC for 1st mips instr of
// each translated ARM instr
private:
ArmToMips64Assembler(const ArmToMips64Assembler& rhs);
ArmToMips64Assembler& operator = (const ArmToMips64Assembler& rhs);
void init_conditional_labels(void);
void protectConditionalOperands(int Rd);
// reg__tmp set to MIPS AT, reg 1
int dataProcAdrModes(int op, int& source, bool sign = false, int reg_tmp = 1);
sp<Assembly> mAssembly;
MIPS64Assembler* mMips;
enum misc_constants_t {
ARM_MAX_INSTUCTIONS = 512 // based on ASSEMBLY_SCRATCH_SIZE
};
enum {
SRC_REG = 0,
SRC_IMM,
SRC_ERROR = -1
};
enum addr_modes {
// start above the range of legal mips reg #'s (0-31)
AMODE_REG = 0x20,
AMODE_IMM, AMODE_REG_IMM, // for data processing
AMODE_IMM_12_PRE, AMODE_IMM_12_POST, // for load/store
AMODE_REG_SCALE_PRE, AMODE_IMM_8_PRE,
AMODE_IMM_8_POST, AMODE_REG_PRE,
AMODE_UNSUPPORTED
};
struct addr_mode_t { // address modes for current ARM instruction
int reg;
int stype;
uint32_t value;
bool writeback; // writeback the adr reg after modification
} amode;
enum cond_types {
CMP_COND = 1,
SBIT_COND
};
struct cond_mode_t { // conditional-execution info for current ARM instruction
cond_types type;
int r1;
int r2;
int labelnum;
char label[100][10];
} cond;
};
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// This is the basic MIPS64 assembler, which just creates the opcodes in memory.
// All the more complicated work is done in ArmToMips64Assember above.
// Inherits MIPSAssembler class, and overrides only MIPS64r6 specific stuff
class MIPS64Assembler : public MIPSAssembler
{
public:
MIPS64Assembler(const sp<Assembly>& assembly, ArmToMips64Assembler *parent);
MIPS64Assembler(void* assembly, ArmToMips64Assembler *parent);
virtual ~MIPS64Assembler();
virtual void reset();
virtual void disassemble(const char* name);
void fix_branches();
// ------------------------------------------------------------------------
// MIPS64AssemblerInterface...
// ------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Arithmetic...
#endif
void DADDU(int Rd, int Rs, int Rt);
void DADDIU(int Rt, int Rs, int16_t imm);
void DSUBU(int Rd, int Rs, int Rt);
void DSUBIU(int Rt, int Rs, int16_t imm);
virtual void MUL(int Rd, int Rs, int Rt);
void MUH(int Rd, int Rs, int Rt);
#if 0
#pragma mark -
#pragma mark Logical...
#endif
virtual void CLO(int Rd, int Rs);
virtual void CLZ(int Rd, int Rs);
#if 0
#pragma mark -
#pragma mark Load/store...
#endif
void LD(int Rt, int Rbase, int16_t offset);
void SD(int Rt, int Rbase, int16_t offset);
virtual void LUI(int Rt, int16_t offset);
#if 0
#pragma mark -
#pragma mark Branch...
#endif
void JR(int Rs);
protected:
ArmToMips64Assembler *mParent;
// opcode field of all instructions
enum opcode_field {
spec_op, regimm_op, j_op, jal_op, // 0x00 - 0x03
beq_op, bne_op, pop06_op, pop07_op, // 0x04 - 0x07
pop10_op, addiu_op, slti_op, sltiu_op, // 0x08 - 0x0b
andi_op, ori_op, xori_op, aui_op, // 0x0c - 0x0f
cop0_op, cop1_op, cop2_op, rsrv_opc_0, // 0x10 - 0x13
rsrv_opc_1, rsrv_opc_2, pop26_op, pop27_op, // 0x14 - 0x17
pop30_op, daddiu_op, rsrv_opc_3, rsrv_opc_4, // 0x18 - 0x1b
rsrv_opc_5, daui_op, msa_op, spec3_op, // 0x1c - 0x1f
lb_op, lh_op, rsrv_opc_6, lw_op, // 0x20 - 0x23
lbu_op, lhu_op, rsrv_opc_7, lwu_op, // 0x24 - 0x27
sb_op, sh_op, rsrv_opc_8, sw_op, // 0x28 - 0x2b
rsrv_opc_9, rsrv_opc_10, rsrv_opc_11, rsrv_opc_12, // 0x2c - 0x2f
rsrv_opc_13, lwc1_op, bc_op, rsrv_opc_14, // 0x2c - 0x2f
rsrv_opc_15, ldc1_op, pop66_op, ld_op, // 0x30 - 0x33
rsrv_opc_16, swc1_op, balc_op, pcrel_op, // 0x34 - 0x37
rsrv_opc_17, sdc1_op, pop76_op, sd_op // 0x38 - 0x3b
};
// func field for special opcode
enum func_spec_op {
sll_fn, rsrv_spec_0, srl_fn, sra_fn,
sllv_fn, lsa_fn, srlv_fn, srav_fn,
rsrv_spec_1, jalr_fn, rsrv_spec_2, rsrv_spec_3,
syscall_fn, break_fn, sdbbp_fn, sync_fn,
clz_fn, clo_fn, dclz_fn, dclo_fn,
dsllv_fn, dlsa_fn, dsrlv_fn, dsrav_fn,
sop30_fn, sop31_fn, sop32_fn, sop33_fn,
sop34_fn, sop35_fn, sop36_fn, sop37_fn,
add_fn, addu_fn, sub_fn, subu_fn,
and_fn, or_fn, xor_fn, nor_fn,
rsrv_spec_4, rsrv_spec_5, slt_fn, sltu_fn,
dadd_fn, daddu_fn, dsub_fn, dsubu_fn,
tge_fn, tgeu_fn, tlt_fn, tltu_fn,
teq_fn, seleqz_fn, tne_fn, selnez_fn,
dsll_fn, rsrv_spec_6, dsrl_fn, dsra_fn,
dsll32_fn, rsrv_spec_7, dsrl32_fn, dsra32_fn
};
// func field for spec3 opcode
enum func_spec3_op {
ext_fn, dextm_fn, dextu_fn, dext_fn,
ins_fn, dinsm_fn, dinsu_fn, dins_fn,
cachee_fn = 0x1b, sbe_fn, she_fn, sce_fn, swe_fn,
bshfl_fn, prefe_fn = 0x23, dbshfl_fn, cache_fn, sc_fn, scd_fn,
lbue_fn, lhue_fn, lbe_fn = 0x2c, lhe_fn, lle_fn, lwe_fn,
pref_fn = 0x35, ll_fn, lld_fn, rdhwr_fn = 0x3b
};
// sa field for spec3 opcodes, with BSHFL function
enum func_spec3_bshfl {
bitswap_fn,
wsbh_fn = 0x02,
dshd_fn = 0x05,
seb_fn = 0x10,
seh_fn = 0x18
};
// rt field of regimm opcodes.
enum regimm_fn {
bltz_fn, bgez_fn,
dahi_fn = 0x6,
nal_fn = 0x10, bal_fn, bltzall_fn, bgezall_fn,
sigrie_fn = 0x17,
dati_fn = 0x1e, synci_fn
};
enum muldiv_fn {
mul_fn = 0x02, muh_fn
};
enum mips_inst_shifts {
OP_SHF = 26,
JTARGET_SHF = 0,
RS_SHF = 21,
RT_SHF = 16,
RD_SHF = 11,
RE_SHF = 6,
SA_SHF = RE_SHF, // synonym
IMM_SHF = 0,
FUNC_SHF = 0,
// mask values
MSK_16 = 0xffff,
CACHEOP_SHF = 18,
CACHESEL_SHF = 16,
};
};
}; // namespace android
#endif //ANDROID_MIPS64ASSEMBLER_H