platform_system_core/libcutils/mq.c

1358 lines
39 KiB
C

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "mq"
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <sys/uio.h>
#include <cutils/array.h>
#include <cutils/hashmap.h>
#include <cutils/selector.h>
#include "loghack.h"
#include "buffer.h"
/** Number of dead peers to remember. */
#define PEER_HISTORY (16)
typedef struct sockaddr SocketAddress;
typedef struct sockaddr_un UnixAddress;
/**
* Process/user/group ID. We don't use ucred directly because it's only
* available on Linux.
*/
typedef struct {
pid_t pid;
uid_t uid;
gid_t gid;
} Credentials;
/** Listens for bytes coming from remote peers. */
typedef void BytesListener(Credentials credentials, char* bytes, size_t size);
/** Listens for the deaths of remote peers. */
typedef void DeathListener(pid_t pid);
/** Types of packets. */
typedef enum {
/** Request for a connection to another peer. */
CONNECTION_REQUEST,
/** A connection to another peer. */
CONNECTION,
/** Reports a failed connection attempt. */
CONNECTION_ERROR,
/** A generic packet of bytes. */
BYTES,
} PacketType;
typedef enum {
/** Reading a packet header. */
READING_HEADER,
/** Waiting for a connection from the master. */
ACCEPTING_CONNECTION,
/** Reading bytes. */
READING_BYTES,
} InputState;
/** A packet header. */
// TODO: Use custom headers for master->peer, peer->master, peer->peer.
typedef struct {
PacketType type;
union {
/** Packet size. Used for BYTES. */
size_t size;
/** Credentials. Used for CONNECTION and CONNECTION_REQUEST. */
Credentials credentials;
};
} Header;
/** A packet which will be sent to a peer. */
typedef struct OutgoingPacket OutgoingPacket;
struct OutgoingPacket {
/** Packet header. */
Header header;
union {
/** Connection to peer. Used with CONNECTION. */
int socket;
/** Buffer of bytes. Used with BYTES. */
Buffer* bytes;
};
/** Frees all resources associated with this packet. */
void (*free)(OutgoingPacket* packet);
/** Optional context. */
void* context;
/** Next packet in the queue. */
OutgoingPacket* nextPacket;
};
/** Represents a remote peer. */
typedef struct PeerProxy PeerProxy;
/** Local peer state. You typically have one peer per process. */
typedef struct {
/** This peer's PID. */
pid_t pid;
/**
* Map from pid to peer proxy. The peer has a peer proxy for each remote
* peer it's connected to.
*
* Acquire mutex before use.
*/
Hashmap* peerProxies;
/** Manages I/O. */
Selector* selector;
/** Used to synchronize operations with the selector thread. */
pthread_mutex_t mutex;
/** Is this peer the master? */
bool master;
/** Peer proxy for the master. */
PeerProxy* masterProxy;
/** Listens for packets from remote peers. */
BytesListener* onBytes;
/** Listens for deaths of remote peers. */
DeathListener* onDeath;
/** Keeps track of recently dead peers. Requires mutex. */
pid_t deadPeers[PEER_HISTORY];
size_t deadPeerCursor;
} Peer;
struct PeerProxy {
/** Credentials of the remote process. */
Credentials credentials;
/** Keeps track of data coming in from the remote peer. */
InputState inputState;
Buffer* inputBuffer;
PeerProxy* connecting;
/** File descriptor for this peer. */
SelectableFd* fd;
/**
* Queue of packets to be written out to the remote peer.
*
* Requires mutex.
*/
// TODO: Limit queue length.
OutgoingPacket* currentPacket;
OutgoingPacket* lastPacket;
/** Used to write outgoing header. */
Buffer outgoingHeader;
/** True if this is the master's proxy. */
bool master;
/** Reference back to the local peer. */
Peer* peer;
/**
* Used in master only. Maps this peer proxy to other peer proxies to
* which the peer has been connected to. Maps pid to PeerProxy. Helps
* keep track of which connections we've sent to whom.
*/
Hashmap* connections;
};
/** Server socket path. */
static const char* MASTER_PATH = "/master.peer";
/** Credentials of the master peer. */
static const Credentials MASTER_CREDENTIALS = {0, 0, 0};
/** Creates a peer proxy and adds it to the peer proxy map. */
static PeerProxy* peerProxyCreate(Peer* peer, Credentials credentials);
/** Sets the non-blocking flag on a descriptor. */
static void setNonBlocking(int fd) {
int flags;
if ((flags = fcntl(fd, F_GETFL, 0)) < 0) {
LOG_ALWAYS_FATAL("fcntl() error: %s", strerror(errno));
}
if (fcntl(fd, F_SETFL, flags | O_NONBLOCK) < 0) {
LOG_ALWAYS_FATAL("fcntl() error: %s", strerror(errno));
}
}
/** Closes a fd and logs a warning if the close fails. */
static void closeWithWarning(int fd) {
int result = close(fd);
if (result == -1) {
LOGW("close() error: %s", strerror(errno));
}
}
/** Hashes pid_t keys. */
static int pidHash(void* key) {
pid_t* pid = (pid_t*) key;
return (int) (*pid);
}
/** Compares pid_t keys. */
static bool pidEquals(void* keyA, void* keyB) {
pid_t* a = (pid_t*) keyA;
pid_t* b = (pid_t*) keyB;
return *a == *b;
}
/** Gets the master address. Not thread safe. */
static UnixAddress* getMasterAddress() {
static UnixAddress masterAddress;
static bool initialized = false;
if (initialized == false) {
masterAddress.sun_family = AF_LOCAL;
strcpy(masterAddress.sun_path, MASTER_PATH);
initialized = true;
}
return &masterAddress;
}
/** Gets exclusive access to the peer for this thread. */
static void peerLock(Peer* peer) {
pthread_mutex_lock(&peer->mutex);
}
/** Releases exclusive access to the peer. */
static void peerUnlock(Peer* peer) {
pthread_mutex_unlock(&peer->mutex);
}
/** Frees a simple, i.e. header-only, outgoing packet. */
static void outgoingPacketFree(OutgoingPacket* packet) {
LOGD("Freeing outgoing packet.");
free(packet);
}
/**
* Prepare to read a new packet from the peer.
*/
static void peerProxyExpectHeader(PeerProxy* peerProxy) {
peerProxy->inputState = READING_HEADER;
bufferPrepareForRead(peerProxy->inputBuffer, sizeof(Header));
}
/** Sets up the buffer for the outgoing header. */
static void peerProxyPrepareOutgoingHeader(PeerProxy* peerProxy) {
peerProxy->outgoingHeader.data
= (char*) &(peerProxy->currentPacket->header);
peerProxy->outgoingHeader.size = sizeof(Header);
bufferPrepareForWrite(&peerProxy->outgoingHeader);
}
/** Adds a packet to the end of the queue. Callers must have the mutex. */
static void peerProxyEnqueueOutgoingPacket(PeerProxy* peerProxy,
OutgoingPacket* newPacket) {
newPacket->nextPacket = NULL; // Just in case.
if (peerProxy->currentPacket == NULL) {
// The queue is empty.
peerProxy->currentPacket = newPacket;
peerProxy->lastPacket = newPacket;
peerProxyPrepareOutgoingHeader(peerProxy);
} else {
peerProxy->lastPacket->nextPacket = newPacket;
}
}
/** Takes the peer lock and enqueues the given packet. */
static void peerProxyLockAndEnqueueOutgoingPacket(PeerProxy* peerProxy,
OutgoingPacket* newPacket) {
Peer* peer = peerProxy->peer;
peerLock(peer);
peerProxyEnqueueOutgoingPacket(peerProxy, newPacket);
peerUnlock(peer);
}
/**
* Frees current packet and moves to the next one. Returns true if there is
* a next packet or false if the queue is empty.
*/
static bool peerProxyNextPacket(PeerProxy* peerProxy) {
Peer* peer = peerProxy->peer;
peerLock(peer);
OutgoingPacket* current = peerProxy->currentPacket;
if (current == NULL) {
// The queue is already empty.
peerUnlock(peer);
return false;
}
OutgoingPacket* next = current->nextPacket;
peerProxy->currentPacket = next;
current->nextPacket = NULL;
current->free(current);
if (next == NULL) {
// The queue is empty.
peerProxy->lastPacket = NULL;
peerUnlock(peer);
return false;
} else {
peerUnlock(peer);
peerProxyPrepareOutgoingHeader(peerProxy);
// TODO: Start writing next packet? It would reduce the number of
// system calls, but we could also starve other peers.
return true;
}
}
/**
* Checks whether a peer died recently.
*/
static bool peerIsDead(Peer* peer, pid_t pid) {
size_t i;
for (i = 0; i < PEER_HISTORY; i++) {
pid_t deadPeer = peer->deadPeers[i];
if (deadPeer == 0) {
return false;
}
if (deadPeer == pid) {
return true;
}
}
return false;
}
/**
* Cleans up connection information.
*/
static bool peerProxyRemoveConnection(void* key, void* value, void* context) {
PeerProxy* deadPeer = (PeerProxy*) context;
PeerProxy* otherPeer = (PeerProxy*) value;
hashmapRemove(otherPeer->connections, &(deadPeer->credentials.pid));
return true;
}
/**
* Called when the peer dies.
*/
static void peerProxyKill(PeerProxy* peerProxy, bool errnoIsSet) {
if (errnoIsSet) {
LOGI("Peer %d died. errno: %s", peerProxy->credentials.pid,
strerror(errno));
} else {
LOGI("Peer %d died.", peerProxy->credentials.pid);
}
// If we lost the master, we're up a creek. We can't let this happen.
if (peerProxy->master) {
LOG_ALWAYS_FATAL("Lost connection to master.");
}
Peer* localPeer = peerProxy->peer;
pid_t pid = peerProxy->credentials.pid;
peerLock(localPeer);
// Remember for awhile that the peer died.
localPeer->deadPeers[localPeer->deadPeerCursor]
= peerProxy->credentials.pid;
localPeer->deadPeerCursor++;
if (localPeer->deadPeerCursor == PEER_HISTORY) {
localPeer->deadPeerCursor = 0;
}
// Remove from peer map.
hashmapRemove(localPeer->peerProxies, &pid);
// External threads can no longer get to this peer proxy, so we don't
// need the lock anymore.
peerUnlock(localPeer);
// Remove the fd from the selector.
if (peerProxy->fd != NULL) {
peerProxy->fd->remove = true;
}
// Clear outgoing packet queue.
while (peerProxyNextPacket(peerProxy)) {}
bufferFree(peerProxy->inputBuffer);
// This only applies to the master.
if (peerProxy->connections != NULL) {
// We can't leave these other maps pointing to freed memory.
hashmapForEach(peerProxy->connections, &peerProxyRemoveConnection,
peerProxy);
hashmapFree(peerProxy->connections);
}
// Invoke death listener.
localPeer->onDeath(pid);
// Free the peer proxy itself.
free(peerProxy);
}
static void peerProxyHandleError(PeerProxy* peerProxy, char* functionName) {
if (errno == EINTR) {
// Log interruptions but otherwise ignore them.
LOGW("%s() interrupted.", functionName);
} else if (errno == EAGAIN) {
LOGD("EWOULDBLOCK");
// Ignore.
} else {
LOGW("Error returned by %s().", functionName);
peerProxyKill(peerProxy, true);
}
}
/**
* Buffers output sent to a peer. May be called multiple times until the entire
* buffer is filled. Returns true when the buffer is empty.
*/
static bool peerProxyWriteFromBuffer(PeerProxy* peerProxy, Buffer* outgoing) {
ssize_t size = bufferWrite(outgoing, peerProxy->fd->fd);
if (size < 0) {
peerProxyHandleError(peerProxy, "write");
return false;
} else {
return bufferWriteComplete(outgoing);
}
}
/** Writes packet bytes to peer. */
static void peerProxyWriteBytes(PeerProxy* peerProxy) {
Buffer* buffer = peerProxy->currentPacket->bytes;
if (peerProxyWriteFromBuffer(peerProxy, buffer)) {
LOGD("Bytes written.");
peerProxyNextPacket(peerProxy);
}
}
/** Sends a socket to the peer. */
static void peerProxyWriteConnection(PeerProxy* peerProxy) {
int socket = peerProxy->currentPacket->socket;
// Why does sending and receiving fds have to be such a PITA?
struct msghdr msg;
struct iovec iov[1];
union {
struct cmsghdr cm;
char control[CMSG_SPACE(sizeof(int))];
} control_un;
struct cmsghdr *cmptr;
msg.msg_control = control_un.control;
msg.msg_controllen = sizeof(control_un.control);
cmptr = CMSG_FIRSTHDR(&msg);
cmptr->cmsg_len = CMSG_LEN(sizeof(int));
cmptr->cmsg_level = SOL_SOCKET;
cmptr->cmsg_type = SCM_RIGHTS;
// Store the socket in the message.
*((int *) CMSG_DATA(cmptr)) = peerProxy->currentPacket->socket;
msg.msg_name = NULL;
msg.msg_namelen = 0;
iov[0].iov_base = "";
iov[0].iov_len = 1;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
ssize_t result = sendmsg(peerProxy->fd->fd, &msg, 0);
if (result < 0) {
peerProxyHandleError(peerProxy, "sendmsg");
} else {
// Success. Queue up the next packet.
peerProxyNextPacket(peerProxy);
}
}
/**
* Writes some outgoing data.
*/
static void peerProxyWrite(SelectableFd* fd) {
// TODO: Try to write header and body with one system call.
PeerProxy* peerProxy = (PeerProxy*) fd->data;
OutgoingPacket* current = peerProxy->currentPacket;
if (current == NULL) {
// We have nothing left to write.
return;
}
// Write the header.
Buffer* outgoingHeader = &peerProxy->outgoingHeader;
bool headerWritten = bufferWriteComplete(outgoingHeader);
if (!headerWritten) {
LOGD("Writing header...");
headerWritten = peerProxyWriteFromBuffer(peerProxy, outgoingHeader);
if (headerWritten) {
LOGD("Header written.");
}
}
// Write body.
if (headerWritten) {
PacketType type = current->header.type;
switch (type) {
case CONNECTION:
peerProxyWriteConnection(peerProxy);
break;
case BYTES:
peerProxyWriteBytes(peerProxy);
break;
case CONNECTION_REQUEST:
case CONNECTION_ERROR:
// These packets consist solely of a header.
peerProxyNextPacket(peerProxy);
break;
default:
LOG_ALWAYS_FATAL("Unknown packet type: %d", type);
}
}
}
/**
* Sets up a peer proxy's fd before we try to select() it.
*/
static void peerProxyBeforeSelect(SelectableFd* fd) {
LOGD("Before select...");
PeerProxy* peerProxy = (PeerProxy*) fd->data;
peerLock(peerProxy->peer);
bool hasPackets = peerProxy->currentPacket != NULL;
peerUnlock(peerProxy->peer);
if (hasPackets) {
LOGD("Packets found. Setting onWritable().");
fd->onWritable = &peerProxyWrite;
} else {
// We have nothing to write.
fd->onWritable = NULL;
}
}
/** Prepare to read bytes from the peer. */
static void peerProxyExpectBytes(PeerProxy* peerProxy, Header* header) {
LOGD("Expecting %d bytes.", header->size);
peerProxy->inputState = READING_BYTES;
if (bufferPrepareForRead(peerProxy->inputBuffer, header->size) == -1) {
LOGW("Couldn't allocate memory for incoming data. Size: %u",
(unsigned int) header->size);
// TODO: Ignore the packet and log a warning?
peerProxyKill(peerProxy, false);
}
}
/**
* Gets a peer proxy for the given ID. Creates a peer proxy if necessary.
* Sends a connection request to the master if desired.
*
* Returns NULL if an error occurs. Sets errno to EHOSTDOWN if the peer died
* or ENOMEM if memory couldn't be allocated.
*/
static PeerProxy* peerProxyGetOrCreate(Peer* peer, pid_t pid,
bool requestConnection) {
if (pid == peer->pid) {
errno = EINVAL;
return NULL;
}
if (peerIsDead(peer, pid)) {
errno = EHOSTDOWN;
return NULL;
}
PeerProxy* peerProxy = hashmapGet(peer->peerProxies, &pid);
if (peerProxy != NULL) {
return peerProxy;
}
// If this is the master peer, we already know about all peers.
if (peer->master) {
errno = EHOSTDOWN;
return NULL;
}
// Try to create a peer proxy.
Credentials credentials;
credentials.pid = pid;
// Fake gid and uid until we have the real thing. The real creds are
// filled in by masterProxyExpectConnection(). These fake creds will
// never be exposed to the user.
credentials.uid = 0;
credentials.gid = 0;
// Make sure we can allocate the connection request packet.
OutgoingPacket* packet = NULL;
if (requestConnection) {
packet = calloc(1, sizeof(OutgoingPacket));
if (packet == NULL) {
errno = ENOMEM;
return NULL;
}
packet->header.type = CONNECTION_REQUEST;
packet->header.credentials = credentials;
packet->free = &outgoingPacketFree;
}
peerProxy = peerProxyCreate(peer, credentials);
if (peerProxy == NULL) {
free(packet);
errno = ENOMEM;
return NULL;
} else {
// Send a connection request to the master.
if (requestConnection) {
PeerProxy* masterProxy = peer->masterProxy;
peerProxyEnqueueOutgoingPacket(masterProxy, packet);
}
return peerProxy;
}
}
/**
* Switches the master peer proxy into a state where it's waiting for a
* connection from the master.
*/
static void masterProxyExpectConnection(PeerProxy* masterProxy,
Header* header) {
// TODO: Restructure things so we don't need this check.
// Verify that this really is the master.
if (!masterProxy->master) {
LOGW("Non-master process %d tried to send us a connection.",
masterProxy->credentials.pid);
// Kill off the evil peer.
peerProxyKill(masterProxy, false);
return;
}
masterProxy->inputState = ACCEPTING_CONNECTION;
Peer* localPeer = masterProxy->peer;
// Create a peer proxy so we have somewhere to stash the creds.
// See if we already have a proxy set up.
pid_t pid = header->credentials.pid;
peerLock(localPeer);
PeerProxy* peerProxy = peerProxyGetOrCreate(localPeer, pid, false);
if (peerProxy == NULL) {
LOGW("Peer proxy creation failed: %s", strerror(errno));
} else {
// Fill in full credentials.
peerProxy->credentials = header->credentials;
}
peerUnlock(localPeer);
// Keep track of which peer proxy we're accepting a connection for.
masterProxy->connecting = peerProxy;
}
/**
* Reads input from a peer process.
*/
static void peerProxyRead(SelectableFd* fd);
/** Sets up fd callbacks. */
static void peerProxySetFd(PeerProxy* peerProxy, SelectableFd* fd) {
peerProxy->fd = fd;
fd->data = peerProxy;
fd->onReadable = &peerProxyRead;
fd->beforeSelect = &peerProxyBeforeSelect;
// Make the socket non-blocking.
setNonBlocking(fd->fd);
}
/**
* Accepts a connection sent by the master proxy.
*/
static void masterProxyAcceptConnection(PeerProxy* masterProxy) {
struct msghdr msg;
struct iovec iov[1];
ssize_t size;
char ignored;
int incomingFd;
// TODO: Reuse code which writes the connection. Who the heck designed
// this API anyway?
union {
struct cmsghdr cm;
char control[CMSG_SPACE(sizeof(int))];
} control_un;
struct cmsghdr *cmptr;
msg.msg_control = control_un.control;
msg.msg_controllen = sizeof(control_un.control);
msg.msg_name = NULL;
msg.msg_namelen = 0;
// We sent 1 byte of data so we can detect EOF.
iov[0].iov_base = &ignored;
iov[0].iov_len = 1;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
size = recvmsg(masterProxy->fd->fd, &msg, 0);
if (size < 0) {
if (errno == EINTR) {
// Log interruptions but otherwise ignore them.
LOGW("recvmsg() interrupted.");
return;
} else if (errno == EAGAIN) {
// Keep waiting for the connection.
return;
} else {
LOG_ALWAYS_FATAL("Error reading connection from master: %s",
strerror(errno));
}
} else if (size == 0) {
// EOF.
LOG_ALWAYS_FATAL("Received EOF from master.");
}
// Extract fd from message.
if ((cmptr = CMSG_FIRSTHDR(&msg)) != NULL
&& cmptr->cmsg_len == CMSG_LEN(sizeof(int))) {
if (cmptr->cmsg_level != SOL_SOCKET) {
LOG_ALWAYS_FATAL("Expected SOL_SOCKET.");
}
if (cmptr->cmsg_type != SCM_RIGHTS) {
LOG_ALWAYS_FATAL("Expected SCM_RIGHTS.");
}
incomingFd = *((int*) CMSG_DATA(cmptr));
} else {
LOG_ALWAYS_FATAL("Expected fd.");
}
// The peer proxy this connection is for.
PeerProxy* peerProxy = masterProxy->connecting;
if (peerProxy == NULL) {
LOGW("Received connection for unknown peer.");
closeWithWarning(incomingFd);
} else {
Peer* peer = masterProxy->peer;
SelectableFd* selectableFd = selectorAdd(peer->selector, incomingFd);
if (selectableFd == NULL) {
LOGW("Error adding fd to selector for %d.",
peerProxy->credentials.pid);
closeWithWarning(incomingFd);
peerProxyKill(peerProxy, false);
}
peerProxySetFd(peerProxy, selectableFd);
}
peerProxyExpectHeader(masterProxy);
}
/**
* Frees an outgoing packet containing a connection.
*/
static void outgoingPacketFreeSocket(OutgoingPacket* packet) {
closeWithWarning(packet->socket);
outgoingPacketFree(packet);
}
/**
* Connects two known peers.
*/
static void masterConnectPeers(PeerProxy* peerA, PeerProxy* peerB) {
int sockets[2];
int result = socketpair(AF_LOCAL, SOCK_STREAM, 0, sockets);
if (result == -1) {
LOGW("socketpair() error: %s", strerror(errno));
// TODO: Send CONNECTION_FAILED packets to peers.
return;
}
OutgoingPacket* packetA = calloc(1, sizeof(OutgoingPacket));
OutgoingPacket* packetB = calloc(1, sizeof(OutgoingPacket));
if (packetA == NULL || packetB == NULL) {
free(packetA);
free(packetB);
LOGW("malloc() error. Failed to tell process %d that process %d is"
" dead.", peerA->credentials.pid, peerB->credentials.pid);
return;
}
packetA->header.type = CONNECTION;
packetB->header.type = CONNECTION;
packetA->header.credentials = peerB->credentials;
packetB->header.credentials = peerA->credentials;
packetA->socket = sockets[0];
packetB->socket = sockets[1];
packetA->free = &outgoingPacketFreeSocket;
packetB->free = &outgoingPacketFreeSocket;
peerLock(peerA->peer);
peerProxyEnqueueOutgoingPacket(peerA, packetA);
peerProxyEnqueueOutgoingPacket(peerB, packetB);
peerUnlock(peerA->peer);
}
/**
* Informs a peer that the peer they're trying to connect to couldn't be
* found.
*/
static void masterReportConnectionError(PeerProxy* peerProxy,
Credentials credentials) {
OutgoingPacket* packet = calloc(1, sizeof(OutgoingPacket));
if (packet == NULL) {
LOGW("malloc() error. Failed to tell process %d that process %d is"
" dead.", peerProxy->credentials.pid, credentials.pid);
return;
}
packet->header.type = CONNECTION_ERROR;
packet->header.credentials = credentials;
packet->free = &outgoingPacketFree;
peerProxyLockAndEnqueueOutgoingPacket(peerProxy, packet);
}
/**
* Handles a request to be connected to another peer.
*/
static void masterHandleConnectionRequest(PeerProxy* peerProxy,
Header* header) {
Peer* master = peerProxy->peer;
pid_t targetPid = header->credentials.pid;
if (!hashmapContainsKey(peerProxy->connections, &targetPid)) {
// We haven't connected these peers yet.
PeerProxy* targetPeer
= (PeerProxy*) hashmapGet(master->peerProxies, &targetPid);
if (targetPeer == NULL) {
// Unknown process.
masterReportConnectionError(peerProxy, header->credentials);
} else {
masterConnectPeers(peerProxy, targetPeer);
}
}
// This packet is complete. Get ready for the next one.
peerProxyExpectHeader(peerProxy);
}
/**
* The master told us this peer is dead.
*/
static void masterProxyHandleConnectionError(PeerProxy* masterProxy,
Header* header) {
Peer* peer = masterProxy->peer;
// Look up the peer proxy.
pid_t pid = header->credentials.pid;
PeerProxy* peerProxy = NULL;
peerLock(peer);
peerProxy = hashmapGet(peer->peerProxies, &pid);
peerUnlock(peer);
if (peerProxy != NULL) {
LOGI("Couldn't connect to %d.", pid);
peerProxyKill(peerProxy, false);
} else {
LOGW("Peer proxy for %d not found. This shouldn't happen.", pid);
}
peerProxyExpectHeader(masterProxy);
}
/**
* Handles a packet header.
*/
static void peerProxyHandleHeader(PeerProxy* peerProxy, Header* header) {
switch (header->type) {
case CONNECTION_REQUEST:
masterHandleConnectionRequest(peerProxy, header);
break;
case CONNECTION:
masterProxyExpectConnection(peerProxy, header);
break;
case CONNECTION_ERROR:
masterProxyHandleConnectionError(peerProxy, header);
break;
case BYTES:
peerProxyExpectBytes(peerProxy, header);
break;
default:
LOGW("Invalid packet type from %d: %d", peerProxy->credentials.pid,
header->type);
peerProxyKill(peerProxy, false);
}
}
/**
* Buffers input sent by peer. May be called multiple times until the entire
* buffer is filled. Returns true when the buffer is full.
*/
static bool peerProxyBufferInput(PeerProxy* peerProxy) {
Buffer* in = peerProxy->inputBuffer;
ssize_t size = bufferRead(in, peerProxy->fd->fd);
if (size < 0) {
peerProxyHandleError(peerProxy, "read");
return false;
} else if (size == 0) {
// EOF.
LOGI("EOF");
peerProxyKill(peerProxy, false);
return false;
} else if (bufferReadComplete(in)) {
// We're done!
return true;
} else {
// Continue reading.
return false;
}
}
/**
* Reads input from a peer process.
*/
static void peerProxyRead(SelectableFd* fd) {
LOGD("Reading...");
PeerProxy* peerProxy = (PeerProxy*) fd->data;
int state = peerProxy->inputState;
Buffer* in = peerProxy->inputBuffer;
switch (state) {
case READING_HEADER:
if (peerProxyBufferInput(peerProxy)) {
LOGD("Header read.");
// We've read the complete header.
Header* header = (Header*) in->data;
peerProxyHandleHeader(peerProxy, header);
}
break;
case READING_BYTES:
LOGD("Reading bytes...");
if (peerProxyBufferInput(peerProxy)) {
LOGD("Bytes read.");
// We have the complete packet. Notify bytes listener.
peerProxy->peer->onBytes(peerProxy->credentials,
in->data, in->size);
// Get ready for the next packet.
peerProxyExpectHeader(peerProxy);
}
break;
case ACCEPTING_CONNECTION:
masterProxyAcceptConnection(peerProxy);
break;
default:
LOG_ALWAYS_FATAL("Unknown state: %d", state);
}
}
static PeerProxy* peerProxyCreate(Peer* peer, Credentials credentials) {
PeerProxy* peerProxy = calloc(1, sizeof(PeerProxy));
if (peerProxy == NULL) {
return NULL;
}
peerProxy->inputBuffer = bufferCreate(sizeof(Header));
if (peerProxy->inputBuffer == NULL) {
free(peerProxy);
return NULL;
}
peerProxy->peer = peer;
peerProxy->credentials = credentials;
// Initial state == expecting a header.
peerProxyExpectHeader(peerProxy);
// Add this proxy to the map. Make sure the key points to the stable memory
// inside of the peer proxy itself.
pid_t* pid = &(peerProxy->credentials.pid);
hashmapPut(peer->peerProxies, pid, peerProxy);
return peerProxy;
}
/** Accepts a connection to the master peer. */
static void masterAcceptConnection(SelectableFd* listenerFd) {
// Accept connection.
int socket = accept(listenerFd->fd, NULL, NULL);
if (socket == -1) {
LOGW("accept() error: %s", strerror(errno));
return;
}
LOGD("Accepted connection as fd %d.", socket);
// Get credentials.
Credentials credentials;
struct ucred ucredentials;
socklen_t credentialsSize = sizeof(struct ucred);
int result = getsockopt(socket, SOL_SOCKET, SO_PEERCRED,
&ucredentials, &credentialsSize);
// We might want to verify credentialsSize.
if (result == -1) {
LOGW("getsockopt() error: %s", strerror(errno));
closeWithWarning(socket);
return;
}
// Copy values into our own structure so we know we have the types right.
credentials.pid = ucredentials.pid;
credentials.uid = ucredentials.uid;
credentials.gid = ucredentials.gid;
LOGI("Accepted connection from process %d.", credentials.pid);
Peer* masterPeer = (Peer*) listenerFd->data;
peerLock(masterPeer);
// Make sure we don't already have a connection from that process.
PeerProxy* peerProxy
= hashmapGet(masterPeer->peerProxies, &credentials.pid);
if (peerProxy != NULL) {
peerUnlock(masterPeer);
LOGW("Alread connected to process %d.", credentials.pid);
closeWithWarning(socket);
return;
}
// Add connection to the selector.
SelectableFd* socketFd = selectorAdd(masterPeer->selector, socket);
if (socketFd == NULL) {
peerUnlock(masterPeer);
LOGW("malloc() failed.");
closeWithWarning(socket);
return;
}
// Create a peer proxy.
peerProxy = peerProxyCreate(masterPeer, credentials);
peerUnlock(masterPeer);
if (peerProxy == NULL) {
LOGW("malloc() failed.");
socketFd->remove = true;
closeWithWarning(socket);
}
peerProxy->connections = hashmapCreate(10, &pidHash, &pidEquals);
peerProxySetFd(peerProxy, socketFd);
}
/**
* Creates the local peer.
*/
static Peer* peerCreate() {
Peer* peer = calloc(1, sizeof(Peer));
if (peer == NULL) {
LOG_ALWAYS_FATAL("malloc() error.");
}
peer->peerProxies = hashmapCreate(10, &pidHash, &pidEquals);
peer->selector = selectorCreate();
pthread_mutexattr_t attributes;
if (pthread_mutexattr_init(&attributes) != 0) {
LOG_ALWAYS_FATAL("pthread_mutexattr_init() error.");
}
if (pthread_mutexattr_settype(&attributes, PTHREAD_MUTEX_RECURSIVE) != 0) {
LOG_ALWAYS_FATAL("pthread_mutexattr_settype() error.");
}
if (pthread_mutex_init(&peer->mutex, &attributes) != 0) {
LOG_ALWAYS_FATAL("pthread_mutex_init() error.");
}
peer->pid = getpid();
return peer;
}
/** The local peer. */
static Peer* localPeer;
/** Frees a packet of bytes. */
static void outgoingPacketFreeBytes(OutgoingPacket* packet) {
LOGD("Freeing outgoing packet.");
bufferFree(packet->bytes);
free(packet);
}
/**
* Sends a packet of bytes to a remote peer. Returns 0 on success.
*
* Returns -1 if an error occurs. Sets errno to ENOMEM if memory couldn't be
* allocated. Sets errno to EHOSTDOWN if the peer died recently. Sets errno
* to EINVAL if pid is the same as the local pid.
*/
int peerSendBytes(pid_t pid, const char* bytes, size_t size) {
Peer* peer = localPeer;
assert(peer != NULL);
OutgoingPacket* packet = calloc(1, sizeof(OutgoingPacket));
if (packet == NULL) {
errno = ENOMEM;
return -1;
}
Buffer* copy = bufferCreate(size);
if (copy == NULL) {
free(packet);
errno = ENOMEM;
return -1;
}
// Copy data.
memcpy(copy->data, bytes, size);
copy->size = size;
packet->bytes = copy;
packet->header.type = BYTES;
packet->header.size = size;
packet->free = outgoingPacketFreeBytes;
bufferPrepareForWrite(packet->bytes);
peerLock(peer);
PeerProxy* peerProxy = peerProxyGetOrCreate(peer, pid, true);
if (peerProxy == NULL) {
// The peer is already dead or we couldn't alloc memory. Either way,
// errno is set.
peerUnlock(peer);
packet->free(packet);
return -1;
} else {
peerProxyEnqueueOutgoingPacket(peerProxy, packet);
peerUnlock(peer);
selectorWakeUp(peer->selector);
return 0;
}
}
/** Keeps track of how to free shared bytes. */
typedef struct {
void (*free)(void* context);
void* context;
} SharedBytesFreer;
/** Frees shared bytes. */
static void outgoingPacketFreeSharedBytes(OutgoingPacket* packet) {
SharedBytesFreer* sharedBytesFreer
= (SharedBytesFreer*) packet->context;
sharedBytesFreer->free(sharedBytesFreer->context);
free(sharedBytesFreer);
free(packet);
}
/**
* Sends a packet of bytes to a remote peer without copying the bytes. Calls
* free() with context after the bytes have been sent.
*
* Returns -1 if an error occurs. Sets errno to ENOMEM if memory couldn't be
* allocated. Sets errno to EHOSTDOWN if the peer died recently. Sets errno
* to EINVAL if pid is the same as the local pid.
*/
int peerSendSharedBytes(pid_t pid, char* bytes, size_t size,
void (*free)(void* context), void* context) {
Peer* peer = localPeer;
assert(peer != NULL);
OutgoingPacket* packet = calloc(1, sizeof(OutgoingPacket));
if (packet == NULL) {
errno = ENOMEM;
return -1;
}
Buffer* wrapper = bufferWrap(bytes, size, size);
if (wrapper == NULL) {
free(packet);
errno = ENOMEM;
return -1;
}
SharedBytesFreer* sharedBytesFreer = malloc(sizeof(SharedBytesFreer));
if (sharedBytesFreer == NULL) {
free(packet);
free(wrapper);
errno = ENOMEM;
return -1;
}
sharedBytesFreer->free = free;
sharedBytesFreer->context = context;
packet->bytes = wrapper;
packet->context = sharedBytesFreer;
packet->header.type = BYTES;
packet->header.size = size;
packet->free = &outgoingPacketFreeSharedBytes;
bufferPrepareForWrite(packet->bytes);
peerLock(peer);
PeerProxy* peerProxy = peerProxyGetOrCreate(peer, pid, true);
if (peerProxy == NULL) {
// The peer is already dead or we couldn't alloc memory. Either way,
// errno is set.
peerUnlock(peer);
packet->free(packet);
return -1;
} else {
peerProxyEnqueueOutgoingPacket(peerProxy, packet);
peerUnlock(peer);
selectorWakeUp(peer->selector);
return 0;
}
}
/**
* Starts the master peer. The master peer differs from other peers in that
* it is responsible for connecting the other peers. You can only have one
* master peer.
*
* Goes into an I/O loop and does not return.
*/
void masterPeerInitialize(BytesListener* bytesListener,
DeathListener* deathListener) {
// Create and bind socket.
int listenerSocket = socket(AF_LOCAL, SOCK_STREAM, 0);
if (listenerSocket == -1) {
LOG_ALWAYS_FATAL("socket() error: %s", strerror(errno));
}
unlink(MASTER_PATH);
int result = bind(listenerSocket, (SocketAddress*) getMasterAddress(),
sizeof(UnixAddress));
if (result == -1) {
LOG_ALWAYS_FATAL("bind() error: %s", strerror(errno));
}
LOGD("Listener socket: %d", listenerSocket);
// Queue up to 16 connections.
result = listen(listenerSocket, 16);
if (result != 0) {
LOG_ALWAYS_FATAL("listen() error: %s", strerror(errno));
}
// Make socket non-blocking.
setNonBlocking(listenerSocket);
// Create the peer for this process. Fail if we already have one.
if (localPeer != NULL) {
LOG_ALWAYS_FATAL("Peer is already initialized.");
}
localPeer = peerCreate();
if (localPeer == NULL) {
LOG_ALWAYS_FATAL("malloc() failed.");
}
localPeer->master = true;
localPeer->onBytes = bytesListener;
localPeer->onDeath = deathListener;
// Make listener socket selectable.
SelectableFd* listenerFd = selectorAdd(localPeer->selector, listenerSocket);
if (listenerFd == NULL) {
LOG_ALWAYS_FATAL("malloc() error.");
}
listenerFd->data = localPeer;
listenerFd->onReadable = &masterAcceptConnection;
}
/**
* Starts a local peer.
*
* Goes into an I/O loop and does not return.
*/
void peerInitialize(BytesListener* bytesListener,
DeathListener* deathListener) {
// Connect to master peer.
int masterSocket = socket(AF_LOCAL, SOCK_STREAM, 0);
if (masterSocket == -1) {
LOG_ALWAYS_FATAL("socket() error: %s", strerror(errno));
}
int result = connect(masterSocket, (SocketAddress*) getMasterAddress(),
sizeof(UnixAddress));
if (result != 0) {
LOG_ALWAYS_FATAL("connect() error: %s", strerror(errno));
}
// Create the peer for this process. Fail if we already have one.
if (localPeer != NULL) {
LOG_ALWAYS_FATAL("Peer is already initialized.");
}
localPeer = peerCreate();
if (localPeer == NULL) {
LOG_ALWAYS_FATAL("malloc() failed.");
}
localPeer->onBytes = bytesListener;
localPeer->onDeath = deathListener;
// Make connection selectable.
SelectableFd* masterFd = selectorAdd(localPeer->selector, masterSocket);
if (masterFd == NULL) {
LOG_ALWAYS_FATAL("malloc() error.");
}
// Create a peer proxy for the master peer.
PeerProxy* masterProxy = peerProxyCreate(localPeer, MASTER_CREDENTIALS);
if (masterProxy == NULL) {
LOG_ALWAYS_FATAL("malloc() error.");
}
peerProxySetFd(masterProxy, masterFd);
masterProxy->master = true;
localPeer->masterProxy = masterProxy;
}
/** Starts the master peer I/O loop. Doesn't return. */
void peerLoop() {
assert(localPeer != NULL);
// Start selector.
selectorLoop(localPeer->selector);
}