4031 lines
134 KiB
C++
4031 lines
134 KiB
C++
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define TRACE_TAG SYSDEPS
|
|
|
|
#include "sysdeps.h"
|
|
|
|
#include <winsock2.h> /* winsock.h *must* be included before windows.h. */
|
|
#include <windows.h>
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
#include <cutils/sockets.h>
|
|
|
|
#include <base/logging.h>
|
|
#include <base/stringprintf.h>
|
|
#include <base/strings.h>
|
|
|
|
#include "adb.h"
|
|
|
|
extern void fatal(const char *fmt, ...);
|
|
|
|
/* forward declarations */
|
|
|
|
typedef const struct FHClassRec_* FHClass;
|
|
typedef struct FHRec_* FH;
|
|
typedef struct EventHookRec_* EventHook;
|
|
|
|
typedef struct FHClassRec_ {
|
|
void (*_fh_init)(FH);
|
|
int (*_fh_close)(FH);
|
|
int (*_fh_lseek)(FH, int, int);
|
|
int (*_fh_read)(FH, void*, int);
|
|
int (*_fh_write)(FH, const void*, int);
|
|
void (*_fh_hook)(FH, int, EventHook);
|
|
} FHClassRec;
|
|
|
|
static void _fh_file_init(FH);
|
|
static int _fh_file_close(FH);
|
|
static int _fh_file_lseek(FH, int, int);
|
|
static int _fh_file_read(FH, void*, int);
|
|
static int _fh_file_write(FH, const void*, int);
|
|
static void _fh_file_hook(FH, int, EventHook);
|
|
|
|
static const FHClassRec _fh_file_class = {
|
|
_fh_file_init,
|
|
_fh_file_close,
|
|
_fh_file_lseek,
|
|
_fh_file_read,
|
|
_fh_file_write,
|
|
_fh_file_hook
|
|
};
|
|
|
|
static void _fh_socket_init(FH);
|
|
static int _fh_socket_close(FH);
|
|
static int _fh_socket_lseek(FH, int, int);
|
|
static int _fh_socket_read(FH, void*, int);
|
|
static int _fh_socket_write(FH, const void*, int);
|
|
static void _fh_socket_hook(FH, int, EventHook);
|
|
|
|
static const FHClassRec _fh_socket_class = {
|
|
_fh_socket_init,
|
|
_fh_socket_close,
|
|
_fh_socket_lseek,
|
|
_fh_socket_read,
|
|
_fh_socket_write,
|
|
_fh_socket_hook
|
|
};
|
|
|
|
#define assert(cond) do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0)
|
|
|
|
std::string SystemErrorCodeToString(const DWORD error_code) {
|
|
const int kErrorMessageBufferSize = 256;
|
|
WCHAR msgbuf[kErrorMessageBufferSize];
|
|
DWORD flags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS;
|
|
DWORD len = FormatMessageW(flags, nullptr, error_code, 0, msgbuf,
|
|
arraysize(msgbuf), nullptr);
|
|
if (len == 0) {
|
|
return android::base::StringPrintf(
|
|
"Error (%lu) while retrieving error. (%lu)", GetLastError(),
|
|
error_code);
|
|
}
|
|
|
|
// Convert UTF-16 to UTF-8.
|
|
std::string msg(narrow(msgbuf));
|
|
// Messages returned by the system end with line breaks.
|
|
msg = android::base::Trim(msg);
|
|
// There are many Windows error messages compared to POSIX, so include the
|
|
// numeric error code for easier, quicker, accurate identification. Use
|
|
// decimal instead of hex because there are decimal ranges like 10000-11999
|
|
// for Winsock.
|
|
android::base::StringAppendF(&msg, " (%lu)", error_code);
|
|
return msg;
|
|
}
|
|
|
|
void handle_deleter::operator()(HANDLE h) {
|
|
// CreateFile() is documented to return INVALID_HANDLE_FILE on error,
|
|
// implying that NULL is a valid handle, but this is probably impossible.
|
|
// Other APIs like CreateEvent() are documented to return NULL on error,
|
|
// implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
|
|
// probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
|
|
// as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
|
|
// only need to check for INVALID_HANDLE_VALUE.
|
|
if (h != INVALID_HANDLE_VALUE) {
|
|
if (!CloseHandle(h)) {
|
|
D("CloseHandle(%p) failed: %s", h,
|
|
SystemErrorCodeToString(GetLastError()).c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** replaces libs/cutils/load_file.c *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
void *load_file(const char *fn, unsigned *_sz)
|
|
{
|
|
HANDLE file;
|
|
char *data;
|
|
DWORD file_size;
|
|
|
|
file = CreateFileW( widen(fn).c_str(),
|
|
GENERIC_READ,
|
|
FILE_SHARE_READ,
|
|
NULL,
|
|
OPEN_EXISTING,
|
|
0,
|
|
NULL );
|
|
|
|
if (file == INVALID_HANDLE_VALUE)
|
|
return NULL;
|
|
|
|
file_size = GetFileSize( file, NULL );
|
|
data = NULL;
|
|
|
|
if (file_size > 0) {
|
|
data = (char*) malloc( file_size + 1 );
|
|
if (data == NULL) {
|
|
D("load_file: could not allocate %ld bytes", file_size );
|
|
file_size = 0;
|
|
} else {
|
|
DWORD out_bytes;
|
|
|
|
if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
|
|
out_bytes != file_size )
|
|
{
|
|
D("load_file: could not read %ld bytes from '%s'", file_size, fn);
|
|
free(data);
|
|
data = NULL;
|
|
file_size = 0;
|
|
}
|
|
}
|
|
}
|
|
CloseHandle( file );
|
|
|
|
*_sz = (unsigned) file_size;
|
|
return data;
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** common file descriptor handling *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
/* used to emulate unix-domain socket pairs */
|
|
typedef struct SocketPairRec_* SocketPair;
|
|
|
|
typedef struct FHRec_
|
|
{
|
|
FHClass clazz;
|
|
int used;
|
|
int eof;
|
|
union {
|
|
HANDLE handle;
|
|
SOCKET socket;
|
|
SocketPair pair;
|
|
} u;
|
|
|
|
HANDLE event;
|
|
int mask;
|
|
|
|
char name[32];
|
|
|
|
} FHRec;
|
|
|
|
#define fh_handle u.handle
|
|
#define fh_socket u.socket
|
|
#define fh_pair u.pair
|
|
|
|
#define WIN32_FH_BASE 100
|
|
|
|
#define WIN32_MAX_FHS 128
|
|
|
|
static adb_mutex_t _win32_lock;
|
|
static FHRec _win32_fhs[ WIN32_MAX_FHS ];
|
|
static int _win32_fh_next; // where to start search for free FHRec
|
|
|
|
static FH
|
|
_fh_from_int( int fd, const char* func )
|
|
{
|
|
FH f;
|
|
|
|
fd -= WIN32_FH_BASE;
|
|
|
|
if (fd < 0 || fd >= WIN32_MAX_FHS) {
|
|
D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
|
|
func );
|
|
errno = EBADF;
|
|
return NULL;
|
|
}
|
|
|
|
f = &_win32_fhs[fd];
|
|
|
|
if (f->used == 0) {
|
|
D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
|
|
func );
|
|
errno = EBADF;
|
|
return NULL;
|
|
}
|
|
|
|
return f;
|
|
}
|
|
|
|
|
|
static int
|
|
_fh_to_int( FH f )
|
|
{
|
|
if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
|
|
return (int)(f - _win32_fhs) + WIN32_FH_BASE;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static FH
|
|
_fh_alloc( FHClass clazz )
|
|
{
|
|
FH f = NULL;
|
|
|
|
adb_mutex_lock( &_win32_lock );
|
|
|
|
// Search entire array, starting from _win32_fh_next.
|
|
for (int nn = 0; nn < WIN32_MAX_FHS; nn++) {
|
|
// Keep incrementing _win32_fh_next to avoid giving out an index that
|
|
// was recently closed, to try to avoid use-after-free.
|
|
const int index = _win32_fh_next++;
|
|
// Handle wrap-around of _win32_fh_next.
|
|
if (_win32_fh_next == WIN32_MAX_FHS) {
|
|
_win32_fh_next = 0;
|
|
}
|
|
if (_win32_fhs[index].clazz == NULL) {
|
|
f = &_win32_fhs[index];
|
|
goto Exit;
|
|
}
|
|
}
|
|
D( "_fh_alloc: no more free file descriptors" );
|
|
errno = EMFILE; // Too many open files
|
|
Exit:
|
|
if (f) {
|
|
f->clazz = clazz;
|
|
f->used = 1;
|
|
f->eof = 0;
|
|
f->name[0] = '\0';
|
|
clazz->_fh_init(f);
|
|
}
|
|
adb_mutex_unlock( &_win32_lock );
|
|
return f;
|
|
}
|
|
|
|
|
|
static int
|
|
_fh_close( FH f )
|
|
{
|
|
// Use lock so that closing only happens once and so that _fh_alloc can't
|
|
// allocate a FH that we're in the middle of closing.
|
|
adb_mutex_lock(&_win32_lock);
|
|
if (f->used) {
|
|
f->clazz->_fh_close( f );
|
|
f->name[0] = '\0';
|
|
f->eof = 0;
|
|
f->used = 0;
|
|
f->clazz = NULL;
|
|
}
|
|
adb_mutex_unlock(&_win32_lock);
|
|
return 0;
|
|
}
|
|
|
|
// Deleter for unique_fh.
|
|
class fh_deleter {
|
|
public:
|
|
void operator()(struct FHRec_* fh) {
|
|
// We're called from a destructor and destructors should not overwrite
|
|
// errno because callers may do:
|
|
// errno = EBLAH;
|
|
// return -1; // calls destructor, which should not overwrite errno
|
|
const int saved_errno = errno;
|
|
_fh_close(fh);
|
|
errno = saved_errno;
|
|
}
|
|
};
|
|
|
|
// Like std::unique_ptr, but calls _fh_close() instead of operator delete().
|
|
typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** file-based descriptor handling *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
static void _fh_file_init( FH f ) {
|
|
f->fh_handle = INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
static int _fh_file_close( FH f ) {
|
|
CloseHandle( f->fh_handle );
|
|
f->fh_handle = INVALID_HANDLE_VALUE;
|
|
return 0;
|
|
}
|
|
|
|
static int _fh_file_read( FH f, void* buf, int len ) {
|
|
DWORD read_bytes;
|
|
|
|
if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
|
|
D( "adb_read: could not read %d bytes from %s", len, f->name );
|
|
errno = EIO;
|
|
return -1;
|
|
} else if (read_bytes < (DWORD)len) {
|
|
f->eof = 1;
|
|
}
|
|
return (int)read_bytes;
|
|
}
|
|
|
|
static int _fh_file_write( FH f, const void* buf, int len ) {
|
|
DWORD wrote_bytes;
|
|
|
|
if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
|
|
D( "adb_file_write: could not write %d bytes from %s", len, f->name );
|
|
errno = EIO;
|
|
return -1;
|
|
} else if (wrote_bytes < (DWORD)len) {
|
|
f->eof = 1;
|
|
}
|
|
return (int)wrote_bytes;
|
|
}
|
|
|
|
static int _fh_file_lseek( FH f, int pos, int origin ) {
|
|
DWORD method;
|
|
DWORD result;
|
|
|
|
switch (origin)
|
|
{
|
|
case SEEK_SET: method = FILE_BEGIN; break;
|
|
case SEEK_CUR: method = FILE_CURRENT; break;
|
|
case SEEK_END: method = FILE_END; break;
|
|
default:
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
result = SetFilePointer( f->fh_handle, pos, NULL, method );
|
|
if (result == INVALID_SET_FILE_POINTER) {
|
|
errno = EIO;
|
|
return -1;
|
|
} else {
|
|
f->eof = 0;
|
|
}
|
|
return (int)result;
|
|
}
|
|
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** file-based descriptor handling *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
int adb_open(const char* path, int options)
|
|
{
|
|
FH f;
|
|
|
|
DWORD desiredAccess = 0;
|
|
DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
|
|
|
|
switch (options) {
|
|
case O_RDONLY:
|
|
desiredAccess = GENERIC_READ;
|
|
break;
|
|
case O_WRONLY:
|
|
desiredAccess = GENERIC_WRITE;
|
|
break;
|
|
case O_RDWR:
|
|
desiredAccess = GENERIC_READ | GENERIC_WRITE;
|
|
break;
|
|
default:
|
|
D("adb_open: invalid options (0x%0x)", options);
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
f = _fh_alloc( &_fh_file_class );
|
|
if ( !f ) {
|
|
return -1;
|
|
}
|
|
|
|
f->fh_handle = CreateFileW( widen(path).c_str(), desiredAccess, shareMode,
|
|
NULL, OPEN_EXISTING, 0, NULL );
|
|
|
|
if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
|
|
const DWORD err = GetLastError();
|
|
_fh_close(f);
|
|
D( "adb_open: could not open '%s': ", path );
|
|
switch (err) {
|
|
case ERROR_FILE_NOT_FOUND:
|
|
D( "file not found" );
|
|
errno = ENOENT;
|
|
return -1;
|
|
|
|
case ERROR_PATH_NOT_FOUND:
|
|
D( "path not found" );
|
|
errno = ENOTDIR;
|
|
return -1;
|
|
|
|
default:
|
|
D( "unknown error: %s",
|
|
SystemErrorCodeToString( err ).c_str() );
|
|
errno = ENOENT;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
|
|
D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) );
|
|
return _fh_to_int(f);
|
|
}
|
|
|
|
/* ignore mode on Win32 */
|
|
int adb_creat(const char* path, int mode)
|
|
{
|
|
FH f;
|
|
|
|
f = _fh_alloc( &_fh_file_class );
|
|
if ( !f ) {
|
|
return -1;
|
|
}
|
|
|
|
f->fh_handle = CreateFileW( widen(path).c_str(), GENERIC_WRITE,
|
|
FILE_SHARE_READ | FILE_SHARE_WRITE,
|
|
NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
|
|
NULL );
|
|
|
|
if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
|
|
const DWORD err = GetLastError();
|
|
_fh_close(f);
|
|
D( "adb_creat: could not open '%s': ", path );
|
|
switch (err) {
|
|
case ERROR_FILE_NOT_FOUND:
|
|
D( "file not found" );
|
|
errno = ENOENT;
|
|
return -1;
|
|
|
|
case ERROR_PATH_NOT_FOUND:
|
|
D( "path not found" );
|
|
errno = ENOTDIR;
|
|
return -1;
|
|
|
|
default:
|
|
D( "unknown error: %s",
|
|
SystemErrorCodeToString( err ).c_str() );
|
|
errno = ENOENT;
|
|
return -1;
|
|
}
|
|
}
|
|
snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
|
|
D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) );
|
|
return _fh_to_int(f);
|
|
}
|
|
|
|
|
|
int adb_read(int fd, void* buf, int len)
|
|
{
|
|
FH f = _fh_from_int(fd, __func__);
|
|
|
|
if (f == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
return f->clazz->_fh_read( f, buf, len );
|
|
}
|
|
|
|
|
|
int adb_write(int fd, const void* buf, int len)
|
|
{
|
|
FH f = _fh_from_int(fd, __func__);
|
|
|
|
if (f == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
return f->clazz->_fh_write(f, buf, len);
|
|
}
|
|
|
|
|
|
int adb_lseek(int fd, int pos, int where)
|
|
{
|
|
FH f = _fh_from_int(fd, __func__);
|
|
|
|
if (!f) {
|
|
return -1;
|
|
}
|
|
|
|
return f->clazz->_fh_lseek(f, pos, where);
|
|
}
|
|
|
|
|
|
int adb_close(int fd)
|
|
{
|
|
FH f = _fh_from_int(fd, __func__);
|
|
|
|
if (!f) {
|
|
return -1;
|
|
}
|
|
|
|
D( "adb_close: %s", f->name);
|
|
_fh_close(f);
|
|
return 0;
|
|
}
|
|
|
|
// Overrides strerror() to handle error codes not supported by the Windows C
|
|
// Runtime (MSVCRT.DLL).
|
|
char* adb_strerror(int err) {
|
|
// sysdeps.h defines strerror to adb_strerror, but in this function, we
|
|
// want to call the real C Runtime strerror().
|
|
#pragma push_macro("strerror")
|
|
#undef strerror
|
|
const int saved_err = errno; // Save because we overwrite it later.
|
|
|
|
// Lookup the string for an unknown error.
|
|
char* errmsg = strerror(-1);
|
|
const std::string unknown_error = (errmsg == nullptr) ? "" : errmsg;
|
|
|
|
// Lookup the string for this error to see if the C Runtime has it.
|
|
errmsg = strerror(err);
|
|
if (errmsg != nullptr && unknown_error != errmsg) {
|
|
// The CRT returned an error message and it is different than the error
|
|
// message for an unknown error, so it is probably valid, so use it.
|
|
} else {
|
|
// Check if we have a string for this error code.
|
|
const char* custom_msg = nullptr;
|
|
switch (err) {
|
|
#pragma push_macro("ERR")
|
|
#undef ERR
|
|
#define ERR(errnum, desc) case errnum: custom_msg = desc; break
|
|
// These error strings are from AOSP bionic/libc/include/sys/_errdefs.h.
|
|
// Note that these cannot be longer than 94 characters because we
|
|
// pass this to _strerror() which has that requirement.
|
|
ERR(ECONNRESET, "Connection reset by peer");
|
|
ERR(EHOSTUNREACH, "No route to host");
|
|
ERR(ENETDOWN, "Network is down");
|
|
ERR(ENETRESET, "Network dropped connection because of reset");
|
|
ERR(ENOBUFS, "No buffer space available");
|
|
ERR(ENOPROTOOPT, "Protocol not available");
|
|
ERR(ENOTCONN, "Transport endpoint is not connected");
|
|
ERR(ENOTSOCK, "Socket operation on non-socket");
|
|
ERR(EOPNOTSUPP, "Operation not supported on transport endpoint");
|
|
#pragma pop_macro("ERR")
|
|
}
|
|
|
|
if (custom_msg != nullptr) {
|
|
// Use _strerror() to write our string into the writable per-thread
|
|
// buffer used by strerror()/_strerror(). _strerror() appends the
|
|
// msg for the current value of errno, so set errno to a consistent
|
|
// value for every call so that our code-path is always the same.
|
|
errno = 0;
|
|
errmsg = _strerror(custom_msg);
|
|
const size_t custom_msg_len = strlen(custom_msg);
|
|
// Just in case _strerror() returned a read-only string, check if
|
|
// the returned string starts with our custom message because that
|
|
// implies that the string is not read-only.
|
|
if ((errmsg != nullptr) &&
|
|
!strncmp(custom_msg, errmsg, custom_msg_len)) {
|
|
// _strerror() puts other text after our custom message, so
|
|
// remove that by terminating after our message.
|
|
errmsg[custom_msg_len] = '\0';
|
|
} else {
|
|
// For some reason nullptr was returned or a pointer to a
|
|
// read-only string was returned, so fallback to whatever
|
|
// strerror() can muster (probably "Unknown error" or some
|
|
// generic CRT error string).
|
|
errmsg = strerror(err);
|
|
}
|
|
} else {
|
|
// We don't have a custom message, so use whatever strerror(err)
|
|
// returned earlier.
|
|
}
|
|
}
|
|
|
|
errno = saved_err; // restore
|
|
|
|
return errmsg;
|
|
#pragma pop_macro("strerror")
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** socket-based file descriptors *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
#undef setsockopt
|
|
|
|
static void _socket_set_errno( const DWORD err ) {
|
|
// Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
|
|
// lot of POSIX and socket error codes, some of the resulting error codes
|
|
// are mapped to strings by adb_strerror() above.
|
|
switch ( err ) {
|
|
case 0: errno = 0; break;
|
|
// Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
|
|
// case WSAEINTR: errno = EINTR; break;
|
|
case WSAEFAULT: errno = EFAULT; break;
|
|
case WSAEINVAL: errno = EINVAL; break;
|
|
case WSAEMFILE: errno = EMFILE; break;
|
|
// Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
|
|
// non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
|
|
// callers check specifically for EAGAIN.
|
|
case WSAEWOULDBLOCK: errno = EAGAIN; break;
|
|
case WSAENOTSOCK: errno = ENOTSOCK; break;
|
|
case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
|
|
case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break;
|
|
case WSAENETDOWN: errno = ENETDOWN; break;
|
|
case WSAENETRESET: errno = ENETRESET; break;
|
|
// Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
|
|
// to use EPIPE for these situations and there are some callers that look
|
|
// for EPIPE.
|
|
case WSAECONNABORTED: errno = EPIPE; break;
|
|
case WSAECONNRESET: errno = ECONNRESET; break;
|
|
case WSAENOBUFS: errno = ENOBUFS; break;
|
|
case WSAENOTCONN: errno = ENOTCONN; break;
|
|
// Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
|
|
// SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
|
|
// considerations: Reportedly send() can return zero on timeout, and POSIX
|
|
// code may expect EAGAIN instead of ETIMEDOUT on timeout.
|
|
// case WSAETIMEDOUT: errno = ETIMEDOUT; break;
|
|
case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
|
|
default:
|
|
errno = EINVAL;
|
|
D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
|
|
err, errno );
|
|
}
|
|
}
|
|
|
|
static void _fh_socket_init( FH f ) {
|
|
f->fh_socket = INVALID_SOCKET;
|
|
f->event = WSACreateEvent();
|
|
if (f->event == WSA_INVALID_EVENT) {
|
|
D("WSACreateEvent failed: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
|
|
// _event_socket_start assumes that this field is INVALID_HANDLE_VALUE
|
|
// on failure, instead of NULL which is what Windows really returns on
|
|
// error. It might be better to change all the other code to look for
|
|
// NULL, but that is a much riskier change.
|
|
f->event = INVALID_HANDLE_VALUE;
|
|
}
|
|
f->mask = 0;
|
|
}
|
|
|
|
static int _fh_socket_close( FH f ) {
|
|
if (f->fh_socket != INVALID_SOCKET) {
|
|
/* gently tell any peer that we're closing the socket */
|
|
if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
|
|
// If the socket is not connected, this returns an error. We want to
|
|
// minimize logging spam, so don't log these errors for now.
|
|
#if 0
|
|
D("socket shutdown failed: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
#endif
|
|
}
|
|
if (closesocket(f->fh_socket) == SOCKET_ERROR) {
|
|
D("closesocket failed: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
}
|
|
f->fh_socket = INVALID_SOCKET;
|
|
}
|
|
if (f->event != NULL) {
|
|
if (!CloseHandle(f->event)) {
|
|
D("CloseHandle failed: %s",
|
|
SystemErrorCodeToString(GetLastError()).c_str());
|
|
}
|
|
f->event = NULL;
|
|
}
|
|
f->mask = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int _fh_socket_lseek( FH f, int pos, int origin ) {
|
|
errno = EPIPE;
|
|
return -1;
|
|
}
|
|
|
|
static int _fh_socket_read(FH f, void* buf, int len) {
|
|
int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
|
|
if (result == SOCKET_ERROR) {
|
|
const DWORD err = WSAGetLastError();
|
|
// WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
|
|
// that to reduce spam and confusion.
|
|
if (err != WSAEWOULDBLOCK) {
|
|
D("recv fd %d failed: %s", _fh_to_int(f),
|
|
SystemErrorCodeToString(err).c_str());
|
|
}
|
|
_socket_set_errno(err);
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int _fh_socket_write(FH f, const void* buf, int len) {
|
|
int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
|
|
if (result == SOCKET_ERROR) {
|
|
const DWORD err = WSAGetLastError();
|
|
// WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
|
|
// that to reduce spam and confusion.
|
|
if (err != WSAEWOULDBLOCK) {
|
|
D("send fd %d failed: %s", _fh_to_int(f),
|
|
SystemErrorCodeToString(err).c_str());
|
|
}
|
|
_socket_set_errno(err);
|
|
result = -1;
|
|
} else {
|
|
// According to https://code.google.com/p/chromium/issues/detail?id=27870
|
|
// Winsock Layered Service Providers may cause this.
|
|
CHECK_LE(result, len) << "Tried to write " << len << " bytes to "
|
|
<< f->name << ", but " << result
|
|
<< " bytes reportedly written";
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** replacement for libs/cutils/socket_xxxx.c *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
#include <winsock2.h>
|
|
|
|
static int _winsock_init;
|
|
|
|
static void
|
|
_init_winsock( void )
|
|
{
|
|
// TODO: Multiple threads calling this may potentially cause multiple calls
|
|
// to WSAStartup() which offers no real benefit.
|
|
if (!_winsock_init) {
|
|
WSADATA wsaData;
|
|
int rc = WSAStartup( MAKEWORD(2,2), &wsaData);
|
|
if (rc != 0) {
|
|
fatal( "adb: could not initialize Winsock: %s",
|
|
SystemErrorCodeToString( rc ).c_str());
|
|
}
|
|
_winsock_init = 1;
|
|
|
|
// Note that we do not call atexit() to register WSACleanup to be called
|
|
// at normal process termination because:
|
|
// 1) When exit() is called, there are still threads actively using
|
|
// Winsock because we don't cleanly shutdown all threads, so it
|
|
// doesn't make sense to call WSACleanup() and may cause problems
|
|
// with those threads.
|
|
// 2) A deadlock can occur when exit() holds a C Runtime lock, then it
|
|
// calls WSACleanup() which tries to unload a DLL, which tries to
|
|
// grab the LoaderLock. This conflicts with the device_poll_thread
|
|
// which holds the LoaderLock because AdbWinApi.dll calls
|
|
// setupapi.dll which tries to load wintrust.dll which tries to load
|
|
// crypt32.dll which calls atexit() which tries to acquire the C
|
|
// Runtime lock that the other thread holds.
|
|
}
|
|
}
|
|
|
|
// Map a socket type to an explicit socket protocol instead of using the socket
|
|
// protocol of 0. Explicit socket protocols are used by most apps and we should
|
|
// do the same to reduce the chance of exercising uncommon code-paths that might
|
|
// have problems or that might load different Winsock service providers that
|
|
// have problems.
|
|
static int GetSocketProtocolFromSocketType(int type) {
|
|
switch (type) {
|
|
case SOCK_STREAM:
|
|
return IPPROTO_TCP;
|
|
case SOCK_DGRAM:
|
|
return IPPROTO_UDP;
|
|
default:
|
|
LOG(FATAL) << "Unknown socket type: " << type;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int network_loopback_client(int port, int type, std::string* error) {
|
|
struct sockaddr_in addr;
|
|
SOCKET s;
|
|
|
|
unique_fh f(_fh_alloc(&_fh_socket_class));
|
|
if (!f) {
|
|
*error = strerror(errno);
|
|
return -1;
|
|
}
|
|
|
|
if (!_winsock_init)
|
|
_init_winsock();
|
|
|
|
memset(&addr, 0, sizeof(addr));
|
|
addr.sin_family = AF_INET;
|
|
addr.sin_port = htons(port);
|
|
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
|
|
s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
|
|
if(s == INVALID_SOCKET) {
|
|
*error = android::base::StringPrintf("cannot create socket: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
D("%s", error->c_str());
|
|
return -1;
|
|
}
|
|
f->fh_socket = s;
|
|
|
|
if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) {
|
|
// Save err just in case inet_ntoa() or ntohs() changes the last error.
|
|
const DWORD err = WSAGetLastError();
|
|
*error = android::base::StringPrintf("cannot connect to %s:%u: %s",
|
|
inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
|
|
SystemErrorCodeToString(err).c_str());
|
|
D("could not connect to %s:%d: %s",
|
|
type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
|
|
return -1;
|
|
}
|
|
|
|
const int fd = _fh_to_int(f.get());
|
|
snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd,
|
|
type != SOCK_STREAM ? "udp:" : "", port );
|
|
D( "port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp",
|
|
fd );
|
|
f.release();
|
|
return fd;
|
|
}
|
|
|
|
#define LISTEN_BACKLOG 4
|
|
|
|
// interface_address is INADDR_LOOPBACK or INADDR_ANY.
|
|
static int _network_server(int port, int type, u_long interface_address,
|
|
std::string* error) {
|
|
struct sockaddr_in addr;
|
|
SOCKET s;
|
|
int n;
|
|
|
|
unique_fh f(_fh_alloc(&_fh_socket_class));
|
|
if (!f) {
|
|
*error = strerror(errno);
|
|
return -1;
|
|
}
|
|
|
|
if (!_winsock_init)
|
|
_init_winsock();
|
|
|
|
memset(&addr, 0, sizeof(addr));
|
|
addr.sin_family = AF_INET;
|
|
addr.sin_port = htons(port);
|
|
addr.sin_addr.s_addr = htonl(interface_address);
|
|
|
|
// TODO: Consider using dual-stack socket that can simultaneously listen on
|
|
// IPv4 and IPv6.
|
|
s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
|
|
if (s == INVALID_SOCKET) {
|
|
*error = android::base::StringPrintf("cannot create socket: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
D("%s", error->c_str());
|
|
return -1;
|
|
}
|
|
|
|
f->fh_socket = s;
|
|
|
|
// Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
|
|
// same port, so instead use SO_EXCLUSIVEADDRUSE.
|
|
n = 1;
|
|
if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n,
|
|
sizeof(n)) == SOCKET_ERROR) {
|
|
*error = android::base::StringPrintf(
|
|
"cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
D("%s", error->c_str());
|
|
return -1;
|
|
}
|
|
|
|
if (bind(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) {
|
|
// Save err just in case inet_ntoa() or ntohs() changes the last error.
|
|
const DWORD err = WSAGetLastError();
|
|
*error = android::base::StringPrintf("cannot bind to %s:%u: %s",
|
|
inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
|
|
SystemErrorCodeToString(err).c_str());
|
|
D("could not bind to %s:%d: %s",
|
|
type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
|
|
return -1;
|
|
}
|
|
if (type == SOCK_STREAM) {
|
|
if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) {
|
|
*error = android::base::StringPrintf("cannot listen on socket: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
D("could not listen on %s:%d: %s",
|
|
type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
|
|
return -1;
|
|
}
|
|
}
|
|
const int fd = _fh_to_int(f.get());
|
|
snprintf( f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
|
|
interface_address == INADDR_LOOPBACK ? "lo" : "any",
|
|
type != SOCK_STREAM ? "udp:" : "", port );
|
|
D( "port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp",
|
|
fd );
|
|
f.release();
|
|
return fd;
|
|
}
|
|
|
|
int network_loopback_server(int port, int type, std::string* error) {
|
|
return _network_server(port, type, INADDR_LOOPBACK, error);
|
|
}
|
|
|
|
int network_inaddr_any_server(int port, int type, std::string* error) {
|
|
return _network_server(port, type, INADDR_ANY, error);
|
|
}
|
|
|
|
int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
|
|
unique_fh f(_fh_alloc(&_fh_socket_class));
|
|
if (!f) {
|
|
*error = strerror(errno);
|
|
return -1;
|
|
}
|
|
|
|
if (!_winsock_init) _init_winsock();
|
|
|
|
struct addrinfo hints;
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = type;
|
|
hints.ai_protocol = GetSocketProtocolFromSocketType(type);
|
|
|
|
char port_str[16];
|
|
snprintf(port_str, sizeof(port_str), "%d", port);
|
|
|
|
struct addrinfo* addrinfo_ptr = nullptr;
|
|
|
|
#if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
|
|
// TODO: When the Android SDK tools increases the Windows system
|
|
// requirements >= WinXP SP2, switch to GetAddrInfoW(widen(host).c_str()).
|
|
#else
|
|
// Otherwise, keep using getaddrinfo(), or do runtime API detection
|
|
// with GetProcAddress("GetAddrInfoW").
|
|
#endif
|
|
if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
|
|
*error = android::base::StringPrintf(
|
|
"cannot resolve host '%s' and port %s: %s", host.c_str(),
|
|
port_str, SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
D("%s", error->c_str());
|
|
return -1;
|
|
}
|
|
std::unique_ptr<struct addrinfo, decltype(freeaddrinfo)*>
|
|
addrinfo(addrinfo_ptr, freeaddrinfo);
|
|
addrinfo_ptr = nullptr;
|
|
|
|
// TODO: Try all the addresses if there's more than one? This just uses
|
|
// the first. Or, could call WSAConnectByName() (Windows Vista and newer)
|
|
// which tries all addresses, takes a timeout and more.
|
|
SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype,
|
|
addrinfo->ai_protocol);
|
|
if(s == INVALID_SOCKET) {
|
|
*error = android::base::StringPrintf("cannot create socket: %s",
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
D("%s", error->c_str());
|
|
return -1;
|
|
}
|
|
f->fh_socket = s;
|
|
|
|
// TODO: Implement timeouts for Windows. Seems like the default in theory
|
|
// (according to http://serverfault.com/a/671453) and in practice is 21 sec.
|
|
if(connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
|
|
// TODO: Use WSAAddressToString or inet_ntop on address.
|
|
*error = android::base::StringPrintf("cannot connect to %s:%s: %s",
|
|
host.c_str(), port_str,
|
|
SystemErrorCodeToString(WSAGetLastError()).c_str());
|
|
D("could not connect to %s:%s:%s: %s",
|
|
type != SOCK_STREAM ? "udp" : "tcp", host.c_str(), port_str,
|
|
error->c_str());
|
|
return -1;
|
|
}
|
|
|
|
const int fd = _fh_to_int(f.get());
|
|
snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", fd,
|
|
type != SOCK_STREAM ? "udp:" : "", port );
|
|
D( "host '%s' port %d type %s => fd %d", host.c_str(), port,
|
|
type != SOCK_STREAM ? "udp" : "tcp", fd );
|
|
f.release();
|
|
return fd;
|
|
}
|
|
|
|
#undef accept
|
|
int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen)
|
|
{
|
|
FH serverfh = _fh_from_int(serverfd, __func__);
|
|
|
|
if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
|
|
D("adb_socket_accept: invalid fd %d", serverfd);
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
unique_fh fh(_fh_alloc( &_fh_socket_class ));
|
|
if (!fh) {
|
|
PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
|
|
"descriptor";
|
|
return -1;
|
|
}
|
|
|
|
fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
|
|
if (fh->fh_socket == INVALID_SOCKET) {
|
|
const DWORD err = WSAGetLastError();
|
|
LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
|
|
" failed: " + SystemErrorCodeToString(err);
|
|
_socket_set_errno( err );
|
|
return -1;
|
|
}
|
|
|
|
const int fd = _fh_to_int(fh.get());
|
|
snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
|
|
D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd );
|
|
fh.release();
|
|
return fd;
|
|
}
|
|
|
|
|
|
int adb_setsockopt( int fd, int level, int optname, const void* optval, socklen_t optlen )
|
|
{
|
|
FH fh = _fh_from_int(fd, __func__);
|
|
|
|
if ( !fh || fh->clazz != &_fh_socket_class ) {
|
|
D("adb_setsockopt: invalid fd %d", fd);
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
// TODO: Once we can assume Windows Vista or later, if the caller is trying
|
|
// to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
|
|
// auto-tuning.
|
|
|
|
int result = setsockopt( fh->fh_socket, level, optname,
|
|
reinterpret_cast<const char*>(optval), optlen );
|
|
if ( result == SOCKET_ERROR ) {
|
|
const DWORD err = WSAGetLastError();
|
|
D( "adb_setsockopt: setsockopt on fd %d level %d optname %d "
|
|
"failed: %s\n", fd, level, optname,
|
|
SystemErrorCodeToString(err).c_str() );
|
|
_socket_set_errno( err );
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
int adb_shutdown(int fd)
|
|
{
|
|
FH f = _fh_from_int(fd, __func__);
|
|
|
|
if (!f || f->clazz != &_fh_socket_class) {
|
|
D("adb_shutdown: invalid fd %d", fd);
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
D( "adb_shutdown: %s", f->name);
|
|
if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
|
|
const DWORD err = WSAGetLastError();
|
|
D("socket shutdown fd %d failed: %s", fd,
|
|
SystemErrorCodeToString(err).c_str());
|
|
_socket_set_errno(err);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** emulated socketpairs *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
/* we implement socketpairs directly in use space for the following reasons:
|
|
* - it avoids copying data from/to the Nt kernel
|
|
* - it allows us to implement fdevent hooks easily and cheaply, something
|
|
* that is not possible with standard Win32 pipes !!
|
|
*
|
|
* basically, we use two circular buffers, each one corresponding to a given
|
|
* direction.
|
|
*
|
|
* each buffer is implemented as two regions:
|
|
*
|
|
* region A which is (a_start,a_end)
|
|
* region B which is (0, b_end) with b_end <= a_start
|
|
*
|
|
* an empty buffer has: a_start = a_end = b_end = 0
|
|
*
|
|
* a_start is the pointer where we start reading data
|
|
* a_end is the pointer where we start writing data, unless it is BUFFER_SIZE,
|
|
* then you start writing at b_end
|
|
*
|
|
* the buffer is full when b_end == a_start && a_end == BUFFER_SIZE
|
|
*
|
|
* there is room when b_end < a_start || a_end < BUFER_SIZE
|
|
*
|
|
* when reading, a_start is incremented, it a_start meets a_end, then
|
|
* we do: a_start = 0, a_end = b_end, b_end = 0, and keep going on..
|
|
*/
|
|
|
|
#define BIP_BUFFER_SIZE 4096
|
|
|
|
#if 0
|
|
#include <stdio.h>
|
|
# define BIPD(x) D x
|
|
# define BIPDUMP bip_dump_hex
|
|
|
|
static void bip_dump_hex( const unsigned char* ptr, size_t len )
|
|
{
|
|
int nn, len2 = len;
|
|
|
|
if (len2 > 8) len2 = 8;
|
|
|
|
for (nn = 0; nn < len2; nn++)
|
|
printf("%02x", ptr[nn]);
|
|
printf(" ");
|
|
|
|
for (nn = 0; nn < len2; nn++) {
|
|
int c = ptr[nn];
|
|
if (c < 32 || c > 127)
|
|
c = '.';
|
|
printf("%c", c);
|
|
}
|
|
printf("\n");
|
|
fflush(stdout);
|
|
}
|
|
|
|
#else
|
|
# define BIPD(x) do {} while (0)
|
|
# define BIPDUMP(p,l) BIPD(p)
|
|
#endif
|
|
|
|
typedef struct BipBufferRec_
|
|
{
|
|
int a_start;
|
|
int a_end;
|
|
int b_end;
|
|
int fdin;
|
|
int fdout;
|
|
int closed;
|
|
int can_write; /* boolean */
|
|
HANDLE evt_write; /* event signaled when one can write to a buffer */
|
|
int can_read; /* boolean */
|
|
HANDLE evt_read; /* event signaled when one can read from a buffer */
|
|
CRITICAL_SECTION lock;
|
|
unsigned char buff[ BIP_BUFFER_SIZE ];
|
|
|
|
} BipBufferRec, *BipBuffer;
|
|
|
|
static void
|
|
bip_buffer_init( BipBuffer buffer )
|
|
{
|
|
D( "bit_buffer_init %p", buffer );
|
|
buffer->a_start = 0;
|
|
buffer->a_end = 0;
|
|
buffer->b_end = 0;
|
|
buffer->can_write = 1;
|
|
buffer->can_read = 0;
|
|
buffer->fdin = 0;
|
|
buffer->fdout = 0;
|
|
buffer->closed = 0;
|
|
buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL );
|
|
buffer->evt_read = CreateEvent( NULL, TRUE, FALSE, NULL );
|
|
InitializeCriticalSection( &buffer->lock );
|
|
}
|
|
|
|
static void
|
|
bip_buffer_close( BipBuffer bip )
|
|
{
|
|
bip->closed = 1;
|
|
|
|
if (!bip->can_read) {
|
|
SetEvent( bip->evt_read );
|
|
}
|
|
if (!bip->can_write) {
|
|
SetEvent( bip->evt_write );
|
|
}
|
|
}
|
|
|
|
static void
|
|
bip_buffer_done( BipBuffer bip )
|
|
{
|
|
BIPD(( "bip_buffer_done: %d->%d", bip->fdin, bip->fdout ));
|
|
CloseHandle( bip->evt_read );
|
|
CloseHandle( bip->evt_write );
|
|
DeleteCriticalSection( &bip->lock );
|
|
}
|
|
|
|
static int
|
|
bip_buffer_write( BipBuffer bip, const void* src, int len )
|
|
{
|
|
int avail, count = 0;
|
|
|
|
if (len <= 0)
|
|
return 0;
|
|
|
|
BIPD(( "bip_buffer_write: enter %d->%d len %d", bip->fdin, bip->fdout, len ));
|
|
BIPDUMP( src, len );
|
|
|
|
if (bip->closed) {
|
|
errno = EPIPE;
|
|
return -1;
|
|
}
|
|
|
|
EnterCriticalSection( &bip->lock );
|
|
|
|
while (!bip->can_write) {
|
|
int ret;
|
|
LeaveCriticalSection( &bip->lock );
|
|
|
|
if (bip->closed) {
|
|
errno = EPIPE;
|
|
return -1;
|
|
}
|
|
/* spinlocking here is probably unfair, but let's live with it */
|
|
ret = WaitForSingleObject( bip->evt_write, INFINITE );
|
|
if (ret != WAIT_OBJECT_0) { /* buffer probably closed */
|
|
D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld", bip->fdin, bip->fdout, ret, GetLastError() );
|
|
return 0;
|
|
}
|
|
if (bip->closed) {
|
|
errno = EPIPE;
|
|
return -1;
|
|
}
|
|
EnterCriticalSection( &bip->lock );
|
|
}
|
|
|
|
BIPD(( "bip_buffer_write: exec %d->%d len %d", bip->fdin, bip->fdout, len ));
|
|
|
|
avail = BIP_BUFFER_SIZE - bip->a_end;
|
|
if (avail > 0)
|
|
{
|
|
/* we can append to region A */
|
|
if (avail > len)
|
|
avail = len;
|
|
|
|
memcpy( bip->buff + bip->a_end, src, avail );
|
|
src = (const char *)src + avail;
|
|
count += avail;
|
|
len -= avail;
|
|
|
|
bip->a_end += avail;
|
|
if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) {
|
|
bip->can_write = 0;
|
|
ResetEvent( bip->evt_write );
|
|
goto Exit;
|
|
}
|
|
}
|
|
|
|
if (len == 0)
|
|
goto Exit;
|
|
|
|
avail = bip->a_start - bip->b_end;
|
|
assert( avail > 0 ); /* since can_write is TRUE */
|
|
|
|
if (avail > len)
|
|
avail = len;
|
|
|
|
memcpy( bip->buff + bip->b_end, src, avail );
|
|
count += avail;
|
|
bip->b_end += avail;
|
|
|
|
if (bip->b_end == bip->a_start) {
|
|
bip->can_write = 0;
|
|
ResetEvent( bip->evt_write );
|
|
}
|
|
|
|
Exit:
|
|
assert( count > 0 );
|
|
|
|
if ( !bip->can_read ) {
|
|
bip->can_read = 1;
|
|
SetEvent( bip->evt_read );
|
|
}
|
|
|
|
BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d",
|
|
bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
|
|
LeaveCriticalSection( &bip->lock );
|
|
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
bip_buffer_read( BipBuffer bip, void* dst, int len )
|
|
{
|
|
int avail, count = 0;
|
|
|
|
if (len <= 0)
|
|
return 0;
|
|
|
|
BIPD(( "bip_buffer_read: enter %d->%d len %d", bip->fdin, bip->fdout, len ));
|
|
|
|
EnterCriticalSection( &bip->lock );
|
|
while ( !bip->can_read )
|
|
{
|
|
#if 0
|
|
LeaveCriticalSection( &bip->lock );
|
|
errno = EAGAIN;
|
|
return -1;
|
|
#else
|
|
int ret;
|
|
LeaveCriticalSection( &bip->lock );
|
|
|
|
if (bip->closed) {
|
|
errno = EPIPE;
|
|
return -1;
|
|
}
|
|
|
|
ret = WaitForSingleObject( bip->evt_read, INFINITE );
|
|
if (ret != WAIT_OBJECT_0) { /* probably closed buffer */
|
|
D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld", bip->fdin, bip->fdout, ret, GetLastError());
|
|
return 0;
|
|
}
|
|
if (bip->closed) {
|
|
errno = EPIPE;
|
|
return -1;
|
|
}
|
|
EnterCriticalSection( &bip->lock );
|
|
#endif
|
|
}
|
|
|
|
BIPD(( "bip_buffer_read: exec %d->%d len %d", bip->fdin, bip->fdout, len ));
|
|
|
|
avail = bip->a_end - bip->a_start;
|
|
assert( avail > 0 ); /* since can_read is TRUE */
|
|
|
|
if (avail > len)
|
|
avail = len;
|
|
|
|
memcpy( dst, bip->buff + bip->a_start, avail );
|
|
dst = (char *)dst + avail;
|
|
count += avail;
|
|
len -= avail;
|
|
|
|
bip->a_start += avail;
|
|
if (bip->a_start < bip->a_end)
|
|
goto Exit;
|
|
|
|
bip->a_start = 0;
|
|
bip->a_end = bip->b_end;
|
|
bip->b_end = 0;
|
|
|
|
avail = bip->a_end;
|
|
if (avail > 0) {
|
|
if (avail > len)
|
|
avail = len;
|
|
memcpy( dst, bip->buff, avail );
|
|
count += avail;
|
|
bip->a_start += avail;
|
|
|
|
if ( bip->a_start < bip->a_end )
|
|
goto Exit;
|
|
|
|
bip->a_start = bip->a_end = 0;
|
|
}
|
|
|
|
bip->can_read = 0;
|
|
ResetEvent( bip->evt_read );
|
|
|
|
Exit:
|
|
assert( count > 0 );
|
|
|
|
if (!bip->can_write ) {
|
|
bip->can_write = 1;
|
|
SetEvent( bip->evt_write );
|
|
}
|
|
|
|
BIPDUMP( (const unsigned char*)dst - count, count );
|
|
BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d",
|
|
bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
|
|
LeaveCriticalSection( &bip->lock );
|
|
|
|
return count;
|
|
}
|
|
|
|
typedef struct SocketPairRec_
|
|
{
|
|
BipBufferRec a2b_bip;
|
|
BipBufferRec b2a_bip;
|
|
FH a_fd;
|
|
int used;
|
|
|
|
} SocketPairRec;
|
|
|
|
void _fh_socketpair_init( FH f )
|
|
{
|
|
f->fh_pair = NULL;
|
|
}
|
|
|
|
static int
|
|
_fh_socketpair_close( FH f )
|
|
{
|
|
if ( f->fh_pair ) {
|
|
SocketPair pair = f->fh_pair;
|
|
|
|
if ( f == pair->a_fd ) {
|
|
pair->a_fd = NULL;
|
|
}
|
|
|
|
bip_buffer_close( &pair->b2a_bip );
|
|
bip_buffer_close( &pair->a2b_bip );
|
|
|
|
if ( --pair->used == 0 ) {
|
|
bip_buffer_done( &pair->b2a_bip );
|
|
bip_buffer_done( &pair->a2b_bip );
|
|
free( pair );
|
|
}
|
|
f->fh_pair = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_fh_socketpair_lseek( FH f, int pos, int origin )
|
|
{
|
|
errno = ESPIPE;
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
_fh_socketpair_read( FH f, void* buf, int len )
|
|
{
|
|
SocketPair pair = f->fh_pair;
|
|
BipBuffer bip;
|
|
|
|
if (!pair)
|
|
return -1;
|
|
|
|
if ( f == pair->a_fd )
|
|
bip = &pair->b2a_bip;
|
|
else
|
|
bip = &pair->a2b_bip;
|
|
|
|
return bip_buffer_read( bip, buf, len );
|
|
}
|
|
|
|
static int
|
|
_fh_socketpair_write( FH f, const void* buf, int len )
|
|
{
|
|
SocketPair pair = f->fh_pair;
|
|
BipBuffer bip;
|
|
|
|
if (!pair)
|
|
return -1;
|
|
|
|
if ( f == pair->a_fd )
|
|
bip = &pair->a2b_bip;
|
|
else
|
|
bip = &pair->b2a_bip;
|
|
|
|
return bip_buffer_write( bip, buf, len );
|
|
}
|
|
|
|
|
|
static void _fh_socketpair_hook( FH f, int event, EventHook hook ); /* forward */
|
|
|
|
static const FHClassRec _fh_socketpair_class =
|
|
{
|
|
_fh_socketpair_init,
|
|
_fh_socketpair_close,
|
|
_fh_socketpair_lseek,
|
|
_fh_socketpair_read,
|
|
_fh_socketpair_write,
|
|
_fh_socketpair_hook
|
|
};
|
|
|
|
|
|
int adb_socketpair(int sv[2]) {
|
|
SocketPair pair;
|
|
|
|
unique_fh fa(_fh_alloc(&_fh_socketpair_class));
|
|
if (!fa) {
|
|
return -1;
|
|
}
|
|
unique_fh fb(_fh_alloc(&_fh_socketpair_class));
|
|
if (!fb) {
|
|
return -1;
|
|
}
|
|
|
|
pair = reinterpret_cast<SocketPair>(malloc(sizeof(*pair)));
|
|
if (pair == NULL) {
|
|
D("adb_socketpair: not enough memory to allocate pipes" );
|
|
return -1;
|
|
}
|
|
|
|
bip_buffer_init( &pair->a2b_bip );
|
|
bip_buffer_init( &pair->b2a_bip );
|
|
|
|
fa->fh_pair = pair;
|
|
fb->fh_pair = pair;
|
|
pair->used = 2;
|
|
pair->a_fd = fa.get();
|
|
|
|
sv[0] = _fh_to_int(fa.get());
|
|
sv[1] = _fh_to_int(fb.get());
|
|
|
|
pair->a2b_bip.fdin = sv[0];
|
|
pair->a2b_bip.fdout = sv[1];
|
|
pair->b2a_bip.fdin = sv[1];
|
|
pair->b2a_bip.fdout = sv[0];
|
|
|
|
snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] );
|
|
snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] );
|
|
D( "adb_socketpair: returns (%d, %d)", sv[0], sv[1] );
|
|
fa.release();
|
|
fb.release();
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** fdevents emulation *****/
|
|
/***** *****/
|
|
/***** this is a very simple implementation, we rely on the fact *****/
|
|
/***** that ADB doesn't use FDE_ERROR. *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
#define FATAL(x...) fatal(__FUNCTION__, x)
|
|
|
|
#if DEBUG
|
|
static void dump_fde(fdevent *fde, const char *info)
|
|
{
|
|
fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd,
|
|
fde->state & FDE_READ ? 'R' : ' ',
|
|
fde->state & FDE_WRITE ? 'W' : ' ',
|
|
fde->state & FDE_ERROR ? 'E' : ' ',
|
|
info);
|
|
}
|
|
#else
|
|
#define dump_fde(fde, info) do { } while(0)
|
|
#endif
|
|
|
|
#define FDE_EVENTMASK 0x00ff
|
|
#define FDE_STATEMASK 0xff00
|
|
|
|
#define FDE_ACTIVE 0x0100
|
|
#define FDE_PENDING 0x0200
|
|
#define FDE_CREATED 0x0400
|
|
|
|
static void fdevent_plist_enqueue(fdevent *node);
|
|
static void fdevent_plist_remove(fdevent *node);
|
|
static fdevent *fdevent_plist_dequeue(void);
|
|
|
|
static fdevent list_pending = {
|
|
.next = &list_pending,
|
|
.prev = &list_pending,
|
|
};
|
|
|
|
static fdevent **fd_table = 0;
|
|
static int fd_table_max = 0;
|
|
|
|
typedef struct EventLooperRec_* EventLooper;
|
|
|
|
typedef struct EventHookRec_
|
|
{
|
|
EventHook next;
|
|
FH fh;
|
|
HANDLE h;
|
|
int wanted; /* wanted event flags */
|
|
int ready; /* ready event flags */
|
|
void* aux;
|
|
void (*prepare)( EventHook hook );
|
|
int (*start) ( EventHook hook );
|
|
void (*stop) ( EventHook hook );
|
|
int (*check) ( EventHook hook );
|
|
int (*peek) ( EventHook hook );
|
|
} EventHookRec;
|
|
|
|
static EventHook _free_hooks;
|
|
|
|
static EventHook
|
|
event_hook_alloc(FH fh) {
|
|
EventHook hook = _free_hooks;
|
|
if (hook != NULL) {
|
|
_free_hooks = hook->next;
|
|
} else {
|
|
hook = reinterpret_cast<EventHook>(malloc(sizeof(*hook)));
|
|
if (hook == NULL)
|
|
fatal( "could not allocate event hook\n" );
|
|
}
|
|
hook->next = NULL;
|
|
hook->fh = fh;
|
|
hook->wanted = 0;
|
|
hook->ready = 0;
|
|
hook->h = INVALID_HANDLE_VALUE;
|
|
hook->aux = NULL;
|
|
|
|
hook->prepare = NULL;
|
|
hook->start = NULL;
|
|
hook->stop = NULL;
|
|
hook->check = NULL;
|
|
hook->peek = NULL;
|
|
|
|
return hook;
|
|
}
|
|
|
|
static void
|
|
event_hook_free( EventHook hook )
|
|
{
|
|
hook->fh = NULL;
|
|
hook->wanted = 0;
|
|
hook->ready = 0;
|
|
hook->next = _free_hooks;
|
|
_free_hooks = hook;
|
|
}
|
|
|
|
|
|
static void
|
|
event_hook_signal( EventHook hook )
|
|
{
|
|
FH f = hook->fh;
|
|
int fd = _fh_to_int(f);
|
|
fdevent* fde = fd_table[ fd - WIN32_FH_BASE ];
|
|
|
|
if (fde != NULL && fde->fd == fd) {
|
|
if ((fde->state & FDE_PENDING) == 0) {
|
|
fde->state |= FDE_PENDING;
|
|
fdevent_plist_enqueue( fde );
|
|
}
|
|
fde->events |= hook->wanted;
|
|
}
|
|
}
|
|
|
|
|
|
#define MAX_LOOPER_HANDLES WIN32_MAX_FHS
|
|
|
|
typedef struct EventLooperRec_
|
|
{
|
|
EventHook hooks;
|
|
HANDLE htab[ MAX_LOOPER_HANDLES ];
|
|
int htab_count;
|
|
|
|
} EventLooperRec;
|
|
|
|
static EventHook*
|
|
event_looper_find_p( EventLooper looper, FH fh )
|
|
{
|
|
EventHook *pnode = &looper->hooks;
|
|
EventHook node = *pnode;
|
|
for (;;) {
|
|
if ( node == NULL || node->fh == fh )
|
|
break;
|
|
pnode = &node->next;
|
|
node = *pnode;
|
|
}
|
|
return pnode;
|
|
}
|
|
|
|
static void
|
|
event_looper_hook( EventLooper looper, int fd, int events )
|
|
{
|
|
FH f = _fh_from_int(fd, __func__);
|
|
EventHook *pnode;
|
|
EventHook node;
|
|
|
|
if (f == NULL) /* invalid arg */ {
|
|
D("event_looper_hook: invalid fd=%d", fd);
|
|
return;
|
|
}
|
|
|
|
pnode = event_looper_find_p( looper, f );
|
|
node = *pnode;
|
|
if ( node == NULL ) {
|
|
node = event_hook_alloc( f );
|
|
node->next = *pnode;
|
|
*pnode = node;
|
|
}
|
|
|
|
if ( (node->wanted & events) != events ) {
|
|
/* this should update start/stop/check/peek */
|
|
D("event_looper_hook: call hook for %d (new=%x, old=%x)",
|
|
fd, node->wanted, events);
|
|
f->clazz->_fh_hook( f, events & ~node->wanted, node );
|
|
node->wanted |= events;
|
|
} else {
|
|
D("event_looper_hook: ignoring events %x for %d wanted=%x)",
|
|
events, fd, node->wanted);
|
|
}
|
|
}
|
|
|
|
static void
|
|
event_looper_unhook( EventLooper looper, int fd, int events )
|
|
{
|
|
FH fh = _fh_from_int(fd, __func__);
|
|
EventHook *pnode = event_looper_find_p( looper, fh );
|
|
EventHook node = *pnode;
|
|
|
|
if (node != NULL) {
|
|
int events2 = events & node->wanted;
|
|
if ( events2 == 0 ) {
|
|
D( "event_looper_unhook: events %x not registered for fd %d", events, fd );
|
|
return;
|
|
}
|
|
node->wanted &= ~events2;
|
|
if (!node->wanted) {
|
|
*pnode = node->next;
|
|
event_hook_free( node );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A fixer for WaitForMultipleObjects on condition that there are more than 64
|
|
* handles to wait on.
|
|
*
|
|
* In cetain cases DDMS may establish more than 64 connections with ADB. For
|
|
* instance, this may happen if there are more than 64 processes running on a
|
|
* device, or there are multiple devices connected (including the emulator) with
|
|
* the combined number of running processes greater than 64. In this case using
|
|
* WaitForMultipleObjects to wait on connection events simply wouldn't cut,
|
|
* because of the API limitations (64 handles max). So, we need to provide a way
|
|
* to scale WaitForMultipleObjects to accept an arbitrary number of handles. The
|
|
* easiest (and "Microsoft recommended") way to do that would be dividing the
|
|
* handle array into chunks with the chunk size less than 64, and fire up as many
|
|
* waiting threads as there are chunks. Then each thread would wait on a chunk of
|
|
* handles, and will report back to the caller which handle has been set.
|
|
* Here is the implementation of that algorithm.
|
|
*/
|
|
|
|
/* Number of handles to wait on in each wating thread. */
|
|
#define WAIT_ALL_CHUNK_SIZE 63
|
|
|
|
/* Descriptor for a wating thread */
|
|
typedef struct WaitForAllParam {
|
|
/* A handle to an event to signal when waiting is over. This handle is shared
|
|
* accross all the waiting threads, so each waiting thread knows when any
|
|
* other thread has exited, so it can exit too. */
|
|
HANDLE main_event;
|
|
/* Upon exit from a waiting thread contains the index of the handle that has
|
|
* been signaled. The index is an absolute index of the signaled handle in
|
|
* the original array. This pointer is shared accross all the waiting threads
|
|
* and it's not guaranteed (due to a race condition) that when all the
|
|
* waiting threads exit, the value contained here would indicate the first
|
|
* handle that was signaled. This is fine, because the caller cares only
|
|
* about any handle being signaled. It doesn't care about the order, nor
|
|
* about the whole list of handles that were signaled. */
|
|
LONG volatile *signaled_index;
|
|
/* Array of handles to wait on in a waiting thread. */
|
|
HANDLE* handles;
|
|
/* Number of handles in 'handles' array to wait on. */
|
|
int handles_count;
|
|
/* Index inside the main array of the first handle in the 'handles' array. */
|
|
int first_handle_index;
|
|
/* Waiting thread handle. */
|
|
HANDLE thread;
|
|
} WaitForAllParam;
|
|
|
|
/* Waiting thread routine. */
|
|
static unsigned __stdcall
|
|
_in_waiter_thread(void* arg)
|
|
{
|
|
HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1];
|
|
int res;
|
|
WaitForAllParam* const param = (WaitForAllParam*)arg;
|
|
|
|
/* We have to wait on the main_event in order to be notified when any of the
|
|
* sibling threads is exiting. */
|
|
wait_on[0] = param->main_event;
|
|
/* The rest of the handles go behind the main event handle. */
|
|
memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE));
|
|
|
|
res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE);
|
|
if (res > 0 && res < (param->handles_count + 1)) {
|
|
/* One of the original handles got signaled. Save its absolute index into
|
|
* the output variable. */
|
|
InterlockedCompareExchange(param->signaled_index,
|
|
res - 1L + param->first_handle_index, -1L);
|
|
}
|
|
|
|
/* Notify the caller (and the siblings) that the wait is over. */
|
|
SetEvent(param->main_event);
|
|
|
|
_endthreadex(0);
|
|
return 0;
|
|
}
|
|
|
|
/* WaitForMultipeObjects fixer routine.
|
|
* Param:
|
|
* handles Array of handles to wait on.
|
|
* handles_count Number of handles in the array.
|
|
* Return:
|
|
* (>= 0 && < handles_count) - Index of the signaled handle in the array, or
|
|
* WAIT_FAILED on an error.
|
|
*/
|
|
static int
|
|
_wait_for_all(HANDLE* handles, int handles_count)
|
|
{
|
|
WaitForAllParam* threads;
|
|
HANDLE main_event;
|
|
int chunks, chunk, remains;
|
|
|
|
/* This variable is going to be accessed by several threads at the same time,
|
|
* this is bound to fail randomly when the core is run on multi-core machines.
|
|
* To solve this, we need to do the following (1 _and_ 2):
|
|
* 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize
|
|
* out the reads/writes in this function unexpectedly.
|
|
* 2. Ensure correct memory ordering. The "simple" way to do that is to wrap
|
|
* all accesses inside a critical section. But we can also use
|
|
* InterlockedCompareExchange() which always provide a full memory barrier
|
|
* on Win32.
|
|
*/
|
|
volatile LONG sig_index = -1;
|
|
|
|
/* Calculate number of chunks, and allocate thread param array. */
|
|
chunks = handles_count / WAIT_ALL_CHUNK_SIZE;
|
|
remains = handles_count % WAIT_ALL_CHUNK_SIZE;
|
|
threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) *
|
|
sizeof(WaitForAllParam));
|
|
if (threads == NULL) {
|
|
D("Unable to allocate thread array for %d handles.", handles_count);
|
|
return (int)WAIT_FAILED;
|
|
}
|
|
|
|
/* Create main event to wait on for all waiting threads. This is a "manualy
|
|
* reset" event that will remain set once it was set. */
|
|
main_event = CreateEvent(NULL, TRUE, FALSE, NULL);
|
|
if (main_event == NULL) {
|
|
D("Unable to create main event. Error: %ld", GetLastError());
|
|
free(threads);
|
|
return (int)WAIT_FAILED;
|
|
}
|
|
|
|
/*
|
|
* Initialize waiting thread parameters.
|
|
*/
|
|
|
|
for (chunk = 0; chunk < chunks; chunk++) {
|
|
threads[chunk].main_event = main_event;
|
|
threads[chunk].signaled_index = &sig_index;
|
|
threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
|
|
threads[chunk].handles = handles + threads[chunk].first_handle_index;
|
|
threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE;
|
|
}
|
|
if (remains) {
|
|
threads[chunk].main_event = main_event;
|
|
threads[chunk].signaled_index = &sig_index;
|
|
threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
|
|
threads[chunk].handles = handles + threads[chunk].first_handle_index;
|
|
threads[chunk].handles_count = remains;
|
|
chunks++;
|
|
}
|
|
|
|
/* Start the waiting threads. */
|
|
for (chunk = 0; chunk < chunks; chunk++) {
|
|
/* Note that using adb_thread_create is not appropriate here, since we
|
|
* need a handle to wait on for thread termination. */
|
|
threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread,
|
|
&threads[chunk], 0, NULL);
|
|
if (threads[chunk].thread == NULL) {
|
|
/* Unable to create a waiter thread. Collapse. */
|
|
D("Unable to create a waiting thread %d of %d. errno=%d",
|
|
chunk, chunks, errno);
|
|
chunks = chunk;
|
|
SetEvent(main_event);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Wait on any of the threads to get signaled. */
|
|
WaitForSingleObject(main_event, INFINITE);
|
|
|
|
/* Wait on all the waiting threads to exit. */
|
|
for (chunk = 0; chunk < chunks; chunk++) {
|
|
WaitForSingleObject(threads[chunk].thread, INFINITE);
|
|
CloseHandle(threads[chunk].thread);
|
|
}
|
|
|
|
CloseHandle(main_event);
|
|
free(threads);
|
|
|
|
|
|
const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1);
|
|
return (ret >= 0) ? ret : (int)WAIT_FAILED;
|
|
}
|
|
|
|
static EventLooperRec win32_looper;
|
|
|
|
static void fdevent_init(void)
|
|
{
|
|
win32_looper.htab_count = 0;
|
|
win32_looper.hooks = NULL;
|
|
}
|
|
|
|
static void fdevent_connect(fdevent *fde)
|
|
{
|
|
EventLooper looper = &win32_looper;
|
|
int events = fde->state & FDE_EVENTMASK;
|
|
|
|
if (events != 0)
|
|
event_looper_hook( looper, fde->fd, events );
|
|
}
|
|
|
|
static void fdevent_disconnect(fdevent *fde)
|
|
{
|
|
EventLooper looper = &win32_looper;
|
|
int events = fde->state & FDE_EVENTMASK;
|
|
|
|
if (events != 0)
|
|
event_looper_unhook( looper, fde->fd, events );
|
|
}
|
|
|
|
static void fdevent_update(fdevent *fde, unsigned events)
|
|
{
|
|
EventLooper looper = &win32_looper;
|
|
unsigned events0 = fde->state & FDE_EVENTMASK;
|
|
|
|
if (events != events0) {
|
|
int removes = events0 & ~events;
|
|
int adds = events & ~events0;
|
|
if (removes) {
|
|
D("fdevent_update: remove %x from %d", removes, fde->fd);
|
|
event_looper_unhook( looper, fde->fd, removes );
|
|
}
|
|
if (adds) {
|
|
D("fdevent_update: add %x to %d", adds, fde->fd);
|
|
event_looper_hook ( looper, fde->fd, adds );
|
|
}
|
|
}
|
|
}
|
|
|
|
static void fdevent_process()
|
|
{
|
|
EventLooper looper = &win32_looper;
|
|
EventHook hook;
|
|
int gotone = 0;
|
|
|
|
/* if we have at least one ready hook, execute it/them */
|
|
for (hook = looper->hooks; hook; hook = hook->next) {
|
|
hook->ready = 0;
|
|
if (hook->prepare) {
|
|
hook->prepare(hook);
|
|
if (hook->ready != 0) {
|
|
event_hook_signal( hook );
|
|
gotone = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* nothing's ready yet, so wait for something to happen */
|
|
if (!gotone)
|
|
{
|
|
looper->htab_count = 0;
|
|
|
|
for (hook = looper->hooks; hook; hook = hook->next)
|
|
{
|
|
if (hook->start && !hook->start(hook)) {
|
|
D( "fdevent_process: error when starting a hook" );
|
|
return;
|
|
}
|
|
if (hook->h != INVALID_HANDLE_VALUE) {
|
|
int nn;
|
|
|
|
for (nn = 0; nn < looper->htab_count; nn++)
|
|
{
|
|
if ( looper->htab[nn] == hook->h )
|
|
goto DontAdd;
|
|
}
|
|
looper->htab[ looper->htab_count++ ] = hook->h;
|
|
DontAdd:
|
|
;
|
|
}
|
|
}
|
|
|
|
if (looper->htab_count == 0) {
|
|
D( "fdevent_process: nothing to wait for !!" );
|
|
return;
|
|
}
|
|
|
|
do
|
|
{
|
|
int wait_ret;
|
|
|
|
D( "adb_win32: waiting for %d events", looper->htab_count );
|
|
if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) {
|
|
D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.", looper->htab_count);
|
|
wait_ret = _wait_for_all(looper->htab, looper->htab_count);
|
|
} else {
|
|
wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE );
|
|
}
|
|
if (wait_ret == (int)WAIT_FAILED) {
|
|
D( "adb_win32: wait failed, error %ld", GetLastError() );
|
|
} else {
|
|
D( "adb_win32: got one (index %d)", wait_ret );
|
|
|
|
/* according to Cygwin, some objects like consoles wake up on "inappropriate" events
|
|
* like mouse movements. we need to filter these with the "check" function
|
|
*/
|
|
if ((unsigned)wait_ret < (unsigned)looper->htab_count)
|
|
{
|
|
for (hook = looper->hooks; hook; hook = hook->next)
|
|
{
|
|
if ( looper->htab[wait_ret] == hook->h &&
|
|
(!hook->check || hook->check(hook)) )
|
|
{
|
|
D( "adb_win32: signaling %s for %x", hook->fh->name, hook->ready );
|
|
event_hook_signal( hook );
|
|
gotone = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
while (!gotone);
|
|
|
|
for (hook = looper->hooks; hook; hook = hook->next) {
|
|
if (hook->stop)
|
|
hook->stop( hook );
|
|
}
|
|
}
|
|
|
|
for (hook = looper->hooks; hook; hook = hook->next) {
|
|
if (hook->peek && hook->peek(hook))
|
|
event_hook_signal( hook );
|
|
}
|
|
}
|
|
|
|
|
|
static void fdevent_register(fdevent *fde)
|
|
{
|
|
int fd = fde->fd - WIN32_FH_BASE;
|
|
|
|
if(fd < 0) {
|
|
FATAL("bogus negative fd (%d)\n", fde->fd);
|
|
}
|
|
|
|
if(fd >= fd_table_max) {
|
|
int oldmax = fd_table_max;
|
|
if(fde->fd > 32000) {
|
|
FATAL("bogus huuuuge fd (%d)\n", fde->fd);
|
|
}
|
|
if(fd_table_max == 0) {
|
|
fdevent_init();
|
|
fd_table_max = 256;
|
|
}
|
|
while(fd_table_max <= fd) {
|
|
fd_table_max *= 2;
|
|
}
|
|
fd_table = reinterpret_cast<fdevent**>(realloc(fd_table, sizeof(fdevent*) * fd_table_max));
|
|
if(fd_table == 0) {
|
|
FATAL("could not expand fd_table to %d entries\n", fd_table_max);
|
|
}
|
|
memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax));
|
|
}
|
|
|
|
fd_table[fd] = fde;
|
|
}
|
|
|
|
static void fdevent_unregister(fdevent *fde)
|
|
{
|
|
int fd = fde->fd - WIN32_FH_BASE;
|
|
|
|
if((fd < 0) || (fd >= fd_table_max)) {
|
|
FATAL("fd out of range (%d)\n", fde->fd);
|
|
}
|
|
|
|
if(fd_table[fd] != fde) {
|
|
FATAL("fd_table out of sync");
|
|
}
|
|
|
|
fd_table[fd] = 0;
|
|
|
|
if(!(fde->state & FDE_DONT_CLOSE)) {
|
|
dump_fde(fde, "close");
|
|
adb_close(fde->fd);
|
|
}
|
|
}
|
|
|
|
static void fdevent_plist_enqueue(fdevent *node)
|
|
{
|
|
fdevent *list = &list_pending;
|
|
|
|
node->next = list;
|
|
node->prev = list->prev;
|
|
node->prev->next = node;
|
|
list->prev = node;
|
|
}
|
|
|
|
static void fdevent_plist_remove(fdevent *node)
|
|
{
|
|
node->prev->next = node->next;
|
|
node->next->prev = node->prev;
|
|
node->next = 0;
|
|
node->prev = 0;
|
|
}
|
|
|
|
static fdevent *fdevent_plist_dequeue(void)
|
|
{
|
|
fdevent *list = &list_pending;
|
|
fdevent *node = list->next;
|
|
|
|
if(node == list) return 0;
|
|
|
|
list->next = node->next;
|
|
list->next->prev = list;
|
|
node->next = 0;
|
|
node->prev = 0;
|
|
|
|
return node;
|
|
}
|
|
|
|
fdevent *fdevent_create(int fd, fd_func func, void *arg)
|
|
{
|
|
fdevent *fde = (fdevent*) malloc(sizeof(fdevent));
|
|
if(fde == 0) return 0;
|
|
fdevent_install(fde, fd, func, arg);
|
|
fde->state |= FDE_CREATED;
|
|
return fde;
|
|
}
|
|
|
|
void fdevent_destroy(fdevent *fde)
|
|
{
|
|
if(fde == 0) return;
|
|
if(!(fde->state & FDE_CREATED)) {
|
|
FATAL("fde %p not created by fdevent_create()\n", fde);
|
|
}
|
|
fdevent_remove(fde);
|
|
}
|
|
|
|
void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg)
|
|
{
|
|
memset(fde, 0, sizeof(fdevent));
|
|
fde->state = FDE_ACTIVE;
|
|
fde->fd = fd;
|
|
fde->func = func;
|
|
fde->arg = arg;
|
|
|
|
fdevent_register(fde);
|
|
dump_fde(fde, "connect");
|
|
fdevent_connect(fde);
|
|
fde->state |= FDE_ACTIVE;
|
|
}
|
|
|
|
void fdevent_remove(fdevent *fde)
|
|
{
|
|
if(fde->state & FDE_PENDING) {
|
|
fdevent_plist_remove(fde);
|
|
}
|
|
|
|
if(fde->state & FDE_ACTIVE) {
|
|
fdevent_disconnect(fde);
|
|
dump_fde(fde, "disconnect");
|
|
fdevent_unregister(fde);
|
|
}
|
|
|
|
fde->state = 0;
|
|
fde->events = 0;
|
|
}
|
|
|
|
|
|
void fdevent_set(fdevent *fde, unsigned events)
|
|
{
|
|
events &= FDE_EVENTMASK;
|
|
|
|
if((fde->state & FDE_EVENTMASK) == (int)events) return;
|
|
|
|
if(fde->state & FDE_ACTIVE) {
|
|
fdevent_update(fde, events);
|
|
dump_fde(fde, "update");
|
|
}
|
|
|
|
fde->state = (fde->state & FDE_STATEMASK) | events;
|
|
|
|
if(fde->state & FDE_PENDING) {
|
|
/* if we're pending, make sure
|
|
** we don't signal an event that
|
|
** is no longer wanted.
|
|
*/
|
|
fde->events &= (~events);
|
|
if(fde->events == 0) {
|
|
fdevent_plist_remove(fde);
|
|
fde->state &= (~FDE_PENDING);
|
|
}
|
|
}
|
|
}
|
|
|
|
void fdevent_add(fdevent *fde, unsigned events)
|
|
{
|
|
fdevent_set(
|
|
fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK));
|
|
}
|
|
|
|
void fdevent_del(fdevent *fde, unsigned events)
|
|
{
|
|
fdevent_set(
|
|
fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK)));
|
|
}
|
|
|
|
void fdevent_loop()
|
|
{
|
|
fdevent *fde;
|
|
|
|
for(;;) {
|
|
#if DEBUG
|
|
fprintf(stderr,"--- ---- waiting for events\n");
|
|
#endif
|
|
fdevent_process();
|
|
|
|
while((fde = fdevent_plist_dequeue())) {
|
|
unsigned events = fde->events;
|
|
fde->events = 0;
|
|
fde->state &= (~FDE_PENDING);
|
|
dump_fde(fde, "callback");
|
|
fde->func(fde->fd, events, fde->arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** FILE EVENT HOOKS
|
|
**/
|
|
|
|
static void _event_file_prepare( EventHook hook )
|
|
{
|
|
if (hook->wanted & (FDE_READ|FDE_WRITE)) {
|
|
/* we can always read/write */
|
|
hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE);
|
|
}
|
|
}
|
|
|
|
static int _event_file_peek( EventHook hook )
|
|
{
|
|
return (hook->wanted & (FDE_READ|FDE_WRITE));
|
|
}
|
|
|
|
static void _fh_file_hook( FH f, int events, EventHook hook )
|
|
{
|
|
hook->h = f->fh_handle;
|
|
hook->prepare = _event_file_prepare;
|
|
hook->peek = _event_file_peek;
|
|
}
|
|
|
|
/** SOCKET EVENT HOOKS
|
|
**/
|
|
|
|
static void _event_socket_verify( EventHook hook, WSANETWORKEVENTS* evts )
|
|
{
|
|
if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) {
|
|
if (hook->wanted & FDE_READ)
|
|
hook->ready |= FDE_READ;
|
|
if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR)
|
|
hook->ready |= FDE_ERROR;
|
|
}
|
|
if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) {
|
|
if (hook->wanted & FDE_WRITE)
|
|
hook->ready |= FDE_WRITE;
|
|
if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR)
|
|
hook->ready |= FDE_ERROR;
|
|
}
|
|
if ( evts->lNetworkEvents & FD_OOB ) {
|
|
if (hook->wanted & FDE_ERROR)
|
|
hook->ready |= FDE_ERROR;
|
|
}
|
|
}
|
|
|
|
static void _event_socket_prepare( EventHook hook )
|
|
{
|
|
WSANETWORKEVENTS evts;
|
|
|
|
/* look if some of the events we want already happened ? */
|
|
if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts ))
|
|
_event_socket_verify( hook, &evts );
|
|
}
|
|
|
|
static int _socket_wanted_to_flags( int wanted )
|
|
{
|
|
int flags = 0;
|
|
if (wanted & FDE_READ)
|
|
flags |= FD_READ | FD_ACCEPT | FD_CLOSE;
|
|
|
|
if (wanted & FDE_WRITE)
|
|
flags |= FD_WRITE | FD_CONNECT | FD_CLOSE;
|
|
|
|
if (wanted & FDE_ERROR)
|
|
flags |= FD_OOB;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static int _event_socket_start( EventHook hook )
|
|
{
|
|
/* create an event which we're going to wait for */
|
|
FH fh = hook->fh;
|
|
long flags = _socket_wanted_to_flags( hook->wanted );
|
|
|
|
hook->h = fh->event;
|
|
if (hook->h == INVALID_HANDLE_VALUE) {
|
|
D( "_event_socket_start: no event for %s", fh->name );
|
|
return 0;
|
|
}
|
|
|
|
if ( flags != fh->mask ) {
|
|
D( "_event_socket_start: hooking %s for %x (flags %ld)", hook->fh->name, hook->wanted, flags );
|
|
if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) {
|
|
D( "_event_socket_start: WSAEventSelect() for %s failed, error %d", hook->fh->name, WSAGetLastError() );
|
|
CloseHandle( hook->h );
|
|
hook->h = INVALID_HANDLE_VALUE;
|
|
exit(1);
|
|
return 0;
|
|
}
|
|
fh->mask = flags;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void _event_socket_stop( EventHook hook )
|
|
{
|
|
hook->h = INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
static int _event_socket_check( EventHook hook )
|
|
{
|
|
int result = 0;
|
|
FH fh = hook->fh;
|
|
WSANETWORKEVENTS evts;
|
|
|
|
if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) {
|
|
_event_socket_verify( hook, &evts );
|
|
result = (hook->ready != 0);
|
|
if (result) {
|
|
ResetEvent( hook->h );
|
|
}
|
|
}
|
|
D( "_event_socket_check %s returns %d", fh->name, result );
|
|
return result;
|
|
}
|
|
|
|
static int _event_socket_peek( EventHook hook )
|
|
{
|
|
WSANETWORKEVENTS evts;
|
|
FH fh = hook->fh;
|
|
|
|
/* look if some of the events we want already happened ? */
|
|
if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) {
|
|
_event_socket_verify( hook, &evts );
|
|
if (hook->ready)
|
|
ResetEvent( hook->h );
|
|
}
|
|
|
|
return hook->ready != 0;
|
|
}
|
|
|
|
|
|
|
|
static void _fh_socket_hook( FH f, int events, EventHook hook )
|
|
{
|
|
hook->prepare = _event_socket_prepare;
|
|
hook->start = _event_socket_start;
|
|
hook->stop = _event_socket_stop;
|
|
hook->check = _event_socket_check;
|
|
hook->peek = _event_socket_peek;
|
|
|
|
// TODO: check return value?
|
|
_event_socket_start( hook );
|
|
}
|
|
|
|
/** SOCKETPAIR EVENT HOOKS
|
|
**/
|
|
|
|
static void _event_socketpair_prepare( EventHook hook )
|
|
{
|
|
FH fh = hook->fh;
|
|
SocketPair pair = fh->fh_pair;
|
|
BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
|
|
BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
|
|
|
|
if (hook->wanted & FDE_READ && rbip->can_read)
|
|
hook->ready |= FDE_READ;
|
|
|
|
if (hook->wanted & FDE_WRITE && wbip->can_write)
|
|
hook->ready |= FDE_WRITE;
|
|
}
|
|
|
|
static int _event_socketpair_start( EventHook hook )
|
|
{
|
|
FH fh = hook->fh;
|
|
SocketPair pair = fh->fh_pair;
|
|
BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
|
|
BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
|
|
|
|
if (hook->wanted == FDE_READ)
|
|
hook->h = rbip->evt_read;
|
|
|
|
else if (hook->wanted == FDE_WRITE)
|
|
hook->h = wbip->evt_write;
|
|
|
|
else {
|
|
D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE" );
|
|
return 0;
|
|
}
|
|
D( "_event_socketpair_start: hook %s for %x wanted=%x",
|
|
hook->fh->name, _fh_to_int(fh), hook->wanted);
|
|
return 1;
|
|
}
|
|
|
|
static int _event_socketpair_peek( EventHook hook )
|
|
{
|
|
_event_socketpair_prepare( hook );
|
|
return hook->ready != 0;
|
|
}
|
|
|
|
static void _fh_socketpair_hook( FH fh, int events, EventHook hook )
|
|
{
|
|
hook->prepare = _event_socketpair_prepare;
|
|
hook->start = _event_socketpair_start;
|
|
hook->peek = _event_socketpair_peek;
|
|
}
|
|
|
|
|
|
void
|
|
adb_sysdeps_init( void )
|
|
{
|
|
#define ADB_MUTEX(x) InitializeCriticalSection( & x );
|
|
#include "mutex_list.h"
|
|
InitializeCriticalSection( &_win32_lock );
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** Console Window Terminal Emulation *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
// This reads input from a Win32 console window and translates it into Unix
|
|
// terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
|
|
// mode, not Application mode), which itself emulates xterm. Gnome Terminal
|
|
// is emulated instead of xterm because it is probably more popular than xterm:
|
|
// Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
|
|
// supports modern fonts, etc. It seems best to emulate the terminal that most
|
|
// Android developers use because they'll fix apps (the shell, etc.) to keep
|
|
// working with that terminal's emulation.
|
|
//
|
|
// The point of this emulation is not to be perfect or to solve all issues with
|
|
// console windows on Windows, but to be better than the original code which
|
|
// just called read() (which called ReadFile(), which called ReadConsoleA())
|
|
// which did not support Ctrl-C, tab completion, shell input line editing
|
|
// keys, server echo, and more.
|
|
//
|
|
// This implementation reconfigures the console with SetConsoleMode(), then
|
|
// calls ReadConsoleInput() to get raw input which it remaps to Unix
|
|
// terminal-style sequences which is returned via unix_read() which is used
|
|
// by the 'adb shell' command.
|
|
//
|
|
// Code organization:
|
|
//
|
|
// * _get_console_handle() and unix_isatty() provide console information.
|
|
// * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
|
|
// * unix_read() detects console windows (as opposed to pipes, files, etc.).
|
|
// * _console_read() is the main code of the emulation.
|
|
|
|
// Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
|
|
// If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
|
|
// with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
|
|
static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
|
|
// First check isatty(); this is very fast and eliminates most non-console
|
|
// FDs, but returns 1 for both consoles and character devices like NUL.
|
|
#pragma push_macro("isatty")
|
|
#undef isatty
|
|
if (!isatty(fd)) {
|
|
return nullptr;
|
|
}
|
|
#pragma pop_macro("isatty")
|
|
|
|
// To differentiate between character devices and consoles we need to get
|
|
// the underlying HANDLE and use GetConsoleMode(), which is what requires
|
|
// GENERIC_READ permissions.
|
|
const intptr_t intptr_handle = _get_osfhandle(fd);
|
|
if (intptr_handle == -1) {
|
|
return nullptr;
|
|
}
|
|
const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
|
|
DWORD temp_mode = 0;
|
|
if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
|
|
return nullptr;
|
|
}
|
|
|
|
return handle;
|
|
}
|
|
|
|
// Returns a console handle if |stream| is a console, otherwise returns nullptr.
|
|
static HANDLE _get_console_handle(FILE* const stream) {
|
|
const int fd = fileno(stream);
|
|
if (fd < 0) {
|
|
return nullptr;
|
|
}
|
|
return _get_console_handle(fd);
|
|
}
|
|
|
|
int unix_isatty(int fd) {
|
|
return _get_console_handle(fd) ? 1 : 0;
|
|
}
|
|
|
|
// Read an input record from the console; one that should be processed.
|
|
static bool _get_interesting_input_record_uncached(const HANDLE console,
|
|
INPUT_RECORD* const input_record) {
|
|
for (;;) {
|
|
DWORD read_count = 0;
|
|
memset(input_record, 0, sizeof(*input_record));
|
|
if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
|
|
D("_get_interesting_input_record_uncached: ReadConsoleInputA() "
|
|
"failed: %s\n", SystemErrorCodeToString(GetLastError()).c_str());
|
|
errno = EIO;
|
|
return false;
|
|
}
|
|
|
|
if (read_count == 0) { // should be impossible
|
|
fatal("ReadConsoleInputA returned 0");
|
|
}
|
|
|
|
if (read_count != 1) { // should be impossible
|
|
fatal("ReadConsoleInputA did not return one input record");
|
|
}
|
|
|
|
if ((input_record->EventType == KEY_EVENT) &&
|
|
(input_record->Event.KeyEvent.bKeyDown)) {
|
|
if (input_record->Event.KeyEvent.wRepeatCount == 0) {
|
|
fatal("ReadConsoleInputA returned a key event with zero repeat"
|
|
" count");
|
|
}
|
|
|
|
// Got an interesting INPUT_RECORD, so return
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Cached input record (in case _console_read() is passed a buffer that doesn't
|
|
// have enough space to fit wRepeatCount number of key sequences). A non-zero
|
|
// wRepeatCount indicates that a record is cached.
|
|
static INPUT_RECORD _win32_input_record;
|
|
|
|
// Get the next KEY_EVENT_RECORD that should be processed.
|
|
static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) {
|
|
// If nothing cached, read directly from the console until we get an
|
|
// interesting record.
|
|
if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) {
|
|
if (!_get_interesting_input_record_uncached(console,
|
|
&_win32_input_record)) {
|
|
// There was an error, so make sure wRepeatCount is zero because
|
|
// that signifies no cached input record.
|
|
_win32_input_record.Event.KeyEvent.wRepeatCount = 0;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return &_win32_input_record.Event.KeyEvent;
|
|
}
|
|
|
|
static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
|
|
return (control_key_state & SHIFT_PRESSED) != 0;
|
|
}
|
|
|
|
static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
|
|
return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
|
|
}
|
|
|
|
static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
|
|
return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
|
|
}
|
|
|
|
static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
|
|
return (control_key_state & NUMLOCK_ON) != 0;
|
|
}
|
|
|
|
static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
|
|
return (control_key_state & CAPSLOCK_ON) != 0;
|
|
}
|
|
|
|
static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
|
|
return (control_key_state & ENHANCED_KEY) != 0;
|
|
}
|
|
|
|
// Constants from MSDN for ToAscii().
|
|
static const BYTE TOASCII_KEY_OFF = 0x00;
|
|
static const BYTE TOASCII_KEY_DOWN = 0x80;
|
|
static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
|
|
|
|
// Given a key event, ignore a modifier key and return the character that was
|
|
// entered without the modifier. Writes to *ch and returns the number of bytes
|
|
// written.
|
|
static size_t _get_char_ignoring_modifier(char* const ch,
|
|
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
|
|
const WORD modifier) {
|
|
// If there is no character from Windows, try ignoring the specified
|
|
// modifier and look for a character. Note that if AltGr is being used,
|
|
// there will be a character from Windows.
|
|
if (key_event->uChar.AsciiChar == '\0') {
|
|
// Note that we read the control key state from the passed in argument
|
|
// instead of from key_event since the argument has been normalized.
|
|
if (((modifier == VK_SHIFT) &&
|
|
_is_shift_pressed(control_key_state)) ||
|
|
((modifier == VK_CONTROL) &&
|
|
_is_ctrl_pressed(control_key_state)) ||
|
|
((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
|
|
|
|
BYTE key_state[256] = {0};
|
|
key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
|
|
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
|
|
key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
|
|
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
|
|
key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
|
|
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
|
|
key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
|
|
TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
|
|
|
|
// cause this modifier to be ignored
|
|
key_state[modifier] = TOASCII_KEY_OFF;
|
|
|
|
WORD translated = 0;
|
|
if (ToAscii(key_event->wVirtualKeyCode,
|
|
key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
|
|
// Ignoring the modifier, we found a character.
|
|
*ch = (CHAR)translated;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Just use whatever Windows told us originally.
|
|
*ch = key_event->uChar.AsciiChar;
|
|
|
|
// If the character from Windows is NULL, return a size of zero.
|
|
return (*ch == '\0') ? 0 : 1;
|
|
}
|
|
|
|
// If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
|
|
// but taking into account the shift key. This is because for a sequence like
|
|
// Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
|
|
// we want to find the character ')'.
|
|
//
|
|
// Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
|
|
// because it is the default key-sequence to switch the input language.
|
|
// This is configurable in the Region and Language control panel.
|
|
static __inline__ size_t _get_non_control_char(char* const ch,
|
|
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
|
|
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
|
|
VK_CONTROL);
|
|
}
|
|
|
|
// Get without Alt.
|
|
static __inline__ size_t _get_non_alt_char(char* const ch,
|
|
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
|
|
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
|
|
VK_MENU);
|
|
}
|
|
|
|
// Ignore the control key, find the character from Windows, and apply any
|
|
// Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
|
|
// *pch and returns number of bytes written.
|
|
static size_t _get_control_character(char* const pch,
|
|
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
|
|
const size_t len = _get_non_control_char(pch, key_event,
|
|
control_key_state);
|
|
|
|
if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
|
|
char ch = *pch;
|
|
switch (ch) {
|
|
case '2':
|
|
case '@':
|
|
case '`':
|
|
ch = '\0';
|
|
break;
|
|
case '3':
|
|
case '[':
|
|
case '{':
|
|
ch = '\x1b';
|
|
break;
|
|
case '4':
|
|
case '\\':
|
|
case '|':
|
|
ch = '\x1c';
|
|
break;
|
|
case '5':
|
|
case ']':
|
|
case '}':
|
|
ch = '\x1d';
|
|
break;
|
|
case '6':
|
|
case '^':
|
|
case '~':
|
|
ch = '\x1e';
|
|
break;
|
|
case '7':
|
|
case '-':
|
|
case '_':
|
|
ch = '\x1f';
|
|
break;
|
|
case '8':
|
|
ch = '\x7f';
|
|
break;
|
|
case '/':
|
|
if (!_is_alt_pressed(control_key_state)) {
|
|
ch = '\x1f';
|
|
}
|
|
break;
|
|
case '?':
|
|
if (!_is_alt_pressed(control_key_state)) {
|
|
ch = '\x7f';
|
|
}
|
|
break;
|
|
}
|
|
*pch = ch;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static DWORD _normalize_altgr_control_key_state(
|
|
const KEY_EVENT_RECORD* const key_event) {
|
|
DWORD control_key_state = key_event->dwControlKeyState;
|
|
|
|
// If we're in an AltGr situation where the AltGr key is down (depending on
|
|
// the keyboard layout, that might be the physical right alt key which
|
|
// produces a control_key_state where Right-Alt and Left-Ctrl are down) or
|
|
// AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
|
|
// a character (which indicates that there was an AltGr mapping), then act
|
|
// as if alt and control are not really down for the purposes of modifiers.
|
|
// This makes it so that if the user with, say, a German keyboard layout
|
|
// presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
|
|
// output the key and we don't see the Alt and Ctrl keys.
|
|
if (_is_ctrl_pressed(control_key_state) &&
|
|
_is_alt_pressed(control_key_state)
|
|
&& (key_event->uChar.AsciiChar != '\0')) {
|
|
// Try to remove as few bits as possible to improve our chances of
|
|
// detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
|
|
// Left-Alt + Right-Ctrl + AltGr.
|
|
if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
|
|
// Remove Right-Alt.
|
|
control_key_state &= ~RIGHT_ALT_PRESSED;
|
|
// If uChar is set, a Ctrl key is pressed, and Right-Alt is
|
|
// pressed, Left-Ctrl is almost always set, except if the user
|
|
// presses Right-Ctrl, then AltGr (in that specific order) for
|
|
// whatever reason. At any rate, make sure the bit is not set.
|
|
control_key_state &= ~LEFT_CTRL_PRESSED;
|
|
} else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
|
|
// Remove Left-Alt.
|
|
control_key_state &= ~LEFT_ALT_PRESSED;
|
|
// Whichever Ctrl key is down, remove it from the state. We only
|
|
// remove one key, to improve our chances of detecting the
|
|
// corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
|
|
if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
|
|
// Remove Left-Ctrl.
|
|
control_key_state &= ~LEFT_CTRL_PRESSED;
|
|
} else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
|
|
// Remove Right-Ctrl.
|
|
control_key_state &= ~RIGHT_CTRL_PRESSED;
|
|
}
|
|
}
|
|
|
|
// Note that this logic isn't 100% perfect because Windows doesn't
|
|
// allow us to detect all combinations because a physical AltGr key
|
|
// press shows up as two bits, plus some combinations are ambiguous
|
|
// about what is actually physically pressed.
|
|
}
|
|
|
|
return control_key_state;
|
|
}
|
|
|
|
// If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
|
|
// dwControlKeyState for the following keypad keys: period, 0-9. If we detect
|
|
// this scenario, set the SHIFT_PRESSED bit so we can add modifiers
|
|
// appropriately.
|
|
static DWORD _normalize_keypad_control_key_state(const WORD vk,
|
|
const DWORD control_key_state) {
|
|
if (!_is_numlock_on(control_key_state)) {
|
|
return control_key_state;
|
|
}
|
|
if (!_is_enhanced_key(control_key_state)) {
|
|
switch (vk) {
|
|
case VK_INSERT: // 0
|
|
case VK_DELETE: // .
|
|
case VK_END: // 1
|
|
case VK_DOWN: // 2
|
|
case VK_NEXT: // 3
|
|
case VK_LEFT: // 4
|
|
case VK_CLEAR: // 5
|
|
case VK_RIGHT: // 6
|
|
case VK_HOME: // 7
|
|
case VK_UP: // 8
|
|
case VK_PRIOR: // 9
|
|
return control_key_state | SHIFT_PRESSED;
|
|
}
|
|
}
|
|
|
|
return control_key_state;
|
|
}
|
|
|
|
static const char* _get_keypad_sequence(const DWORD control_key_state,
|
|
const char* const normal, const char* const shifted) {
|
|
if (_is_shift_pressed(control_key_state)) {
|
|
// Shift is pressed and NumLock is off
|
|
return shifted;
|
|
} else {
|
|
// Shift is not pressed and NumLock is off, or,
|
|
// Shift is pressed and NumLock is on, in which case we want the
|
|
// NumLock and Shift to neutralize each other, thus, we want the normal
|
|
// sequence.
|
|
return normal;
|
|
}
|
|
// If Shift is not pressed and NumLock is on, a different virtual key code
|
|
// is returned by Windows, which can be taken care of by a different case
|
|
// statement in _console_read().
|
|
}
|
|
|
|
// Write sequence to buf and return the number of bytes written.
|
|
static size_t _get_modifier_sequence(char* const buf, const WORD vk,
|
|
DWORD control_key_state, const char* const normal) {
|
|
// Copy the base sequence into buf.
|
|
const size_t len = strlen(normal);
|
|
memcpy(buf, normal, len);
|
|
|
|
int code = 0;
|
|
|
|
control_key_state = _normalize_keypad_control_key_state(vk,
|
|
control_key_state);
|
|
|
|
if (_is_shift_pressed(control_key_state)) {
|
|
code |= 0x1;
|
|
}
|
|
if (_is_alt_pressed(control_key_state)) { // any alt key pressed
|
|
code |= 0x2;
|
|
}
|
|
if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
|
|
code |= 0x4;
|
|
}
|
|
// If some modifier was held down, then we need to insert the modifier code
|
|
if (code != 0) {
|
|
if (len == 0) {
|
|
// Should be impossible because caller should pass a string of
|
|
// non-zero length.
|
|
return 0;
|
|
}
|
|
size_t index = len - 1;
|
|
const char lastChar = buf[index];
|
|
if (lastChar != '~') {
|
|
buf[index++] = '1';
|
|
}
|
|
buf[index++] = ';'; // modifier separator
|
|
// 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
|
|
// 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
|
|
buf[index++] = '1' + code;
|
|
buf[index++] = lastChar; // move ~ (or other last char) to the end
|
|
return index;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
// Write sequence to buf and return the number of bytes written.
|
|
static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
|
|
const DWORD control_key_state, const char* const normal,
|
|
const char shifted) {
|
|
if (_is_shift_pressed(control_key_state)) {
|
|
// Shift is pressed and NumLock is off
|
|
if (shifted != '\0') {
|
|
buf[0] = shifted;
|
|
return sizeof(buf[0]);
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
// Shift is not pressed and NumLock is off, or,
|
|
// Shift is pressed and NumLock is on, in which case we want the
|
|
// NumLock and Shift to neutralize each other, thus, we want the normal
|
|
// sequence.
|
|
return _get_modifier_sequence(buf, vk, control_key_state, normal);
|
|
}
|
|
// If Shift is not pressed and NumLock is on, a different virtual key code
|
|
// is returned by Windows, which can be taken care of by a different case
|
|
// statement in _console_read().
|
|
}
|
|
|
|
// The decimal key on the keypad produces a '.' for U.S. English and a ',' for
|
|
// Standard German. Figure this out at runtime so we know what to output for
|
|
// Shift-VK_DELETE.
|
|
static char _get_decimal_char() {
|
|
return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
|
|
}
|
|
|
|
// Prefix the len bytes in buf with the escape character, and then return the
|
|
// new buffer length.
|
|
size_t _escape_prefix(char* const buf, const size_t len) {
|
|
// If nothing to prefix, don't do anything. We might be called with
|
|
// len == 0, if alt was held down with a dead key which produced nothing.
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
|
|
memmove(&buf[1], buf, len);
|
|
buf[0] = '\x1b';
|
|
return len + 1;
|
|
}
|
|
|
|
// Writes to buffer buf (of length len), returning number of bytes written or
|
|
// -1 on error. Never returns zero because Win32 consoles are never 'closed'
|
|
// (as far as I can tell).
|
|
static int _console_read(const HANDLE console, void* buf, size_t len) {
|
|
for (;;) {
|
|
KEY_EVENT_RECORD* const key_event = _get_key_event_record(console);
|
|
if (key_event == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
const WORD vk = key_event->wVirtualKeyCode;
|
|
const CHAR ch = key_event->uChar.AsciiChar;
|
|
const DWORD control_key_state = _normalize_altgr_control_key_state(
|
|
key_event);
|
|
|
|
// The following emulation code should write the output sequence to
|
|
// either seqstr or to seqbuf and seqbuflen.
|
|
const char* seqstr = NULL; // NULL terminated C-string
|
|
// Enough space for max sequence string below, plus modifiers and/or
|
|
// escape prefix.
|
|
char seqbuf[16];
|
|
size_t seqbuflen = 0; // Space used in seqbuf.
|
|
|
|
#define MATCH(vk, normal) \
|
|
case (vk): \
|
|
{ \
|
|
seqstr = (normal); \
|
|
} \
|
|
break;
|
|
|
|
// Modifier keys should affect the output sequence.
|
|
#define MATCH_MODIFIER(vk, normal) \
|
|
case (vk): \
|
|
{ \
|
|
seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
|
|
control_key_state, (normal)); \
|
|
} \
|
|
break;
|
|
|
|
// The shift key should affect the output sequence.
|
|
#define MATCH_KEYPAD(vk, normal, shifted) \
|
|
case (vk): \
|
|
{ \
|
|
seqstr = _get_keypad_sequence(control_key_state, (normal), \
|
|
(shifted)); \
|
|
} \
|
|
break;
|
|
|
|
// The shift key and other modifier keys should affect the output
|
|
// sequence.
|
|
#define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
|
|
case (vk): \
|
|
{ \
|
|
seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
|
|
control_key_state, (normal), (shifted)); \
|
|
} \
|
|
break;
|
|
|
|
#define ESC "\x1b"
|
|
#define CSI ESC "["
|
|
#define SS3 ESC "O"
|
|
|
|
// Only support normal mode, not application mode.
|
|
|
|
// Enhanced keys:
|
|
// * 6-pack: insert, delete, home, end, page up, page down
|
|
// * cursor keys: up, down, right, left
|
|
// * keypad: divide, enter
|
|
// * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
|
|
// VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
|
|
if (_is_enhanced_key(control_key_state)) {
|
|
switch (vk) {
|
|
case VK_RETURN: // Enter key on keypad
|
|
if (_is_ctrl_pressed(control_key_state)) {
|
|
seqstr = "\n";
|
|
} else {
|
|
seqstr = "\r";
|
|
}
|
|
break;
|
|
|
|
MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
|
|
MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
|
|
|
|
// gnome-terminal currently sends SS3 "F" and SS3 "H", but that
|
|
// will be fixed soon to match xterm which sends CSI "F" and
|
|
// CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
|
|
MATCH(VK_END, CSI "F");
|
|
MATCH(VK_HOME, CSI "H");
|
|
|
|
MATCH_MODIFIER(VK_LEFT, CSI "D");
|
|
MATCH_MODIFIER(VK_UP, CSI "A");
|
|
MATCH_MODIFIER(VK_RIGHT, CSI "C");
|
|
MATCH_MODIFIER(VK_DOWN, CSI "B");
|
|
|
|
MATCH_MODIFIER(VK_INSERT, CSI "2~");
|
|
MATCH_MODIFIER(VK_DELETE, CSI "3~");
|
|
|
|
MATCH(VK_DIVIDE, "/");
|
|
}
|
|
} else { // Non-enhanced keys:
|
|
switch (vk) {
|
|
case VK_BACK: // backspace
|
|
if (_is_alt_pressed(control_key_state)) {
|
|
seqstr = ESC "\x7f";
|
|
} else {
|
|
seqstr = "\x7f";
|
|
}
|
|
break;
|
|
|
|
case VK_TAB:
|
|
if (_is_shift_pressed(control_key_state)) {
|
|
seqstr = CSI "Z";
|
|
} else {
|
|
seqstr = "\t";
|
|
}
|
|
break;
|
|
|
|
// Number 5 key in keypad when NumLock is off, or if NumLock is
|
|
// on and Shift is down.
|
|
MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
|
|
|
|
case VK_RETURN: // Enter key on main keyboard
|
|
if (_is_alt_pressed(control_key_state)) {
|
|
seqstr = ESC "\n";
|
|
} else if (_is_ctrl_pressed(control_key_state)) {
|
|
seqstr = "\n";
|
|
} else {
|
|
seqstr = "\r";
|
|
}
|
|
break;
|
|
|
|
// VK_ESCAPE: Don't do any special handling. The OS uses many
|
|
// of the sequences with Escape and many of the remaining
|
|
// sequences don't produce bKeyDown messages, only !bKeyDown
|
|
// for whatever reason.
|
|
|
|
case VK_SPACE:
|
|
if (_is_alt_pressed(control_key_state)) {
|
|
seqstr = ESC " ";
|
|
} else if (_is_ctrl_pressed(control_key_state)) {
|
|
seqbuf[0] = '\0'; // NULL char
|
|
seqbuflen = 1;
|
|
} else {
|
|
seqstr = " ";
|
|
}
|
|
break;
|
|
|
|
MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
|
|
MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
|
|
|
|
MATCH_KEYPAD(VK_END, CSI "4~", "1");
|
|
MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
|
|
|
|
MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
|
|
MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
|
|
MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
|
|
MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
|
|
|
|
MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
|
|
MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
|
|
_get_decimal_char());
|
|
|
|
case 0x30: // 0
|
|
case 0x31: // 1
|
|
case 0x39: // 9
|
|
case VK_OEM_1: // ;:
|
|
case VK_OEM_PLUS: // =+
|
|
case VK_OEM_COMMA: // ,<
|
|
case VK_OEM_PERIOD: // .>
|
|
case VK_OEM_7: // '"
|
|
case VK_OEM_102: // depends on keyboard, could be <> or \|
|
|
case VK_OEM_2: // /?
|
|
case VK_OEM_3: // `~
|
|
case VK_OEM_4: // [{
|
|
case VK_OEM_5: // \|
|
|
case VK_OEM_6: // ]}
|
|
{
|
|
seqbuflen = _get_control_character(seqbuf, key_event,
|
|
control_key_state);
|
|
|
|
if (_is_alt_pressed(control_key_state)) {
|
|
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0x32: // 2
|
|
case 0x36: // 6
|
|
case VK_OEM_MINUS: // -_
|
|
{
|
|
seqbuflen = _get_control_character(seqbuf, key_event,
|
|
control_key_state);
|
|
|
|
// If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
|
|
// prefix with escape.
|
|
if (_is_alt_pressed(control_key_state) &&
|
|
!(_is_ctrl_pressed(control_key_state) &&
|
|
!_is_shift_pressed(control_key_state))) {
|
|
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0x33: // 3
|
|
case 0x34: // 4
|
|
case 0x35: // 5
|
|
case 0x37: // 7
|
|
case 0x38: // 8
|
|
{
|
|
seqbuflen = _get_control_character(seqbuf, key_event,
|
|
control_key_state);
|
|
|
|
// If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
|
|
// prefix with escape.
|
|
if (_is_alt_pressed(control_key_state) &&
|
|
!(_is_ctrl_pressed(control_key_state) &&
|
|
!_is_shift_pressed(control_key_state))) {
|
|
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0x41: // a
|
|
case 0x42: // b
|
|
case 0x43: // c
|
|
case 0x44: // d
|
|
case 0x45: // e
|
|
case 0x46: // f
|
|
case 0x47: // g
|
|
case 0x48: // h
|
|
case 0x49: // i
|
|
case 0x4a: // j
|
|
case 0x4b: // k
|
|
case 0x4c: // l
|
|
case 0x4d: // m
|
|
case 0x4e: // n
|
|
case 0x4f: // o
|
|
case 0x50: // p
|
|
case 0x51: // q
|
|
case 0x52: // r
|
|
case 0x53: // s
|
|
case 0x54: // t
|
|
case 0x55: // u
|
|
case 0x56: // v
|
|
case 0x57: // w
|
|
case 0x58: // x
|
|
case 0x59: // y
|
|
case 0x5a: // z
|
|
{
|
|
seqbuflen = _get_non_alt_char(seqbuf, key_event,
|
|
control_key_state);
|
|
|
|
// If Alt is pressed, then prefix with escape.
|
|
if (_is_alt_pressed(control_key_state)) {
|
|
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
|
|
}
|
|
}
|
|
break;
|
|
|
|
// These virtual key codes are generated by the keys on the
|
|
// keypad *when NumLock is on* and *Shift is up*.
|
|
MATCH(VK_NUMPAD0, "0");
|
|
MATCH(VK_NUMPAD1, "1");
|
|
MATCH(VK_NUMPAD2, "2");
|
|
MATCH(VK_NUMPAD3, "3");
|
|
MATCH(VK_NUMPAD4, "4");
|
|
MATCH(VK_NUMPAD5, "5");
|
|
MATCH(VK_NUMPAD6, "6");
|
|
MATCH(VK_NUMPAD7, "7");
|
|
MATCH(VK_NUMPAD8, "8");
|
|
MATCH(VK_NUMPAD9, "9");
|
|
|
|
MATCH(VK_MULTIPLY, "*");
|
|
MATCH(VK_ADD, "+");
|
|
MATCH(VK_SUBTRACT, "-");
|
|
// VK_DECIMAL is generated by the . key on the keypad *when
|
|
// NumLock is on* and *Shift is up* and the sequence is not
|
|
// Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
|
|
// Windows Security screen to come up).
|
|
case VK_DECIMAL:
|
|
// U.S. English uses '.', Germany German uses ','.
|
|
seqbuflen = _get_non_control_char(seqbuf, key_event,
|
|
control_key_state);
|
|
break;
|
|
|
|
MATCH_MODIFIER(VK_F1, SS3 "P");
|
|
MATCH_MODIFIER(VK_F2, SS3 "Q");
|
|
MATCH_MODIFIER(VK_F3, SS3 "R");
|
|
MATCH_MODIFIER(VK_F4, SS3 "S");
|
|
MATCH_MODIFIER(VK_F5, CSI "15~");
|
|
MATCH_MODIFIER(VK_F6, CSI "17~");
|
|
MATCH_MODIFIER(VK_F7, CSI "18~");
|
|
MATCH_MODIFIER(VK_F8, CSI "19~");
|
|
MATCH_MODIFIER(VK_F9, CSI "20~");
|
|
MATCH_MODIFIER(VK_F10, CSI "21~");
|
|
MATCH_MODIFIER(VK_F11, CSI "23~");
|
|
MATCH_MODIFIER(VK_F12, CSI "24~");
|
|
|
|
MATCH_MODIFIER(VK_F13, CSI "25~");
|
|
MATCH_MODIFIER(VK_F14, CSI "26~");
|
|
MATCH_MODIFIER(VK_F15, CSI "28~");
|
|
MATCH_MODIFIER(VK_F16, CSI "29~");
|
|
MATCH_MODIFIER(VK_F17, CSI "31~");
|
|
MATCH_MODIFIER(VK_F18, CSI "32~");
|
|
MATCH_MODIFIER(VK_F19, CSI "33~");
|
|
MATCH_MODIFIER(VK_F20, CSI "34~");
|
|
|
|
// MATCH_MODIFIER(VK_F21, ???);
|
|
// MATCH_MODIFIER(VK_F22, ???);
|
|
// MATCH_MODIFIER(VK_F23, ???);
|
|
// MATCH_MODIFIER(VK_F24, ???);
|
|
}
|
|
}
|
|
|
|
#undef MATCH
|
|
#undef MATCH_MODIFIER
|
|
#undef MATCH_KEYPAD
|
|
#undef MATCH_MODIFIER_KEYPAD
|
|
#undef ESC
|
|
#undef CSI
|
|
#undef SS3
|
|
|
|
const char* out;
|
|
size_t outlen;
|
|
|
|
// Check for output in any of:
|
|
// * seqstr is set (and strlen can be used to determine the length).
|
|
// * seqbuf and seqbuflen are set
|
|
// Fallback to ch from Windows.
|
|
if (seqstr != NULL) {
|
|
out = seqstr;
|
|
outlen = strlen(seqstr);
|
|
} else if (seqbuflen > 0) {
|
|
out = seqbuf;
|
|
outlen = seqbuflen;
|
|
} else if (ch != '\0') {
|
|
// Use whatever Windows told us it is.
|
|
seqbuf[0] = ch;
|
|
seqbuflen = 1;
|
|
out = seqbuf;
|
|
outlen = seqbuflen;
|
|
} else {
|
|
// No special handling for the virtual key code and Windows isn't
|
|
// telling us a character code, then we don't know how to translate
|
|
// the key press.
|
|
//
|
|
// Consume the input and 'continue' to cause us to get a new key
|
|
// event.
|
|
D("_console_read: unknown virtual key code: %d, enhanced: %s",
|
|
vk, _is_enhanced_key(control_key_state) ? "true" : "false");
|
|
key_event->wRepeatCount = 0;
|
|
continue;
|
|
}
|
|
|
|
int bytesRead = 0;
|
|
|
|
// put output wRepeatCount times into buf/len
|
|
while (key_event->wRepeatCount > 0) {
|
|
if (len >= outlen) {
|
|
// Write to buf/len
|
|
memcpy(buf, out, outlen);
|
|
buf = (void*)((char*)buf + outlen);
|
|
len -= outlen;
|
|
bytesRead += outlen;
|
|
|
|
// consume the input
|
|
--key_event->wRepeatCount;
|
|
} else {
|
|
// Not enough space, so just leave it in _win32_input_record
|
|
// for a subsequent retrieval.
|
|
if (bytesRead == 0) {
|
|
// We didn't write anything because there wasn't enough
|
|
// space to even write one sequence. This should never
|
|
// happen if the caller uses sensible buffer sizes
|
|
// (i.e. >= maximum sequence length which is probably a
|
|
// few bytes long).
|
|
D("_console_read: no buffer space to write one sequence; "
|
|
"buffer: %ld, sequence: %ld\n", (long)len,
|
|
(long)outlen);
|
|
errno = ENOMEM;
|
|
return -1;
|
|
} else {
|
|
// Stop trying to write to buf/len, just return whatever
|
|
// we wrote so far.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return bytesRead;
|
|
}
|
|
}
|
|
|
|
static DWORD _old_console_mode; // previous GetConsoleMode() result
|
|
static HANDLE _console_handle; // when set, console mode should be restored
|
|
|
|
void stdin_raw_init() {
|
|
const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
|
|
|
|
// Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
|
|
// calling the process Ctrl-C routine (configured by
|
|
// SetConsoleCtrlHandler()).
|
|
// Disable ENABLE_LINE_INPUT so that input is immediately sent.
|
|
// Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
|
|
// flag also seems necessary to have proper line-ending processing.
|
|
if (!SetConsoleMode(in, _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
|
|
ENABLE_LINE_INPUT |
|
|
ENABLE_ECHO_INPUT))) {
|
|
// This really should not fail.
|
|
D("stdin_raw_init: SetConsoleMode() failed: %s",
|
|
SystemErrorCodeToString(GetLastError()).c_str());
|
|
}
|
|
|
|
// Once this is set, it means that stdin has been configured for
|
|
// reading from and that the old console mode should be restored later.
|
|
_console_handle = in;
|
|
|
|
// Note that we don't need to configure C Runtime line-ending
|
|
// translation because _console_read() does not call the C Runtime to
|
|
// read from the console.
|
|
}
|
|
|
|
void stdin_raw_restore() {
|
|
if (_console_handle != NULL) {
|
|
const HANDLE in = _console_handle;
|
|
_console_handle = NULL; // clear state
|
|
|
|
if (!SetConsoleMode(in, _old_console_mode)) {
|
|
// This really should not fail.
|
|
D("stdin_raw_restore: SetConsoleMode() failed: %s",
|
|
SystemErrorCodeToString(GetLastError()).c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Called by 'adb shell' and 'adb exec-in' to read from stdin.
|
|
int unix_read(int fd, void* buf, size_t len) {
|
|
if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
|
|
// If it is a request to read from stdin, and stdin_raw_init() has been
|
|
// called, and it successfully configured the console, then read from
|
|
// the console using Win32 console APIs and partially emulate a unix
|
|
// terminal.
|
|
return _console_read(_console_handle, buf, len);
|
|
} else {
|
|
// On older versions of Windows (definitely 7, definitely not 10),
|
|
// ReadConsole() with a size >= 31367 fails, so if |fd| is a console
|
|
// we need to limit the read size.
|
|
if (len > 4096 && unix_isatty(fd)) {
|
|
len = 4096;
|
|
}
|
|
// Just call into C Runtime which can read from pipes/files and which
|
|
// can do LF/CR translation (which is overridable with _setmode()).
|
|
// Undefine the macro that is set in sysdeps.h which bans calls to
|
|
// plain read() in favor of unix_read() or adb_read().
|
|
#pragma push_macro("read")
|
|
#undef read
|
|
return read(fd, buf, len);
|
|
#pragma pop_macro("read")
|
|
}
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/***** *****/
|
|
/***** Unicode support *****/
|
|
/***** *****/
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
// This implements support for using files with Unicode filenames and for
|
|
// outputting Unicode text to a Win32 console window. This is inspired from
|
|
// http://utf8everywhere.org/.
|
|
//
|
|
// Background
|
|
// ----------
|
|
//
|
|
// On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
|
|
// filenames to APIs such as open(). This works because filenames are largely
|
|
// opaque 'cookies' (perhaps excluding path separators).
|
|
//
|
|
// On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
|
|
// UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
|
|
// strings, but the strings are in the ANSI codepage and not UTF-8. (The
|
|
// CreateFile() API is really just a macro that adds the W/A based on whether
|
|
// the UNICODE preprocessor symbol is defined).
|
|
//
|
|
// Options
|
|
// -------
|
|
//
|
|
// Thus, to write a portable program, there are a few options:
|
|
//
|
|
// 1. Write the program with wchar_t filenames (wchar_t path[256];).
|
|
// For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
|
|
// that takes a wchar_t string, converts it to UTF-8 and then calls the real
|
|
// open() API.
|
|
//
|
|
// 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
|
|
// 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
|
|
// potentially touching a lot of code.
|
|
//
|
|
// 3. Write the program with a 1-byte char filenames (char path[256];) that are
|
|
// UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
|
|
// takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
|
|
// or C Runtime API.
|
|
//
|
|
// The Choice
|
|
// ----------
|
|
//
|
|
// The code below chooses option 3, the UTF-8 everywhere strategy. It
|
|
// introduces narrow() which converts UTF-16 to UTF-8. This is used by the
|
|
// NarrowArgs helper class that is used to convert wmain() args into UTF-8
|
|
// args that are passed to main() at the beginning of program startup. We also
|
|
// introduce widen() which converts from UTF-8 to UTF-16. This is used to
|
|
// implement wrappers below that call UTF-16 OS and C Runtime APIs.
|
|
//
|
|
// Unicode console output
|
|
// ----------------------
|
|
//
|
|
// The way to output Unicode to a Win32 console window is to call
|
|
// WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
|
|
// such as Lucida Console or Consolas, and in the case of East Asian languages
|
|
// (such as Chinese, Japanese, Korean), the user must go to the Control Panel
|
|
// and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
|
|
// font to be used in console windows.)
|
|
//
|
|
// The problem is getting the C Runtime to make fprintf and related APIs call
|
|
// WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
|
|
// promising, but the various modes have issues:
|
|
//
|
|
// 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
|
|
// UTF-16 do not display properly.
|
|
// 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
|
|
// totally wrong.
|
|
// 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
|
|
// handler to be called (upon a later I/O call), aborting the process.
|
|
// 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
|
|
// to output nothing.
|
|
//
|
|
// So the only solution is to write our own adb_fprintf() that converts UTF-8
|
|
// to UTF-16 and then calls WriteConsoleW().
|
|
|
|
|
|
// Function prototype because attributes cannot be placed on func definitions.
|
|
static void _widen_fatal(const char *fmt, ...)
|
|
__attribute__((__format__(ADB_FORMAT_ARCHETYPE, 1, 2)));
|
|
|
|
// A version of fatal() that does not call adb_(v)fprintf(), so it can be
|
|
// called from those functions.
|
|
static void _widen_fatal(const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
// If (v)fprintf are macros that point to adb_(v)fprintf, when random adb
|
|
// code calls (v)fprintf, it may end up calling adb_(v)fprintf, which then
|
|
// calls _widen_fatal(). So then how does _widen_fatal() output a error?
|
|
// By directly calling real C Runtime APIs that don't properly output
|
|
// Unicode, but will be able to get a comprehendible message out. To do
|
|
// this, make sure we don't call (v)fprintf macros by undefining them.
|
|
#pragma push_macro("fprintf")
|
|
#pragma push_macro("vfprintf")
|
|
#undef fprintf
|
|
#undef vfprintf
|
|
fprintf(stderr, "error: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
#pragma pop_macro("vfprintf")
|
|
#pragma pop_macro("fprintf")
|
|
va_end(ap);
|
|
exit(-1);
|
|
}
|
|
|
|
// TODO: Consider implementing widen() and narrow() out of std::wstring_convert
|
|
// once libcxx is supported on Windows. Or, consider libutils/Unicode.cpp.
|
|
|
|
// Convert from UTF-8 to UTF-16. A size of -1 specifies a NULL terminated
|
|
// string. Any other size specifies the number of chars to convert, excluding
|
|
// any NULL terminator (if you're passing an explicit size, you probably don't
|
|
// have a NULL terminated string in the first place).
|
|
std::wstring widen(const char* utf8, const int size) {
|
|
// Note: Do not call SystemErrorCodeToString() from widen() because
|
|
// SystemErrorCodeToString() calls narrow() which may call fatal() which
|
|
// calls adb_vfprintf() which calls widen(), potentially causing infinite
|
|
// recursion.
|
|
const int chars_to_convert = MultiByteToWideChar(CP_UTF8, 0, utf8, size,
|
|
NULL, 0);
|
|
if (chars_to_convert <= 0) {
|
|
// UTF-8 to UTF-16 should be lossless, so we don't expect this to fail.
|
|
_widen_fatal("MultiByteToWideChar failed counting: %d, "
|
|
"GetLastError: %lu", chars_to_convert, GetLastError());
|
|
}
|
|
|
|
std::wstring utf16;
|
|
size_t chars_to_allocate = chars_to_convert;
|
|
if (size == -1) {
|
|
// chars_to_convert includes a NULL terminator, so subtract space
|
|
// for that because resize() includes that itself.
|
|
--chars_to_allocate;
|
|
}
|
|
utf16.resize(chars_to_allocate);
|
|
|
|
// This uses &string[0] to get write-access to the entire string buffer
|
|
// which may be assuming that the chars are all contiguous, but it seems
|
|
// to work and saves us the hassle of using a temporary
|
|
// std::vector<wchar_t>.
|
|
const int result = MultiByteToWideChar(CP_UTF8, 0, utf8, size, &utf16[0],
|
|
chars_to_convert);
|
|
if (result != chars_to_convert) {
|
|
// UTF-8 to UTF-16 should be lossless, so we don't expect this to fail.
|
|
_widen_fatal("MultiByteToWideChar failed conversion: %d, "
|
|
"GetLastError: %lu", result, GetLastError());
|
|
}
|
|
|
|
// If a size was passed in (size != -1), then the string is NULL terminated
|
|
// by a NULL char that was written by std::string::resize(). If size == -1,
|
|
// then MultiByteToWideChar() read a NULL terminator from the original
|
|
// string and converted it to a NULL UTF-16 char in the output.
|
|
|
|
return utf16;
|
|
}
|
|
|
|
// Convert a NULL terminated string from UTF-8 to UTF-16.
|
|
std::wstring widen(const char* utf8) {
|
|
// Pass -1 to let widen() determine the string length.
|
|
return widen(utf8, -1);
|
|
}
|
|
|
|
// Convert from UTF-8 to UTF-16.
|
|
std::wstring widen(const std::string& utf8) {
|
|
return widen(utf8.c_str(), utf8.length());
|
|
}
|
|
|
|
// Convert from UTF-16 to UTF-8.
|
|
std::string narrow(const std::wstring& utf16) {
|
|
return narrow(utf16.c_str());
|
|
}
|
|
|
|
// Convert from UTF-16 to UTF-8.
|
|
std::string narrow(const wchar_t* utf16) {
|
|
// Note: Do not call SystemErrorCodeToString() from narrow() because
|
|
// SystemErrorCodeToString() calls narrow() and we don't want potential
|
|
// infinite recursion.
|
|
const int chars_required = WideCharToMultiByte(CP_UTF8, 0, utf16, -1, NULL,
|
|
0, NULL, NULL);
|
|
if (chars_required <= 0) {
|
|
// UTF-16 to UTF-8 should be lossless, so we don't expect this to fail.
|
|
fatal("WideCharToMultiByte failed counting: %d, GetLastError: %lu",
|
|
chars_required, GetLastError());
|
|
}
|
|
|
|
std::string utf8;
|
|
// Subtract space for the NULL terminator because resize() includes
|
|
// that itself. Note that this could potentially throw a std::bad_alloc
|
|
// exception.
|
|
utf8.resize(chars_required - 1);
|
|
|
|
// This uses &string[0] to get write-access to the entire string buffer
|
|
// which may be assuming that the chars are all contiguous, but it seems
|
|
// to work and saves us the hassle of using a temporary
|
|
// std::vector<char>.
|
|
const int result = WideCharToMultiByte(CP_UTF8, 0, utf16, -1, &utf8[0],
|
|
chars_required, NULL, NULL);
|
|
if (result != chars_required) {
|
|
// UTF-16 to UTF-8 should be lossless, so we don't expect this to fail.
|
|
fatal("WideCharToMultiByte failed conversion: %d, GetLastError: %lu",
|
|
result, GetLastError());
|
|
}
|
|
|
|
return utf8;
|
|
}
|
|
|
|
// Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
|
|
// be passed to main().
|
|
NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
|
|
narrow_args = new char*[argc + 1];
|
|
|
|
for (int i = 0; i < argc; ++i) {
|
|
narrow_args[i] = strdup(narrow(argv[i]).c_str());
|
|
}
|
|
narrow_args[argc] = nullptr; // terminate
|
|
}
|
|
|
|
NarrowArgs::~NarrowArgs() {
|
|
if (narrow_args != nullptr) {
|
|
for (char** argp = narrow_args; *argp != nullptr; ++argp) {
|
|
free(*argp);
|
|
}
|
|
delete[] narrow_args;
|
|
narrow_args = nullptr;
|
|
}
|
|
}
|
|
|
|
int unix_open(const char* path, int options, ...) {
|
|
if ((options & O_CREAT) == 0) {
|
|
return _wopen(widen(path).c_str(), options);
|
|
} else {
|
|
int mode;
|
|
va_list args;
|
|
va_start(args, options);
|
|
mode = va_arg(args, int);
|
|
va_end(args);
|
|
return _wopen(widen(path).c_str(), options, mode);
|
|
}
|
|
}
|
|
|
|
// Version of stat() that takes a UTF-8 path.
|
|
int adb_stat(const char* f, struct adb_stat* s) {
|
|
#pragma push_macro("wstat")
|
|
// This definition of wstat seems to be missing from <sys/stat.h>.
|
|
#if defined(_FILE_OFFSET_BITS) && (_FILE_OFFSET_BITS == 64)
|
|
#ifdef _USE_32BIT_TIME_T
|
|
#define wstat _wstat32i64
|
|
#else
|
|
#define wstat _wstat64
|
|
#endif
|
|
#else
|
|
// <sys/stat.h> has a function prototype for wstat() that should be available.
|
|
#endif
|
|
|
|
return wstat(widen(f).c_str(), s);
|
|
|
|
#pragma pop_macro("wstat")
|
|
}
|
|
|
|
// Version of opendir() that takes a UTF-8 path.
|
|
DIR* adb_opendir(const char* name) {
|
|
// Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
|
|
// the fields, but right now all the callers treat the structure as
|
|
// opaque.
|
|
return reinterpret_cast<DIR*>(_wopendir(widen(name).c_str()));
|
|
}
|
|
|
|
// Version of readdir() that returns UTF-8 paths.
|
|
struct dirent* adb_readdir(DIR* dir) {
|
|
_WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
|
|
struct _wdirent* const went = _wreaddir(wdir);
|
|
if (went == nullptr) {
|
|
return nullptr;
|
|
}
|
|
// Convert from UTF-16 to UTF-8.
|
|
const std::string name_utf8(narrow(went->d_name));
|
|
|
|
// Cast the _wdirent* to dirent* and overwrite the d_name field (which has
|
|
// space for UTF-16 wchar_t's) with UTF-8 char's.
|
|
struct dirent* ent = reinterpret_cast<struct dirent*>(went);
|
|
|
|
if (name_utf8.length() + 1 > sizeof(went->d_name)) {
|
|
// Name too big to fit in existing buffer.
|
|
errno = ENOMEM;
|
|
return nullptr;
|
|
}
|
|
|
|
// Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
|
|
// because _wdirent contains wchar_t instead of char. So even if name_utf8
|
|
// can fit in _wdirent::d_name, the resulting dirent::d_name field may be
|
|
// bigger than the caller expects because they expect a dirent structure
|
|
// which has a smaller d_name field. Ignore this since the caller should be
|
|
// resilient.
|
|
|
|
// Rewrite the UTF-16 d_name field to UTF-8.
|
|
strcpy(ent->d_name, name_utf8.c_str());
|
|
|
|
return ent;
|
|
}
|
|
|
|
// Version of closedir() to go with our version of adb_opendir().
|
|
int adb_closedir(DIR* dir) {
|
|
return _wclosedir(reinterpret_cast<_WDIR*>(dir));
|
|
}
|
|
|
|
// Version of unlink() that takes a UTF-8 path.
|
|
int adb_unlink(const char* path) {
|
|
const std::wstring wpath(widen(path));
|
|
|
|
int rc = _wunlink(wpath.c_str());
|
|
|
|
if (rc == -1 && errno == EACCES) {
|
|
/* unlink returns EACCES when the file is read-only, so we first */
|
|
/* try to make it writable, then unlink again... */
|
|
rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
|
|
if (rc == 0)
|
|
rc = _wunlink(wpath.c_str());
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
// Version of mkdir() that takes a UTF-8 path.
|
|
int adb_mkdir(const std::string& path, int mode) {
|
|
return _wmkdir(widen(path.c_str()).c_str());
|
|
}
|
|
|
|
// Version of utime() that takes a UTF-8 path.
|
|
int adb_utime(const char* path, struct utimbuf* u) {
|
|
static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
|
|
"utimbuf and _utimbuf should be the same size because they both "
|
|
"contain the same types, namely time_t");
|
|
return _wutime(widen(path).c_str(), reinterpret_cast<struct _utimbuf*>(u));
|
|
}
|
|
|
|
// Version of chmod() that takes a UTF-8 path.
|
|
int adb_chmod(const char* path, int mode) {
|
|
return _wchmod(widen(path).c_str(), mode);
|
|
}
|
|
|
|
// Internal helper function to write UTF-8 bytes to a console. Returns -1
|
|
// on error.
|
|
static int _console_write_utf8(const char* buf, size_t size, FILE* stream,
|
|
HANDLE console) {
|
|
// Convert from UTF-8 to UTF-16.
|
|
// This could throw std::bad_alloc.
|
|
const std::wstring output(widen(buf, size));
|
|
|
|
// Note that this does not do \n => \r\n translation because that
|
|
// doesn't seem necessary for the Windows console. For the Windows
|
|
// console \r moves to the beginning of the line and \n moves to a new
|
|
// line.
|
|
|
|
// Flush any stream buffering so that our output is afterwards which
|
|
// makes sense because our call is afterwards.
|
|
(void)fflush(stream);
|
|
|
|
// Write UTF-16 to the console.
|
|
DWORD written = 0;
|
|
if (!WriteConsoleW(console, output.c_str(), output.length(), &written,
|
|
NULL)) {
|
|
errno = EIO;
|
|
return -1;
|
|
}
|
|
|
|
// This is the number of UTF-16 chars written, which might be different
|
|
// than the number of UTF-8 chars passed in. It doesn't seem practical to
|
|
// get this count correct.
|
|
return written;
|
|
}
|
|
|
|
// Function prototype because attributes cannot be placed on func definitions.
|
|
static int _console_vfprintf(const HANDLE console, FILE* stream,
|
|
const char *format, va_list ap)
|
|
__attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0)));
|
|
|
|
// Internal function to format a UTF-8 string and write it to a Win32 console.
|
|
// Returns -1 on error.
|
|
static int _console_vfprintf(const HANDLE console, FILE* stream,
|
|
const char *format, va_list ap) {
|
|
std::string output_utf8;
|
|
|
|
// Format the string.
|
|
// This could throw std::bad_alloc.
|
|
android::base::StringAppendV(&output_utf8, format, ap);
|
|
|
|
return _console_write_utf8(output_utf8.c_str(), output_utf8.length(),
|
|
stream, console);
|
|
}
|
|
|
|
// Version of vfprintf() that takes UTF-8 and can write Unicode to a
|
|
// Windows console.
|
|
int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
|
|
const HANDLE console = _get_console_handle(stream);
|
|
|
|
// If there is an associated Win32 console, write to it specially,
|
|
// otherwise defer to the regular C Runtime, passing it UTF-8.
|
|
if (console != NULL) {
|
|
return _console_vfprintf(console, stream, format, ap);
|
|
} else {
|
|
// If vfprintf is a macro, undefine it, so we can call the real
|
|
// C Runtime API.
|
|
#pragma push_macro("vfprintf")
|
|
#undef vfprintf
|
|
return vfprintf(stream, format, ap);
|
|
#pragma pop_macro("vfprintf")
|
|
}
|
|
}
|
|
|
|
// Version of fprintf() that takes UTF-8 and can write Unicode to a
|
|
// Windows console.
|
|
int adb_fprintf(FILE *stream, const char *format, ...) {
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
const int result = adb_vfprintf(stream, format, ap);
|
|
va_end(ap);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Version of printf() that takes UTF-8 and can write Unicode to a
|
|
// Windows console.
|
|
int adb_printf(const char *format, ...) {
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
const int result = adb_vfprintf(stdout, format, ap);
|
|
va_end(ap);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Version of fputs() that takes UTF-8 and can write Unicode to a
|
|
// Windows console.
|
|
int adb_fputs(const char* buf, FILE* stream) {
|
|
// adb_fprintf returns -1 on error, which is conveniently the same as EOF
|
|
// which fputs (and hence adb_fputs) should return on error.
|
|
return adb_fprintf(stream, "%s", buf);
|
|
}
|
|
|
|
// Version of fputc() that takes UTF-8 and can write Unicode to a
|
|
// Windows console.
|
|
int adb_fputc(int ch, FILE* stream) {
|
|
const int result = adb_fprintf(stream, "%c", ch);
|
|
if (result <= 0) {
|
|
// If there was an error, or if nothing was printed (which should be an
|
|
// error), return an error, which fprintf signifies with EOF.
|
|
return EOF;
|
|
}
|
|
// For success, fputc returns the char, cast to unsigned char, then to int.
|
|
return static_cast<unsigned char>(ch);
|
|
}
|
|
|
|
// Internal function to write UTF-8 to a Win32 console. Returns the number of
|
|
// items (of length size) written. On error, returns a short item count or 0.
|
|
static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
|
|
FILE* stream, HANDLE console) {
|
|
// TODO: Note that a Unicode character could be several UTF-8 bytes. But
|
|
// if we're passed only some of the bytes of a character (for example, from
|
|
// the network socket for adb shell), we won't be able to convert the char
|
|
// to a complete UTF-16 char (or surrogate pair), so the output won't look
|
|
// right.
|
|
//
|
|
// To fix this, see libutils/Unicode.cpp for hints on decoding UTF-8.
|
|
//
|
|
// For now we ignore this problem because the alternative is that we'd have
|
|
// to parse UTF-8 and buffer things up (doable). At least this is better
|
|
// than what we had before -- always incorrect multi-byte UTF-8 output.
|
|
int result = _console_write_utf8(reinterpret_cast<const char*>(ptr),
|
|
size * nmemb, stream, console);
|
|
if (result == -1) {
|
|
return 0;
|
|
}
|
|
return result / size;
|
|
}
|
|
|
|
// Version of fwrite() that takes UTF-8 and can write Unicode to a
|
|
// Windows console.
|
|
size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
|
|
const HANDLE console = _get_console_handle(stream);
|
|
|
|
// If there is an associated Win32 console, write to it specially,
|
|
// otherwise defer to the regular C Runtime, passing it UTF-8.
|
|
if (console != NULL) {
|
|
return _console_fwrite(ptr, size, nmemb, stream, console);
|
|
} else {
|
|
// If fwrite is a macro, undefine it, so we can call the real
|
|
// C Runtime API.
|
|
#pragma push_macro("fwrite")
|
|
#undef fwrite
|
|
return fwrite(ptr, size, nmemb, stream);
|
|
#pragma pop_macro("fwrite")
|
|
}
|
|
}
|
|
|
|
// Version of fopen() that takes a UTF-8 filename and can access a file with
|
|
// a Unicode filename.
|
|
FILE* adb_fopen(const char* f, const char* m) {
|
|
return _wfopen(widen(f).c_str(), widen(m).c_str());
|
|
}
|
|
|
|
// Return a lowercase version of the argument. Uses C Runtime tolower() on
|
|
// each byte which is not UTF-8 aware, and theoretically uses the current C
|
|
// Runtime locale (which in practice is not changed, so this becomes a ASCII
|
|
// conversion).
|
|
static std::string ToLower(const std::string& anycase) {
|
|
// copy string
|
|
std::string str(anycase);
|
|
// transform the copy
|
|
std::transform(str.begin(), str.end(), str.begin(), tolower);
|
|
return str;
|
|
}
|
|
|
|
extern "C" int main(int argc, char** argv);
|
|
|
|
// Link with -municode to cause this wmain() to be used as the program
|
|
// entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
|
|
// regular main() with UTF-8 args.
|
|
extern "C" int wmain(int argc, wchar_t **argv) {
|
|
// Convert args from UTF-16 to UTF-8 and pass that to main().
|
|
NarrowArgs narrow_args(argc, argv);
|
|
return main(argc, narrow_args.data());
|
|
}
|
|
|
|
// Shadow UTF-8 environment variable name/value pairs that are created from
|
|
// _wenviron the first time that adb_getenv() is called. Note that this is not
|
|
// currently updated if putenv, setenv, unsetenv are called. Note that no
|
|
// thread synchronization is done, but we're called early enough in
|
|
// single-threaded startup that things work ok.
|
|
static std::unordered_map<std::string, char*> g_environ_utf8;
|
|
|
|
// Make sure that shadow UTF-8 environment variables are setup.
|
|
static void _ensure_env_setup() {
|
|
// If some name/value pairs exist, then we've already done the setup below.
|
|
if (g_environ_utf8.size() != 0) {
|
|
return;
|
|
}
|
|
|
|
if (_wenviron == nullptr) {
|
|
// If _wenviron is null, then -municode probably wasn't used. That
|
|
// linker flag will cause the entry point to setup _wenviron. It will
|
|
// also require an implementation of wmain() (which we provide above).
|
|
fatal("_wenviron is not set, did you link with -municode?");
|
|
}
|
|
|
|
// Read name/value pairs from UTF-16 _wenviron and write new name/value
|
|
// pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
|
|
// to use the D() macro here because that tracing only works if the
|
|
// ADB_TRACE environment variable is setup, but that env var can't be read
|
|
// until this code completes.
|
|
for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
|
|
wchar_t* const equal = wcschr(*env, L'=');
|
|
if (equal == nullptr) {
|
|
// Malformed environment variable with no equal sign. Shouldn't
|
|
// really happen, but we should be resilient to this.
|
|
continue;
|
|
}
|
|
|
|
// Store lowercase name so that we can do case-insensitive searches.
|
|
const std::string name_utf8(ToLower(narrow(
|
|
std::wstring(*env, equal - *env))));
|
|
char* const value_utf8 = strdup(narrow(equal + 1).c_str());
|
|
|
|
// Don't overwrite a previus env var with the same name. In reality,
|
|
// the system probably won't let two env vars with the same name exist
|
|
// in _wenviron.
|
|
g_environ_utf8.insert({name_utf8, value_utf8});
|
|
}
|
|
}
|
|
|
|
// Version of getenv() that takes a UTF-8 environment variable name and
|
|
// retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
|
|
char* adb_getenv(const char* name) {
|
|
_ensure_env_setup();
|
|
|
|
// Case-insensitive search by searching for lowercase name in a map of
|
|
// lowercase names.
|
|
const auto it = g_environ_utf8.find(ToLower(std::string(name)));
|
|
if (it == g_environ_utf8.end()) {
|
|
return nullptr;
|
|
}
|
|
|
|
return it->second;
|
|
}
|
|
|
|
// Version of getcwd() that returns the current working directory in UTF-8.
|
|
char* adb_getcwd(char* buf, int size) {
|
|
wchar_t* wbuf = _wgetcwd(nullptr, 0);
|
|
if (wbuf == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
const std::string buf_utf8(narrow(wbuf));
|
|
free(wbuf);
|
|
wbuf = nullptr;
|
|
|
|
// If size was specified, make sure all the chars will fit.
|
|
if (size != 0) {
|
|
if (size < static_cast<int>(buf_utf8.length() + 1)) {
|
|
errno = ERANGE;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// If buf was not specified, allocate storage.
|
|
if (buf == nullptr) {
|
|
if (size == 0) {
|
|
size = buf_utf8.length() + 1;
|
|
}
|
|
buf = reinterpret_cast<char*>(malloc(size));
|
|
if (buf == nullptr) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Destination buffer was allocated with enough space, or we've already
|
|
// checked an existing buffer size for enough space.
|
|
strcpy(buf, buf_utf8.c_str());
|
|
|
|
return buf;
|
|
}
|