platform_system_core/adb/socket_test.cpp

323 lines
11 KiB
C++

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdevent.h"
#include <gtest/gtest.h>
#include <array>
#include <limits>
#include <queue>
#include <string>
#include <thread>
#include <vector>
#include <unistd.h>
#include "adb.h"
#include "adb_io.h"
#include "fdevent_test.h"
#include "socket.h"
#include "sysdeps.h"
#include "sysdeps/chrono.h"
struct ThreadArg {
int first_read_fd;
int last_write_fd;
size_t middle_pipe_count;
};
class LocalSocketTest : public FdeventTest {};
constexpr auto SLEEP_FOR_FDEVENT = 100ms;
TEST_F(LocalSocketTest, smoke) {
// Join two socketpairs with a chain of intermediate socketpairs.
int first[2];
std::vector<std::array<int, 2>> intermediates;
int last[2];
constexpr size_t INTERMEDIATE_COUNT = 50;
constexpr size_t MESSAGE_LOOP_COUNT = 100;
const std::string MESSAGE = "socket_test";
intermediates.resize(INTERMEDIATE_COUNT);
ASSERT_EQ(0, adb_socketpair(first)) << strerror(errno);
ASSERT_EQ(0, adb_socketpair(last)) << strerror(errno);
asocket* prev_tail = create_local_socket(first[1]);
ASSERT_NE(nullptr, prev_tail);
auto connect = [](asocket* tail, asocket* head) {
tail->peer = head;
head->peer = tail;
tail->ready(tail);
};
for (auto& intermediate : intermediates) {
ASSERT_EQ(0, adb_socketpair(intermediate.data())) << strerror(errno);
asocket* head = create_local_socket(intermediate[0]);
ASSERT_NE(nullptr, head);
asocket* tail = create_local_socket(intermediate[1]);
ASSERT_NE(nullptr, tail);
connect(prev_tail, head);
prev_tail = tail;
}
asocket* end = create_local_socket(last[0]);
ASSERT_NE(nullptr, end);
connect(prev_tail, end);
PrepareThread();
std::thread thread(fdevent_loop);
for (size_t i = 0; i < MESSAGE_LOOP_COUNT; ++i) {
std::string read_buffer = MESSAGE;
std::string write_buffer(MESSAGE.size(), 'a');
ASSERT_TRUE(WriteFdExactly(first[0], &read_buffer[0], read_buffer.size()));
ASSERT_TRUE(ReadFdExactly(last[1], &write_buffer[0], write_buffer.size()));
ASSERT_EQ(read_buffer, write_buffer);
}
ASSERT_EQ(0, adb_close(first[0]));
ASSERT_EQ(0, adb_close(last[1]));
// Wait until the local sockets are closed.
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread(thread);
}
struct CloseWithPacketArg {
int socket_fd;
size_t bytes_written;
int cause_close_fd;
};
static void CloseWithPacketThreadFunc(CloseWithPacketArg* arg) {
asocket* s = create_local_socket(arg->socket_fd);
ASSERT_TRUE(s != nullptr);
arg->bytes_written = 0;
while (true) {
apacket* p = get_apacket();
p->len = sizeof(p->data);
arg->bytes_written += p->len;
int ret = s->enqueue(s, p);
if (ret == 1) {
// The writer has one packet waiting to send.
break;
}
}
asocket* cause_close_s = create_local_socket(arg->cause_close_fd);
ASSERT_TRUE(cause_close_s != nullptr);
cause_close_s->peer = s;
s->peer = cause_close_s;
cause_close_s->ready(cause_close_s);
fdevent_loop();
}
// This test checks if we can close local socket in the following situation:
// The socket is closing but having some packets, so it is not closed. Then
// some write error happens in the socket's file handler, e.g., the file
// handler is closed.
TEST_F(LocalSocketTest, close_socket_with_packet) {
int socket_fd[2];
ASSERT_EQ(0, adb_socketpair(socket_fd));
int cause_close_fd[2];
ASSERT_EQ(0, adb_socketpair(cause_close_fd));
CloseWithPacketArg arg;
arg.socket_fd = socket_fd[1];
arg.cause_close_fd = cause_close_fd[1];
PrepareThread();
std::thread thread(CloseWithPacketThreadFunc, &arg);
// Wait until the fdevent_loop() starts.
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
ASSERT_EQ(0, adb_close(cause_close_fd[0]));
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
ASSERT_EQ(0, adb_close(socket_fd[0]));
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread(thread);
}
// This test checks if we can read packets from a closing local socket.
TEST_F(LocalSocketTest, read_from_closing_socket) {
int socket_fd[2];
ASSERT_EQ(0, adb_socketpair(socket_fd));
int cause_close_fd[2];
ASSERT_EQ(0, adb_socketpair(cause_close_fd));
CloseWithPacketArg arg;
arg.socket_fd = socket_fd[1];
arg.cause_close_fd = cause_close_fd[1];
PrepareThread();
std::thread thread(CloseWithPacketThreadFunc, &arg);
// Wait until the fdevent_loop() starts.
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
ASSERT_EQ(0, adb_close(cause_close_fd[0]));
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
// Verify if we can read successfully.
std::vector<char> buf(arg.bytes_written);
ASSERT_NE(0u, arg.bytes_written);
ASSERT_EQ(true, ReadFdExactly(socket_fd[0], buf.data(), buf.size()));
ASSERT_EQ(0, adb_close(socket_fd[0]));
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread(thread);
}
// This test checks if we can close local socket in the following situation:
// The socket is not closed and has some packets. When it fails to write to
// the socket's file handler because the other end is closed, we check if the
// socket is closed.
TEST_F(LocalSocketTest, write_error_when_having_packets) {
int socket_fd[2];
ASSERT_EQ(0, adb_socketpair(socket_fd));
int cause_close_fd[2];
ASSERT_EQ(0, adb_socketpair(cause_close_fd));
CloseWithPacketArg arg;
arg.socket_fd = socket_fd[1];
arg.cause_close_fd = cause_close_fd[1];
PrepareThread();
std::thread thread(CloseWithPacketThreadFunc, &arg);
// Wait until the fdevent_loop() starts.
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
EXPECT_EQ(2u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
ASSERT_EQ(0, adb_close(socket_fd[0]));
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread(thread);
}
#if defined(__linux__)
static void ClientThreadFunc() {
std::string error;
int fd = network_loopback_client(5038, SOCK_STREAM, &error);
ASSERT_GE(fd, 0) << error;
std::this_thread::sleep_for(200ms);
ASSERT_EQ(0, adb_close(fd));
}
struct CloseRdHupSocketArg {
int socket_fd;
};
static void CloseRdHupSocketThreadFunc(CloseRdHupSocketArg* arg) {
asocket* s = create_local_socket(arg->socket_fd);
ASSERT_TRUE(s != nullptr);
fdevent_loop();
}
// This test checks if we can close sockets in CLOSE_WAIT state.
TEST_F(LocalSocketTest, close_socket_in_CLOSE_WAIT_state) {
std::string error;
int listen_fd = network_inaddr_any_server(5038, SOCK_STREAM, &error);
ASSERT_GE(listen_fd, 0);
std::thread client_thread(ClientThreadFunc);
int accept_fd = adb_socket_accept(listen_fd, nullptr, nullptr);
ASSERT_GE(accept_fd, 0);
CloseRdHupSocketArg arg;
arg.socket_fd = accept_fd;
PrepareThread();
std::thread thread(CloseRdHupSocketThreadFunc, &arg);
// Wait until the fdevent_loop() starts.
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
// Wait until the client closes its socket.
client_thread.join();
std::this_thread::sleep_for(SLEEP_FOR_FDEVENT);
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread(thread);
}
#endif // defined(__linux__)
#if ADB_HOST
// Checks that skip_host_serial(serial) returns a pointer to the part of |serial| which matches
// |expected|, otherwise logs the failure to gtest.
void VerifySkipHostSerial(std::string serial, const char* expected) {
char* result = internal::skip_host_serial(&serial[0]);
if (expected == nullptr) {
EXPECT_EQ(nullptr, result);
} else {
EXPECT_STREQ(expected, result);
}
}
// Check [tcp:|udp:]<serial>[:<port>]:<command> format.
TEST(socket_test, test_skip_host_serial) {
for (const std::string& protocol : {"", "tcp:", "udp:"}) {
VerifySkipHostSerial(protocol, nullptr);
VerifySkipHostSerial(protocol + "foo", nullptr);
VerifySkipHostSerial(protocol + "foo:bar", ":bar");
VerifySkipHostSerial(protocol + "foo:bar:baz", ":bar:baz");
VerifySkipHostSerial(protocol + "foo:123:bar", ":bar");
VerifySkipHostSerial(protocol + "foo:123:456", ":456");
VerifySkipHostSerial(protocol + "foo:123:bar:baz", ":bar:baz");
// Don't register a port unless it's all numbers and ends with ':'.
VerifySkipHostSerial(protocol + "foo:123", ":123");
VerifySkipHostSerial(protocol + "foo:123bar:baz", ":123bar:baz");
VerifySkipHostSerial(protocol + "100.100.100.100:5555:foo", ":foo");
VerifySkipHostSerial(protocol + "[0123:4567:89ab:CDEF:0:9:a:f]:5555:foo", ":foo");
VerifySkipHostSerial(protocol + "[::1]:5555:foo", ":foo");
// If we can't find both [] then treat it as a normal serial with [ in it.
VerifySkipHostSerial(protocol + "[0123:foo", ":foo");
// Don't be fooled by random IPv6 addresses in the command string.
VerifySkipHostSerial(protocol + "foo:ping [0123:4567:89ab:CDEF:0:9:a:f]:5555",
":ping [0123:4567:89ab:CDEF:0:9:a:f]:5555");
}
}
// Check <prefix>:<serial>:<command> format.
TEST(socket_test, test_skip_host_serial_prefix) {
for (const std::string& prefix : {"usb:", "product:", "model:", "device:"}) {
VerifySkipHostSerial(prefix, nullptr);
VerifySkipHostSerial(prefix + "foo", nullptr);
VerifySkipHostSerial(prefix + "foo:bar", ":bar");
VerifySkipHostSerial(prefix + "foo:bar:baz", ":bar:baz");
VerifySkipHostSerial(prefix + "foo:123:bar", ":123:bar");
}
}
#endif // ADB_HOST