platform_system_core/libpixelflinger/codeflinger/texturing.cpp

1269 lines
45 KiB
C++

/* libs/pixelflinger/codeflinger/texturing.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <cutils/log.h>
#include "GGLAssembler.h"
namespace android {
// ---------------------------------------------------------------------------
// iterators are initialized like this:
// (intToFixedCenter(x) * dx)>>16 + x0
// ((x<<16 + 0x8000) * dx)>>16 + x0
// ((x<<16)*dx + (0x8000*dx))>>16 + x0
// ( (x*dx) + dx>>1 ) + x0
// (x*dx) + (dx>>1 + x0)
void GGLAssembler::init_iterated_color(fragment_parts_t& parts, const reg_t& x)
{
context_t const* c = mBuilderContext.c;
const needs_t& needs = mBuilderContext.needs;
if (mSmooth) {
// NOTE: we could take this case in the mDithering + !mSmooth case,
// but this would use up to 4 more registers for the color components
// for only a little added quality.
// Currently, this causes the system to run out of registers in
// some case (see issue #719496)
comment("compute initial iterated color (smooth and/or dither case)");
parts.iterated_packed = 0;
parts.packed = 0;
// 0x1: color component
// 0x2: iterators
const int optReload = mOptLevel >> 1;
if (optReload >= 3) parts.reload = 0; // reload nothing
else if (optReload == 2) parts.reload = 2; // reload iterators
else if (optReload == 1) parts.reload = 1; // reload colors
else if (optReload <= 0) parts.reload = 3; // reload both
if (!mSmooth) {
// we're not smoothing (just dithering), we never have to
// reload the iterators
parts.reload &= ~2;
}
Scratch scratches(registerFile());
const int t0 = (parts.reload & 1) ? scratches.obtain() : 0;
const int t1 = (parts.reload & 2) ? scratches.obtain() : 0;
for (int i=0 ; i<4 ; i++) {
if (!mInfo[i].iterated)
continue;
// this component exists in the destination and is not replaced
// by a texture unit.
const int c = (parts.reload & 1) ? t0 : obtainReg();
if (i==0) CONTEXT_LOAD(c, iterators.ydady);
if (i==1) CONTEXT_LOAD(c, iterators.ydrdy);
if (i==2) CONTEXT_LOAD(c, iterators.ydgdy);
if (i==3) CONTEXT_LOAD(c, iterators.ydbdy);
parts.argb[i].reg = c;
if (mInfo[i].smooth) {
parts.argb_dx[i].reg = (parts.reload & 2) ? t1 : obtainReg();
const int dvdx = parts.argb_dx[i].reg;
CONTEXT_LOAD(dvdx, generated_vars.argb[i].dx);
MLA(AL, 0, c, x.reg, dvdx, c);
// adjust the color iterator to make sure it won't overflow
if (!mAA) {
// this is not needed when we're using anti-aliasing
// because we will (have to) clamp the components
// anyway.
int end = scratches.obtain();
MOV(AL, 0, end, reg_imm(parts.count.reg, LSR, 16));
MLA(AL, 1, end, dvdx, end, c);
SUB(MI, 0, c, c, end);
BIC(AL, 0, c, c, reg_imm(c, ASR, 31));
scratches.recycle(end);
}
}
if (parts.reload & 1) {
CONTEXT_STORE(c, generated_vars.argb[i].c);
}
}
} else {
// We're not smoothed, so we can
// just use a packed version of the color and extract the
// components as needed (or not at all if we don't blend)
// figure out if we need the iterated color
int load = 0;
for (int i=0 ; i<4 ; i++) {
component_info_t& info = mInfo[i];
if ((info.inDest || info.needed) && !info.replaced)
load |= 1;
}
parts.iterated_packed = 1;
parts.packed = (!mTextureMachine.mask && !mBlending
&& !mFog && !mDithering);
parts.reload = 0;
if (load || parts.packed) {
if (mBlending || mDithering || mInfo[GGLFormat::ALPHA].needed) {
comment("load initial iterated color (8888 packed)");
parts.iterated.setTo(obtainReg(),
&(c->formats[GGL_PIXEL_FORMAT_RGBA_8888]));
CONTEXT_LOAD(parts.iterated.reg, packed8888);
} else {
comment("load initial iterated color (dest format packed)");
parts.iterated.setTo(obtainReg(), &mCbFormat);
// pre-mask the iterated color
const int bits = parts.iterated.size();
const uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1;
uint32_t mask = 0;
if (mMasking) {
for (int i=0 ; i<4 ; i++) {
const int component_mask = 1<<i;
const int h = parts.iterated.format.c[i].h;
const int l = parts.iterated.format.c[i].l;
if (h && (!(mMasking & component_mask))) {
mask |= ((1<<(h-l))-1) << l;
}
}
}
if (mMasking && ((mask & size)==0)) {
// none of the components are present in the mask
} else {
CONTEXT_LOAD(parts.iterated.reg, packed);
if (mCbFormat.size == 1) {
AND(AL, 0, parts.iterated.reg,
parts.iterated.reg, imm(0xFF));
} else if (mCbFormat.size == 2) {
MOV(AL, 0, parts.iterated.reg,
reg_imm(parts.iterated.reg, LSR, 16));
}
}
// pre-mask the iterated color
if (mMasking) {
build_and_immediate(parts.iterated.reg, parts.iterated.reg,
mask, bits);
}
}
}
}
}
void GGLAssembler::build_iterated_color(
component_t& fragment,
const fragment_parts_t& parts,
int component,
Scratch& regs)
{
fragment.setTo( regs.obtain(), 0, 32, CORRUPTIBLE);
if (!mInfo[component].iterated)
return;
if (parts.iterated_packed) {
// iterated colors are packed, extract the one we need
extract(fragment, parts.iterated, component);
} else {
fragment.h = GGL_COLOR_BITS;
fragment.l = GGL_COLOR_BITS - 8;
fragment.flags |= CLEAR_LO;
// iterated colors are held in their own register,
// (smooth and/or dithering case)
if (parts.reload==3) {
// this implies mSmooth
Scratch scratches(registerFile());
int dx = scratches.obtain();
CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c);
CONTEXT_LOAD(dx, generated_vars.argb[component].dx);
ADD(AL, 0, dx, fragment.reg, dx);
CONTEXT_STORE(dx, generated_vars.argb[component].c);
} else if (parts.reload & 1) {
CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c);
} else {
// we don't reload, so simply rename the register and mark as
// non CORRUPTIBLE so that the texture env or blending code
// won't modify this (renamed) register
regs.recycle(fragment.reg);
fragment.reg = parts.argb[component].reg;
fragment.flags &= ~CORRUPTIBLE;
}
if (mInfo[component].smooth && mAA) {
// when using smooth shading AND anti-aliasing, we need to clamp
// the iterators because there is always an extra pixel on the
// edges, which most of the time will cause an overflow
// (since technically its outside of the domain).
BIC(AL, 0, fragment.reg, fragment.reg,
reg_imm(fragment.reg, ASR, 31));
component_sat(fragment);
}
}
}
// ---------------------------------------------------------------------------
void GGLAssembler::decodeLogicOpNeeds(const needs_t& needs)
{
// gather some informations about the components we need to process...
const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR;
switch(opcode) {
case GGL_COPY:
mLogicOp = 0;
break;
case GGL_CLEAR:
case GGL_SET:
mLogicOp = LOGIC_OP;
break;
case GGL_AND:
case GGL_AND_REVERSE:
case GGL_AND_INVERTED:
case GGL_XOR:
case GGL_OR:
case GGL_NOR:
case GGL_EQUIV:
case GGL_OR_REVERSE:
case GGL_OR_INVERTED:
case GGL_NAND:
mLogicOp = LOGIC_OP|LOGIC_OP_SRC|LOGIC_OP_DST;
break;
case GGL_NOOP:
case GGL_INVERT:
mLogicOp = LOGIC_OP|LOGIC_OP_DST;
break;
case GGL_COPY_INVERTED:
mLogicOp = LOGIC_OP|LOGIC_OP_SRC;
break;
};
}
void GGLAssembler::decodeTMUNeeds(const needs_t& needs, context_t const* c)
{
uint8_t replaced=0;
mTextureMachine.mask = 0;
mTextureMachine.activeUnits = 0;
for (int i=GGL_TEXTURE_UNIT_COUNT-1 ; i>=0 ; i--) {
texture_unit_t& tmu = mTextureMachine.tmu[i];
if (replaced == 0xF) {
// all components are replaced, skip this TMU.
tmu.format_idx = 0;
tmu.mask = 0;
tmu.replaced = replaced;
continue;
}
tmu.format_idx = GGL_READ_NEEDS(T_FORMAT, needs.t[i]);
tmu.format = c->formats[tmu.format_idx];
tmu.bits = tmu.format.size*8;
tmu.swrap = GGL_READ_NEEDS(T_S_WRAP, needs.t[i]);
tmu.twrap = GGL_READ_NEEDS(T_T_WRAP, needs.t[i]);
tmu.env = ggl_needs_to_env(GGL_READ_NEEDS(T_ENV, needs.t[i]));
tmu.pot = GGL_READ_NEEDS(T_POT, needs.t[i]);
tmu.linear = GGL_READ_NEEDS(T_LINEAR, needs.t[i])
&& tmu.format.size!=3; // XXX: only 8, 16 and 32 modes for now
// 5551 linear filtering is not supported
if (tmu.format_idx == GGL_PIXEL_FORMAT_RGBA_5551)
tmu.linear = 0;
tmu.mask = 0;
tmu.replaced = replaced;
if (tmu.format_idx) {
mTextureMachine.activeUnits++;
if (tmu.format.c[0].h) tmu.mask |= 0x1;
if (tmu.format.c[1].h) tmu.mask |= 0x2;
if (tmu.format.c[2].h) tmu.mask |= 0x4;
if (tmu.format.c[3].h) tmu.mask |= 0x8;
if (tmu.env == GGL_REPLACE) {
replaced |= tmu.mask;
} else if (tmu.env == GGL_DECAL) {
if (!tmu.format.c[GGLFormat::ALPHA].h) {
// if we don't have alpha, decal does nothing
tmu.mask = 0;
} else {
// decal always ignores At
tmu.mask &= ~(1<<GGLFormat::ALPHA);
}
}
}
mTextureMachine.mask |= tmu.mask;
//printf("%d: mask=%08lx, replaced=%08lx\n",
// i, int(tmu.mask), int(tmu.replaced));
}
mTextureMachine.replaced = replaced;
mTextureMachine.directTexture = 0;
//printf("replaced=%08lx\n", mTextureMachine.replaced);
}
void GGLAssembler::init_textures(
tex_coord_t* coords,
const reg_t& x, const reg_t& y)
{
context_t const* c = mBuilderContext.c;
const needs_t& needs = mBuilderContext.needs;
int Rctx = mBuilderContext.Rctx;
int Rx = x.reg;
int Ry = y.reg;
if (mTextureMachine.mask) {
comment("compute texture coordinates");
}
// init texture coordinates for each tmu
const int cb_format_idx = GGL_READ_NEEDS(CB_FORMAT, needs.n);
const bool multiTexture = mTextureMachine.activeUnits > 1;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
const texture_unit_t& tmu = mTextureMachine.tmu[i];
if (tmu.format_idx == 0)
continue;
if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
(tmu.twrap == GGL_NEEDS_WRAP_11))
{
// 1:1 texture
pointer_t& txPtr = coords[i].ptr;
txPtr.setTo(obtainReg(), tmu.bits);
CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydsdy);
ADD(AL, 0, Rx, Rx, reg_imm(txPtr.reg, ASR, 16)); // x += (s>>16)
CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydtdy);
ADD(AL, 0, Ry, Ry, reg_imm(txPtr.reg, ASR, 16)); // y += (t>>16)
// merge base & offset
CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].stride);
SMLABB(AL, Rx, Ry, txPtr.reg, Rx); // x+y*stride
CONTEXT_ADDR_LOAD(txPtr.reg, generated_vars.texture[i].data);
base_offset(txPtr, txPtr, Rx);
} else {
Scratch scratches(registerFile());
reg_t& s = coords[i].s;
reg_t& t = coords[i].t;
// s = (x * dsdx)>>16 + ydsdy
// s = (x * dsdx)>>16 + (y*dsdy)>>16 + s0
// t = (x * dtdx)>>16 + ydtdy
// t = (x * dtdx)>>16 + (y*dtdy)>>16 + t0
s.setTo(obtainReg());
t.setTo(obtainReg());
const int need_w = GGL_READ_NEEDS(W, needs.n);
if (need_w) {
CONTEXT_LOAD(s.reg, state.texture[i].iterators.ydsdy);
CONTEXT_LOAD(t.reg, state.texture[i].iterators.ydtdy);
} else {
int ydsdy = scratches.obtain();
int ydtdy = scratches.obtain();
CONTEXT_LOAD(s.reg, generated_vars.texture[i].dsdx);
CONTEXT_LOAD(ydsdy, state.texture[i].iterators.ydsdy);
CONTEXT_LOAD(t.reg, generated_vars.texture[i].dtdx);
CONTEXT_LOAD(ydtdy, state.texture[i].iterators.ydtdy);
MLA(AL, 0, s.reg, Rx, s.reg, ydsdy);
MLA(AL, 0, t.reg, Rx, t.reg, ydtdy);
}
if ((mOptLevel&1)==0) {
CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]);
CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]);
recycleReg(s.reg);
recycleReg(t.reg);
}
}
// direct texture?
if (!multiTexture && !mBlending && !mDithering && !mFog &&
cb_format_idx == tmu.format_idx && !tmu.linear &&
mTextureMachine.replaced == tmu.mask)
{
mTextureMachine.directTexture = i + 1;
}
}
}
void GGLAssembler::build_textures( fragment_parts_t& parts,
Scratch& regs)
{
context_t const* c = mBuilderContext.c;
const needs_t& needs = mBuilderContext.needs;
int Rctx = mBuilderContext.Rctx;
// We don't have a way to spill registers automatically
// spill depth and AA regs, when we know we may have to.
// build the spill list...
uint32_t spill_list = 0;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
const texture_unit_t& tmu = mTextureMachine.tmu[i];
if (tmu.format_idx == 0)
continue;
if (tmu.linear) {
// we may run out of register if we have linear filtering
// at 1 or 4 bytes / pixel on any texture unit.
if (tmu.format.size == 1) {
// if depth and AA enabled, we'll run out of 1 register
if (parts.z.reg > 0 && parts.covPtr.reg > 0)
spill_list |= 1<<parts.covPtr.reg;
}
if (tmu.format.size == 4) {
// if depth or AA enabled, we'll run out of 1 or 2 registers
if (parts.z.reg > 0)
spill_list |= 1<<parts.z.reg;
if (parts.covPtr.reg > 0)
spill_list |= 1<<parts.covPtr.reg;
}
}
}
Spill spill(registerFile(), *this, spill_list);
const bool multiTexture = mTextureMachine.activeUnits > 1;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
const texture_unit_t& tmu = mTextureMachine.tmu[i];
if (tmu.format_idx == 0)
continue;
pointer_t& txPtr = parts.coords[i].ptr;
pixel_t& texel = parts.texel[i];
// repeat...
if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
(tmu.twrap == GGL_NEEDS_WRAP_11))
{ // 1:1 textures
comment("fetch texel");
texel.setTo(regs.obtain(), &tmu.format);
load(txPtr, texel, WRITE_BACK);
} else {
Scratch scratches(registerFile());
reg_t& s = parts.coords[i].s;
reg_t& t = parts.coords[i].t;
if ((mOptLevel&1)==0) {
comment("reload s/t (multitexture or linear filtering)");
s.reg = scratches.obtain();
t.reg = scratches.obtain();
CONTEXT_LOAD(s.reg, generated_vars.texture[i].spill[0]);
CONTEXT_LOAD(t.reg, generated_vars.texture[i].spill[1]);
}
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
return;
comment("compute repeat/clamp");
int u = scratches.obtain();
int v = scratches.obtain();
int width = scratches.obtain();
int height = scratches.obtain();
int U = 0;
int V = 0;
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
return;
CONTEXT_LOAD(width, generated_vars.texture[i].width);
CONTEXT_LOAD(height, generated_vars.texture[i].height);
int FRAC_BITS = 0;
if (tmu.linear) {
// linear interpolation
if (tmu.format.size == 1) {
// for 8-bits textures, we can afford
// 7 bits of fractional precision at no
// additional cost (we can't do 8 bits
// because filter8 uses signed 16 bits muls)
FRAC_BITS = 7;
} else if (tmu.format.size == 2) {
// filter16() is internally limited to 4 bits, so:
// FRAC_BITS=2 generates less instructions,
// FRAC_BITS=3,4,5 creates unpleasant artifacts,
// FRAC_BITS=6+ looks good
FRAC_BITS = 6;
} else if (tmu.format.size == 4) {
// filter32() is internally limited to 8 bits, so:
// FRAC_BITS=4 looks good
// FRAC_BITS=5+ looks better, but generates 3 extra ipp
FRAC_BITS = 6;
} else {
// for all other cases we use 4 bits.
FRAC_BITS = 4;
}
}
wrapping(u, s.reg, width, tmu.swrap, FRAC_BITS);
wrapping(v, t.reg, height, tmu.twrap, FRAC_BITS);
if (tmu.linear) {
comment("compute linear filtering offsets");
// pixel size scale
const int shift = 31 - gglClz(tmu.format.size);
U = scratches.obtain();
V = scratches.obtain();
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
return;
// sample the texel center
SUB(AL, 0, u, u, imm(1<<(FRAC_BITS-1)));
SUB(AL, 0, v, v, imm(1<<(FRAC_BITS-1)));
// get the fractionnal part of U,V
AND(AL, 0, U, u, imm((1<<FRAC_BITS)-1));
AND(AL, 0, V, v, imm((1<<FRAC_BITS)-1));
// compute width-1 and height-1
SUB(AL, 0, width, width, imm(1));
SUB(AL, 0, height, height, imm(1));
// get the integer part of U,V and clamp/wrap
// and compute offset to the next texel
if (tmu.swrap == GGL_NEEDS_WRAP_REPEAT) {
// u has already been REPEATed
MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS));
MOV(MI, 0, u, width);
CMP(AL, u, width);
MOV(LT, 0, width, imm(1 << shift));
if (shift)
MOV(GE, 0, width, reg_imm(width, LSL, shift));
RSB(GE, 0, width, width, imm(0));
} else {
// u has not been CLAMPed yet
// algorithm:
// if ((u>>4) >= width)
// u = width<<4
// width = 0
// else
// width = 1<<shift
// u = u>>4; // get integer part
// if (u<0)
// u = 0
// width = 0
// generated_vars.rt = width
CMP(AL, width, reg_imm(u, ASR, FRAC_BITS));
MOV(LE, 0, u, reg_imm(width, LSL, FRAC_BITS));
MOV(LE, 0, width, imm(0));
MOV(GT, 0, width, imm(1 << shift));
MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS));
MOV(MI, 0, u, imm(0));
MOV(MI, 0, width, imm(0));
}
CONTEXT_STORE(width, generated_vars.rt);
const int stride = width;
CONTEXT_LOAD(stride, generated_vars.texture[i].stride);
if (tmu.twrap == GGL_NEEDS_WRAP_REPEAT) {
// v has already been REPEATed
MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS));
MOV(MI, 0, v, height);
CMP(AL, v, height);
MOV(LT, 0, height, imm(1 << shift));
if (shift)
MOV(GE, 0, height, reg_imm(height, LSL, shift));
RSB(GE, 0, height, height, imm(0));
MUL(AL, 0, height, stride, height);
} else {
// v has not been CLAMPed yet
CMP(AL, height, reg_imm(v, ASR, FRAC_BITS));
MOV(LE, 0, v, reg_imm(height, LSL, FRAC_BITS));
MOV(LE, 0, height, imm(0));
if (shift) {
MOV(GT, 0, height, reg_imm(stride, LSL, shift));
} else {
MOV(GT, 0, height, stride);
}
MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS));
MOV(MI, 0, v, imm(0));
MOV(MI, 0, height, imm(0));
}
CONTEXT_STORE(height, generated_vars.lb);
}
scratches.recycle(width);
scratches.recycle(height);
// iterate texture coordinates...
comment("iterate s,t");
int dsdx = scratches.obtain();
int dtdx = scratches.obtain();
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
return;
CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx);
CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx);
ADD(AL, 0, s.reg, s.reg, dsdx);
ADD(AL, 0, t.reg, t.reg, dtdx);
if ((mOptLevel&1)==0) {
CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]);
CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]);
scratches.recycle(s.reg);
scratches.recycle(t.reg);
}
scratches.recycle(dsdx);
scratches.recycle(dtdx);
// merge base & offset...
comment("merge base & offset");
texel.setTo(regs.obtain(), &tmu.format);
txPtr.setTo(texel.reg, tmu.bits);
int stride = scratches.obtain();
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
return;
CONTEXT_LOAD(stride, generated_vars.texture[i].stride);
CONTEXT_ADDR_LOAD(txPtr.reg, generated_vars.texture[i].data);
SMLABB(AL, u, v, stride, u); // u+v*stride
base_offset(txPtr, txPtr, u);
// load texel
if (!tmu.linear) {
comment("fetch texel");
load(txPtr, texel, 0);
} else {
// recycle registers we don't need anymore
scratches.recycle(u);
scratches.recycle(v);
scratches.recycle(stride);
comment("fetch texel, bilinear");
switch (tmu.format.size) {
case 1: filter8(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
case 2: filter16(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
case 3: filter24(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
case 4: filter32(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
}
}
}
}
}
void GGLAssembler::build_iterate_texture_coordinates(
const fragment_parts_t& parts)
{
const bool multiTexture = mTextureMachine.activeUnits > 1;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
const texture_unit_t& tmu = mTextureMachine.tmu[i];
if (tmu.format_idx == 0)
continue;
if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
(tmu.twrap == GGL_NEEDS_WRAP_11))
{ // 1:1 textures
const pointer_t& txPtr = parts.coords[i].ptr;
ADD(AL, 0, txPtr.reg, txPtr.reg, imm(txPtr.size>>3));
} else {
Scratch scratches(registerFile());
int s = parts.coords[i].s.reg;
int t = parts.coords[i].t.reg;
if ((mOptLevel&1)==0) {
s = scratches.obtain();
t = scratches.obtain();
CONTEXT_LOAD(s, generated_vars.texture[i].spill[0]);
CONTEXT_LOAD(t, generated_vars.texture[i].spill[1]);
}
int dsdx = scratches.obtain();
int dtdx = scratches.obtain();
CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx);
CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx);
ADD(AL, 0, s, s, dsdx);
ADD(AL, 0, t, t, dtdx);
if ((mOptLevel&1)==0) {
CONTEXT_STORE(s, generated_vars.texture[i].spill[0]);
CONTEXT_STORE(t, generated_vars.texture[i].spill[1]);
}
}
}
}
void GGLAssembler::filter8(
const fragment_parts_t& /*parts*/,
pixel_t& texel, const texture_unit_t& tmu,
int U, int V, pointer_t& txPtr,
int FRAC_BITS)
{
if (tmu.format.components != GGL_ALPHA &&
tmu.format.components != GGL_LUMINANCE)
{
// this is a packed format, and we don't support
// linear filtering (it's probably RGB 332)
// Should not happen with OpenGL|ES
LDRB(AL, texel.reg, txPtr.reg);
return;
}
// ------------------------
// about ~22 cycles / pixel
Scratch scratches(registerFile());
int pixel= scratches.obtain();
int d = scratches.obtain();
int u = scratches.obtain();
int k = scratches.obtain();
int rt = scratches.obtain();
int lb = scratches.obtain();
// RB -> U * V
CONTEXT_LOAD(rt, generated_vars.rt);
CONTEXT_LOAD(lb, generated_vars.lb);
int offset = pixel;
ADD(AL, 0, offset, lb, rt);
LDRB(AL, pixel, txPtr.reg, reg_scale_pre(offset));
SMULBB(AL, u, U, V);
SMULBB(AL, d, pixel, u);
RSB(AL, 0, k, u, imm(1<<(FRAC_BITS*2)));
// LB -> (1-U) * V
RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
LDRB(AL, pixel, txPtr.reg, reg_scale_pre(lb));
SMULBB(AL, u, U, V);
SMLABB(AL, d, pixel, u, d);
SUB(AL, 0, k, k, u);
// LT -> (1-U)*(1-V)
RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
LDRB(AL, pixel, txPtr.reg);
SMULBB(AL, u, U, V);
SMLABB(AL, d, pixel, u, d);
// RT -> U*(1-V)
LDRB(AL, pixel, txPtr.reg, reg_scale_pre(rt));
SUB(AL, 0, u, k, u);
SMLABB(AL, texel.reg, pixel, u, d);
for (int i=0 ; i<4 ; i++) {
if (!texel.format.c[i].h) continue;
texel.format.c[i].h = FRAC_BITS*2+8;
texel.format.c[i].l = FRAC_BITS*2; // keeping 8 bits in enough
}
texel.format.size = 4;
texel.format.bitsPerPixel = 32;
texel.flags |= CLEAR_LO;
}
void GGLAssembler::filter16(
const fragment_parts_t& /*parts*/,
pixel_t& texel, const texture_unit_t& tmu,
int U, int V, pointer_t& txPtr,
int FRAC_BITS)
{
// compute the mask
// XXX: it would be nice if the mask below could be computed
// automatically.
uint32_t mask = 0;
int shift = 0;
int prec = 0;
switch (tmu.format_idx) {
case GGL_PIXEL_FORMAT_RGB_565:
// source: 00000ggg.ggg00000 | rrrrr000.000bbbbb
// result: gggggggg.gggrrrrr | rrrrr0bb.bbbbbbbb
mask = 0x07E0F81F;
shift = 16;
prec = 5;
break;
case GGL_PIXEL_FORMAT_RGBA_4444:
// 0000,1111,0000,1111 | 0000,1111,0000,1111
mask = 0x0F0F0F0F;
shift = 12;
prec = 4;
break;
case GGL_PIXEL_FORMAT_LA_88:
// 0000,0000,1111,1111 | 0000,0000,1111,1111
// AALL -> 00AA | 00LL
mask = 0x00FF00FF;
shift = 8;
prec = 8;
break;
default:
// unsupported format, do something sensical...
ALOGE("Unsupported 16-bits texture format (%d)", tmu.format_idx);
LDRH(AL, texel.reg, txPtr.reg);
return;
}
const int adjust = FRAC_BITS*2 - prec;
const int round = 0;
// update the texel format
texel.format.size = 4;
texel.format.bitsPerPixel = 32;
texel.flags |= CLEAR_HI|CLEAR_LO;
for (int i=0 ; i<4 ; i++) {
if (!texel.format.c[i].h) continue;
const uint32_t offset = (mask & tmu.format.mask(i)) ? 0 : shift;
texel.format.c[i].h = tmu.format.c[i].h + offset + prec;
texel.format.c[i].l = texel.format.c[i].h - (tmu.format.bits(i) + prec);
}
// ------------------------
// about ~40 cycles / pixel
Scratch scratches(registerFile());
int pixel= scratches.obtain();
int d = scratches.obtain();
int u = scratches.obtain();
int k = scratches.obtain();
// RB -> U * V
int offset = pixel;
CONTEXT_LOAD(offset, generated_vars.rt);
CONTEXT_LOAD(u, generated_vars.lb);
ADD(AL, 0, offset, offset, u);
LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
SMULBB(AL, u, U, V);
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
build_and_immediate(pixel, pixel, mask, 32);
if (adjust) {
if (round)
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
}
MUL(AL, 0, d, pixel, u);
RSB(AL, 0, k, u, imm(1<<prec));
// LB -> (1-U) * V
CONTEXT_LOAD(offset, generated_vars.lb);
RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
SMULBB(AL, u, U, V);
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
build_and_immediate(pixel, pixel, mask, 32);
if (adjust) {
if (round)
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
}
MLA(AL, 0, d, pixel, u, d);
SUB(AL, 0, k, k, u);
// LT -> (1-U)*(1-V)
RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
LDRH(AL, pixel, txPtr.reg);
SMULBB(AL, u, U, V);
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
build_and_immediate(pixel, pixel, mask, 32);
if (adjust) {
if (round)
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
}
MLA(AL, 0, d, pixel, u, d);
// RT -> U*(1-V)
CONTEXT_LOAD(offset, generated_vars.rt);
LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
SUB(AL, 0, u, k, u);
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
build_and_immediate(pixel, pixel, mask, 32);
MLA(AL, 0, texel.reg, pixel, u, d);
}
void GGLAssembler::filter24(
const fragment_parts_t& /*parts*/,
pixel_t& texel, const texture_unit_t& /*tmu*/,
int /*U*/, int /*V*/, pointer_t& txPtr,
int /*FRAC_BITS*/)
{
// not supported yet (currently disabled)
load(txPtr, texel, 0);
}
void GGLAssembler::filter32(
const fragment_parts_t& /*parts*/,
pixel_t& texel, const texture_unit_t& /*tmu*/,
int U, int V, pointer_t& txPtr,
int FRAC_BITS)
{
const int adjust = FRAC_BITS*2 - 8;
const int round = 0;
// ------------------------
// about ~38 cycles / pixel
Scratch scratches(registerFile());
int pixel= scratches.obtain();
int dh = scratches.obtain();
int u = scratches.obtain();
int k = scratches.obtain();
int temp = scratches.obtain();
int dl = scratches.obtain();
int mask = scratches.obtain();
MOV(AL, 0, mask, imm(0xFF));
ORR(AL, 0, mask, mask, imm(0xFF0000));
// RB -> U * V
int offset = pixel;
CONTEXT_LOAD(offset, generated_vars.rt);
CONTEXT_LOAD(u, generated_vars.lb);
ADD(AL, 0, offset, offset, u);
LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
SMULBB(AL, u, U, V);
AND(AL, 0, temp, mask, pixel);
if (adjust) {
if (round)
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
}
MUL(AL, 0, dh, temp, u);
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
MUL(AL, 0, dl, temp, u);
RSB(AL, 0, k, u, imm(0x100));
// LB -> (1-U) * V
CONTEXT_LOAD(offset, generated_vars.lb);
RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
SMULBB(AL, u, U, V);
AND(AL, 0, temp, mask, pixel);
if (adjust) {
if (round)
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
}
MLA(AL, 0, dh, temp, u, dh);
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
MLA(AL, 0, dl, temp, u, dl);
SUB(AL, 0, k, k, u);
// LT -> (1-U)*(1-V)
RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
LDR(AL, pixel, txPtr.reg);
SMULBB(AL, u, U, V);
AND(AL, 0, temp, mask, pixel);
if (adjust) {
if (round)
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
}
MLA(AL, 0, dh, temp, u, dh);
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
MLA(AL, 0, dl, temp, u, dl);
// RT -> U*(1-V)
CONTEXT_LOAD(offset, generated_vars.rt);
LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
SUB(AL, 0, u, k, u);
AND(AL, 0, temp, mask, pixel);
MLA(AL, 0, dh, temp, u, dh);
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
MLA(AL, 0, dl, temp, u, dl);
AND(AL, 0, dh, mask, reg_imm(dh, LSR, 8));
AND(AL, 0, dl, dl, reg_imm(mask, LSL, 8));
ORR(AL, 0, texel.reg, dh, dl);
}
void GGLAssembler::build_texture_environment(
component_t& fragment,
const fragment_parts_t& parts,
int component,
Scratch& regs)
{
const uint32_t component_mask = 1<<component;
const bool multiTexture = mTextureMachine.activeUnits > 1;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
texture_unit_t& tmu = mTextureMachine.tmu[i];
if (tmu.mask & component_mask) {
// replace or modulate with this texture
if ((tmu.replaced & component_mask) == 0) {
// not replaced by a later tmu...
Scratch scratches(registerFile());
pixel_t texel(parts.texel[i]);
if (multiTexture &&
tmu.swrap == GGL_NEEDS_WRAP_11 &&
tmu.twrap == GGL_NEEDS_WRAP_11)
{
texel.reg = scratches.obtain();
texel.flags |= CORRUPTIBLE;
comment("fetch texel (multitexture 1:1)");
load(parts.coords[i].ptr, texel, WRITE_BACK);
}
component_t incoming(fragment);
modify(fragment, regs);
switch (tmu.env) {
case GGL_REPLACE:
extract(fragment, texel, component);
break;
case GGL_MODULATE:
modulate(fragment, incoming, texel, component);
break;
case GGL_DECAL:
decal(fragment, incoming, texel, component);
break;
case GGL_BLEND:
blend(fragment, incoming, texel, component, i);
break;
case GGL_ADD:
add(fragment, incoming, texel, component);
break;
}
}
}
}
}
// ---------------------------------------------------------------------------
void GGLAssembler::wrapping(
int d,
int coord, int size,
int tx_wrap, int tx_linear)
{
// notes:
// if tx_linear is set, we need 4 extra bits of precision on the result
// SMULL/UMULL is 3 cycles
Scratch scratches(registerFile());
int c = coord;
if (tx_wrap == GGL_NEEDS_WRAP_REPEAT) {
// UMULL takes 4 cycles (interlocked), and we can get away with
// 2 cycles using SMULWB, but we're loosing 16 bits of precision
// out of 32 (this is not a problem because the iterator keeps
// its full precision)
// UMULL(AL, 0, size, d, c, size);
// note: we can't use SMULTB because it's signed.
MOV(AL, 0, d, reg_imm(c, LSR, 16-tx_linear));
SMULWB(AL, d, d, size);
} else if (tx_wrap == GGL_NEEDS_WRAP_CLAMP_TO_EDGE) {
if (tx_linear) {
// 1 cycle
MOV(AL, 0, d, reg_imm(coord, ASR, 16-tx_linear));
} else {
// 4 cycles (common case)
MOV(AL, 0, d, reg_imm(coord, ASR, 16));
BIC(AL, 0, d, d, reg_imm(d, ASR, 31));
CMP(AL, d, size);
SUB(GE, 0, d, size, imm(1));
}
}
}
// ---------------------------------------------------------------------------
void GGLAssembler::modulate(
component_t& dest,
const component_t& incoming,
const pixel_t& incomingTexel, int component)
{
Scratch locals(registerFile());
integer_t texel(locals.obtain(), 32, CORRUPTIBLE);
extract(texel, incomingTexel, component);
const int Nt = texel.size();
// Nt should always be less than 10 bits because it comes
// from the TMU.
int Ni = incoming.size();
// Ni could be big because it comes from previous MODULATEs
if (Nt == 1) {
// texel acts as a bit-mask
// dest = incoming & ((texel << incoming.h)-texel)
RSB(AL, 0, dest.reg, texel.reg, reg_imm(texel.reg, LSL, incoming.h));
AND(AL, 0, dest.reg, dest.reg, incoming.reg);
dest.l = incoming.l;
dest.h = incoming.h;
dest.flags |= (incoming.flags & CLEAR_LO);
} else if (Ni == 1) {
MOV(AL, 0, dest.reg, reg_imm(incoming.reg, LSL, 31-incoming.h));
AND(AL, 0, dest.reg, texel.reg, reg_imm(dest.reg, ASR, 31));
dest.l = 0;
dest.h = Nt;
} else {
int inReg = incoming.reg;
int shift = incoming.l;
if ((Nt + Ni) > 32) {
// we will overflow, reduce the precision of Ni to 8 bits
// (Note Nt cannot be more than 10 bits which happens with
// 565 textures and GGL_LINEAR)
shift += Ni-8;
Ni = 8;
}
// modulate by the component with the lowest precision
if (Nt >= Ni) {
if (shift) {
// XXX: we should be able to avoid this shift
// when shift==16 && Nt<16 && Ni<16, in which
// we could use SMULBT below.
MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift));
inReg = dest.reg;
shift = 0;
}
// operation: (Cf*Ct)/((1<<Ni)-1)
// approximated with: Cf*(Ct + Ct>>(Ni-1))>>Ni
// this operation doesn't change texel's size
ADD(AL, 0, dest.reg, inReg, reg_imm(inReg, LSR, Ni-1));
if (Nt<16 && Ni<16) SMULBB(AL, dest.reg, texel.reg, dest.reg);
else MUL(AL, 0, dest.reg, texel.reg, dest.reg);
dest.l = Ni;
dest.h = Nt + Ni;
} else {
if (shift && (shift != 16)) {
// if shift==16, we can use 16-bits mul instructions later
MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift));
inReg = dest.reg;
shift = 0;
}
// operation: (Cf*Ct)/((1<<Nt)-1)
// approximated with: Ct*(Cf + Cf>>(Nt-1))>>Nt
// this operation doesn't change incoming's size
Scratch scratches(registerFile());
int t = (texel.flags & CORRUPTIBLE) ? texel.reg : dest.reg;
if (t == inReg)
t = scratches.obtain();
ADD(AL, 0, t, texel.reg, reg_imm(texel.reg, LSR, Nt-1));
if (Nt<16 && Ni<16) {
if (shift==16) SMULBT(AL, dest.reg, t, inReg);
else SMULBB(AL, dest.reg, t, inReg);
} else MUL(AL, 0, dest.reg, t, inReg);
dest.l = Nt;
dest.h = Nt + Ni;
}
// low bits are not valid
dest.flags |= CLEAR_LO;
// no need to keep more than 8 bits/component
if (dest.size() > 8)
dest.l = dest.h-8;
}
}
void GGLAssembler::decal(
component_t& dest,
const component_t& incoming,
const pixel_t& incomingTexel, int component)
{
// RGBA:
// Cv = Cf*(1 - At) + Ct*At = Cf + (Ct - Cf)*At
// Av = Af
Scratch locals(registerFile());
integer_t texel(locals.obtain(), 32, CORRUPTIBLE);
integer_t factor(locals.obtain(), 32, CORRUPTIBLE);
extract(texel, incomingTexel, component);
extract(factor, incomingTexel, GGLFormat::ALPHA);
// no need to keep more than 8-bits for decal
int Ni = incoming.size();
int shift = incoming.l;
if (Ni > 8) {
shift += Ni-8;
Ni = 8;
}
integer_t incomingNorm(incoming.reg, Ni, incoming.flags);
if (shift) {
MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift));
incomingNorm.reg = dest.reg;
incomingNorm.flags |= CORRUPTIBLE;
}
ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1));
build_blendOneMinusFF(dest, factor, incomingNorm, texel);
}
void GGLAssembler::blend(
component_t& dest,
const component_t& incoming,
const pixel_t& incomingTexel, int component, int tmu)
{
// RGBA:
// Cv = (1 - Ct)*Cf + Ct*Cc = Cf + (Cc - Cf)*Ct
// Av = At*Af
if (component == GGLFormat::ALPHA) {
modulate(dest, incoming, incomingTexel, component);
return;
}
Scratch locals(registerFile());
integer_t color(locals.obtain(), 8, CORRUPTIBLE);
integer_t factor(locals.obtain(), 32, CORRUPTIBLE);
LDRB(AL, color.reg, mBuilderContext.Rctx,
immed12_pre(GGL_OFFSETOF(state.texture[tmu].env_color[component])));
extract(factor, incomingTexel, component);
// no need to keep more than 8-bits for blend
int Ni = incoming.size();
int shift = incoming.l;
if (Ni > 8) {
shift += Ni-8;
Ni = 8;
}
integer_t incomingNorm(incoming.reg, Ni, incoming.flags);
if (shift) {
MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift));
incomingNorm.reg = dest.reg;
incomingNorm.flags |= CORRUPTIBLE;
}
ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1));
build_blendOneMinusFF(dest, factor, incomingNorm, color);
}
void GGLAssembler::add(
component_t& dest,
const component_t& incoming,
const pixel_t& incomingTexel, int component)
{
// RGBA:
// Cv = Cf + Ct;
Scratch locals(registerFile());
component_t incomingTemp(incoming);
// use "dest" as a temporary for extracting the texel, unless "dest"
// overlaps "incoming".
integer_t texel(dest.reg, 32, CORRUPTIBLE);
if (dest.reg == incomingTemp.reg)
texel.reg = locals.obtain();
extract(texel, incomingTexel, component);
if (texel.s < incomingTemp.size()) {
expand(texel, texel, incomingTemp.size());
} else if (texel.s > incomingTemp.size()) {
if (incomingTemp.flags & CORRUPTIBLE) {
expand(incomingTemp, incomingTemp, texel.s);
} else {
incomingTemp.reg = locals.obtain();
expand(incomingTemp, incoming, texel.s);
}
}
if (incomingTemp.l) {
ADD(AL, 0, dest.reg, texel.reg,
reg_imm(incomingTemp.reg, LSR, incomingTemp.l));
} else {
ADD(AL, 0, dest.reg, texel.reg, incomingTemp.reg);
}
dest.l = 0;
dest.h = texel.size();
component_sat(dest);
}
// ----------------------------------------------------------------------------
}; // namespace android