qemu/hw/xtensa/xtfpga.c

723 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
2016-03-14 16:01:28 +08:00
#include "qapi/error.h"
#include "cpu.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "hw/char/serial.h"
#include "net/net.h"
#include "hw/sysbus.h"
#include "hw/block/flash.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "bootparam.h"
#include "xtensa_memory.h"
typedef struct XtfpgaFlashDesc {
hwaddr base;
size_t size;
size_t boot_base;
size_t sector_size;
} XtfpgaFlashDesc;
typedef struct XtfpgaBoardDesc {
const XtfpgaFlashDesc *flash;
size_t sram_size;
const hwaddr *io;
} XtfpgaBoardDesc;
typedef struct XtfpgaFpgaState {
MemoryRegion iomem;
uint32_t freq;
uint32_t leds;
uint32_t switches;
} XtfpgaFpgaState;
static void xtfpga_fpga_reset(void *opaque)
{
XtfpgaFpgaState *s = opaque;
s->leds = 0;
s->switches = 0;
}
static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
unsigned size)
{
XtfpgaFpgaState *s = opaque;
switch (addr) {
case 0x0: /*build date code*/
return 0x09272011;
case 0x4: /*processor clock frequency, Hz*/
return s->freq;
case 0x8: /*LEDs (off = 0, on = 1)*/
return s->leds;
case 0xc: /*DIP switches (off = 0, on = 1)*/
return s->switches;
}
return 0;
}
static void xtfpga_fpga_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
XtfpgaFpgaState *s = opaque;
switch (addr) {
case 0x8: /*LEDs (off = 0, on = 1)*/
s->leds = val;
break;
case 0x10: /*board reset*/
if (val == 0xdead) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
}
}
static const MemoryRegionOps xtfpga_fpga_ops = {
.read = xtfpga_fpga_read,
.write = xtfpga_fpga_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
hwaddr base, uint32_t freq)
{
XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
"xtfpga.fpga", 0x10000);
memory_region_add_subregion(address_space, base, &s->iomem);
s->freq = freq;
xtfpga_fpga_reset(s);
qemu_register_reset(xtfpga_fpga_reset, s);
return s;
}
static void xtfpga_net_init(MemoryRegion *address_space,
hwaddr base,
hwaddr descriptors,
hwaddr buffers,
qemu_irq irq, NICInfo *nd)
{
DeviceState *dev;
SysBusDevice *s;
MemoryRegion *ram;
dev = qdev_create(NULL, "open_eth");
qdev_set_nic_properties(dev, nd);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irq);
memory_region_add_subregion(address_space, base,
sysbus_mmio_get_region(s, 0));
memory_region_add_subregion(address_space, descriptors,
sysbus_mmio_get_region(s, 1));
ram = g_malloc(sizeof(*ram));
memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 22:51:43 +08:00
&error_fatal);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space, buffers, ram);
}
static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
const XtfpgaBoardDesc *board,
DriveInfo *dinfo, int be)
{
SysBusDevice *s;
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_abort);
qdev_prop_set_uint32(dev, "num-blocks",
board->flash->size / board->flash->sector_size);
qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
qdev_prop_set_uint8(dev, "width", 2);
qdev_prop_set_bit(dev, "big-endian", be);
qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(address_space, board->flash->base,
sysbus_mmio_get_region(s, 0));
return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
}
static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
{
XtensaCPU *cpu = opaque;
return cpu_get_phys_page_debug(CPU(cpu), addr);
}
static void xtfpga_reset(void *opaque)
{
XtensaCPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
unsigned size)
{
return 0;
}
static void xtfpga_io_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
}
static const MemoryRegionOps xtfpga_io_ops = {
.read = xtfpga_io_read,
.write = xtfpga_io_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
int be = 1;
#else
int be = 0;
#endif
MemoryRegion *system_memory = get_system_memory();
XtensaCPU *cpu = NULL;
CPUXtensaState *env = NULL;
MemoryRegion *system_io;
DriveInfo *dinfo;
pflash_t *flash = NULL;
QemuOpts *machine_opts = qemu_get_machine_opts();
const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
const unsigned system_io_size = 224 * MiB;
uint32_t freq = 10000000;
int n;
for (n = 0; n < smp_cpus; n++) {
CPUXtensaState *cenv = NULL;
cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
cenv = &cpu->env;
if (!env) {
env = cenv;
freq = env->config->clock_freq_khz * 1000;
}
cenv->sregs[PRID] = n;
qemu_register_reset(xtfpga_reset, cpu);
/* Need MMU initialized prior to ELF loading,
* so that ELF gets loaded into virtual addresses
*/
cpu_reset(CPU(cpu));
}
if (env) {
XtensaMemory sysram = env->config->sysram;
sysram.location[0].size = machine->ram_size;
xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
system_memory);
xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
system_memory);
xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
system_memory);
xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
system_memory);
xtensa_create_memory_regions(&sysram, "xtensa.sysram",
system_memory);
}
system_io = g_malloc(sizeof(*system_io));
memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
system_io_size);
memory_region_add_subregion(system_memory, board->io[0], system_io);
if (board->io[1]) {
MemoryRegion *io = g_malloc(sizeof(*io));
memory_region_init_alias(io, NULL, "xtfpga.io.cached",
system_io, 0, system_io_size);
memory_region_add_subregion(system_memory, board->io[1], io);
}
xtfpga_fpga_init(system_io, 0x0d020000, freq);
if (nd_table[0].used) {
xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
xtensa_get_extint(env, 1), nd_table);
}
serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
dinfo = drive_get(IF_PFLASH, 0, 0);
if (dinfo) {
flash = xtfpga_flash_init(system_io, board, dinfo, be);
}
/* Use presence of kernel file name as 'boot from SRAM' switch. */
if (kernel_filename) {
uint32_t entry_point = env->pc;
size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
uint32_t tagptr = env->config->sysrom.location[0].addr +
board->sram_size;
uint32_t cur_tagptr;
BpMemInfo memory_location = {
.type = tswap32(MEMORY_TYPE_CONVENTIONAL),
.start = tswap32(env->config->sysram.location[0].addr),
.end = tswap32(env->config->sysram.location[0].addr +
machine->ram_size),
};
uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
machine->ram_size : 0x08000000;
uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
lowmem_end += env->config->sysram.location[0].addr;
cur_lowmem += env->config->sysram.location[0].addr;
xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
system_memory);
if (kernel_cmdline) {
bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
}
if (dtb_filename) {
bp_size += get_tag_size(sizeof(uint32_t));
}
if (initrd_filename) {
bp_size += get_tag_size(sizeof(BpMemInfo));
}
/* Put kernel bootparameters to the end of that SRAM */
tagptr = (tagptr - bp_size) & ~0xff;
cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
sizeof(memory_location), &memory_location);
if (kernel_cmdline) {
cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
strlen(kernel_cmdline) + 1, kernel_cmdline);
}
#ifdef CONFIG_FDT
if (dtb_filename) {
int fdt_size;
void *fdt = load_device_tree(dtb_filename, &fdt_size);
uint32_t dtb_addr = tswap32(cur_lowmem);
if (!fdt) {
error_report("could not load DTB '%s'", dtb_filename);
exit(EXIT_FAILURE);
}
cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
sizeof(dtb_addr), &dtb_addr);
cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
}
#else
if (dtb_filename) {
error_report("could not load DTB '%s': "
"FDT support is not configured in QEMU",
dtb_filename);
exit(EXIT_FAILURE);
}
#endif
if (initrd_filename) {
BpMemInfo initrd_location = { 0 };
int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
lowmem_end - cur_lowmem);
if (initrd_size < 0) {
initrd_size = load_image_targphys(initrd_filename,
cur_lowmem,
lowmem_end - cur_lowmem);
}
if (initrd_size < 0) {
error_report("could not load initrd '%s'", initrd_filename);
exit(EXIT_FAILURE);
}
initrd_location.start = tswap32(cur_lowmem);
initrd_location.end = tswap32(cur_lowmem + initrd_size);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
sizeof(initrd_location), &initrd_location);
cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
}
cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
env->regs[2] = tagptr;
uint64_t elf_entry;
uint64_t elf_lowaddr;
int success = load_elf(kernel_filename, translate_phys_addr, cpu,
&elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
if (success > 0) {
entry_point = elf_entry;
} else {
hwaddr ep;
int is_linux;
success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
translate_phys_addr, cpu);
if (success > 0 && is_linux) {
entry_point = ep;
} else {
error_report("could not load kernel '%s'",
kernel_filename);
exit(EXIT_FAILURE);
}
}
if (entry_point != env->pc) {
uint8_t boot[] = {
#ifdef TARGET_WORDS_BIGENDIAN
0x60, 0x00, 0x08, /* j 1f */
0x00, /* .literal_position */
0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
/* 1: */
0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
0x0a, 0x00, 0x00, /* jx a0 */
#else
0x06, 0x02, 0x00, /* j 1f */
0x00, /* .literal_position */
0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
/* 1: */
0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
0xa0, 0x00, 0x00, /* jx a0 */
#endif
};
uint32_t entry_pc = tswap32(entry_point);
uint32_t entry_a2 = tswap32(tagptr);
memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
cpu_physical_memory_write(env->pc, boot, sizeof(boot));
}
} else {
if (flash) {
MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
uint32_t size = env->config->sysrom.location[0].size;
if (board->flash->size - board->flash->boot_base < size) {
size = board->flash->size - board->flash->boot_base;
}
memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
flash_mr, board->flash->boot_base, size);
memory_region_add_subregion(system_memory,
env->config->sysrom.location[0].addr,
flash_io);
} else {
xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
system_memory);
}
}
}
#define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
static const hwaddr xtfpga_mmu_io[2] = {
0xf0000000,
};
static const hwaddr xtfpga_nommu_io[2] = {
0x90000000,
0x70000000,
};
static const XtfpgaFlashDesc lx60_flash = {
.base = 0x08000000,
.size = 0x00400000,
.sector_size = 0x10000,
};
static void xtfpga_lx60_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx60_board = {
.flash = &lx60_flash,
.sram_size = 0x20000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&lx60_board, machine);
}
static void xtfpga_lx60_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx60_board = {
.flash = &lx60_flash,
.sram_size = 0x20000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&lx60_board, machine);
}
static const XtfpgaFlashDesc lx200_flash = {
.base = 0x08000000,
.size = 0x01000000,
.sector_size = 0x20000,
};
static void xtfpga_lx200_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx200_board = {
.flash = &lx200_flash,
.sram_size = 0x2000000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&lx200_board, machine);
}
static void xtfpga_lx200_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx200_board = {
.flash = &lx200_flash,
.sram_size = 0x2000000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&lx200_board, machine);
}
static const XtfpgaFlashDesc ml605_flash = {
.base = 0x08000000,
.size = 0x01000000,
.sector_size = 0x20000,
};
static void xtfpga_ml605_init(MachineState *machine)
{
static const XtfpgaBoardDesc ml605_board = {
.flash = &ml605_flash,
.sram_size = 0x2000000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&ml605_board, machine);
}
static void xtfpga_ml605_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc ml605_board = {
.flash = &ml605_flash,
.sram_size = 0x2000000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&ml605_board, machine);
}
static const XtfpgaFlashDesc kc705_flash = {
.base = 0x00000000,
.size = 0x08000000,
.boot_base = 0x06000000,
.sector_size = 0x20000,
};
static void xtfpga_kc705_init(MachineState *machine)
{
static const XtfpgaBoardDesc kc705_board = {
.flash = &kc705_flash,
.sram_size = 0x2000000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&kc705_board, machine);
}
static void xtfpga_kc705_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc kc705_board = {
.flash = &kc705_flash,
.sram_size = 0x2000000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&kc705_board, machine);
}
static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_lx60_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
mc->default_ram_size = 64 * MiB;
}
static const TypeInfo xtfpga_lx60_type = {
.name = MACHINE_TYPE_NAME("lx60"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx60_class_init,
};
static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_lx60_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
mc->default_ram_size = 64 * MiB;
}
static const TypeInfo xtfpga_lx60_nommu_type = {
.name = MACHINE_TYPE_NAME("lx60-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx60_nommu_class_init,
};
static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_lx200_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
mc->default_ram_size = 96 * MiB;
}
static const TypeInfo xtfpga_lx200_type = {
.name = MACHINE_TYPE_NAME("lx200"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx200_class_init,
};
static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_lx200_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
mc->default_ram_size = 96 * MiB;
}
static const TypeInfo xtfpga_lx200_nommu_type = {
.name = MACHINE_TYPE_NAME("lx200-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx200_nommu_class_init,
};
static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_ml605_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
}
static const TypeInfo xtfpga_ml605_type = {
.name = MACHINE_TYPE_NAME("ml605"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_ml605_class_init,
};
static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_ml605_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
mc->default_ram_size = 256 * MiB;
}
static const TypeInfo xtfpga_ml605_nommu_type = {
.name = MACHINE_TYPE_NAME("ml605-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_ml605_nommu_class_init,
};
static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_kc705_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
}
static const TypeInfo xtfpga_kc705_type = {
.name = MACHINE_TYPE_NAME("kc705"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_kc705_class_init,
};
static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_kc705_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
mc->default_ram_size = 256 * MiB;
}
static const TypeInfo xtfpga_kc705_nommu_type = {
.name = MACHINE_TYPE_NAME("kc705-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_kc705_nommu_class_init,
};
static void xtfpga_machines_init(void)
{
type_register_static(&xtfpga_lx60_type);
type_register_static(&xtfpga_lx200_type);
type_register_static(&xtfpga_ml605_type);
type_register_static(&xtfpga_kc705_type);
type_register_static(&xtfpga_lx60_nommu_type);
type_register_static(&xtfpga_lx200_nommu_type);
type_register_static(&xtfpga_ml605_nommu_type);
type_register_static(&xtfpga_kc705_nommu_type);
}
type_init(xtfpga_machines_init)