mirror of https://gitee.com/openkylin/qemu.git
1166 lines
38 KiB
C
1166 lines
38 KiB
C
|
/*
|
||
|
* ARM GICv3 emulation: Redistributor
|
||
|
*
|
||
|
* Copyright (c) 2015 Huawei.
|
||
|
* Copyright (c) 2016 Linaro Limited.
|
||
|
* Written by Shlomo Pongratz, Peter Maydell
|
||
|
*
|
||
|
* This code is licensed under the GPL, version 2 or (at your option)
|
||
|
* any later version.
|
||
|
*/
|
||
|
|
||
|
#include "qemu/osdep.h"
|
||
|
#include "qemu/log.h"
|
||
|
#include "trace.h"
|
||
|
#include "gicv3_internal.h"
|
||
|
|
||
|
static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
|
||
|
{
|
||
|
/* Return a 32-bit mask which should be applied for this set of 32
|
||
|
* interrupts; each bit is 1 if access is permitted by the
|
||
|
* combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
|
||
|
* not affect config register accesses, unlike GICD_NSACR.)
|
||
|
*/
|
||
|
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
|
||
|
/* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
|
||
|
return cs->gicr_igroupr0;
|
||
|
}
|
||
|
return 0xFFFFFFFFU;
|
||
|
}
|
||
|
|
||
|
static int gicr_ns_access(GICv3CPUState *cs, int irq)
|
||
|
{
|
||
|
/* Return the 2 bit NSACR.NS_access field for this SGI */
|
||
|
assert(irq < 16);
|
||
|
return extract32(cs->gicr_nsacr, irq * 2, 2);
|
||
|
}
|
||
|
|
||
|
static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
|
||
|
uint32_t *reg, uint32_t val)
|
||
|
{
|
||
|
/* Helper routine to implement writing to a "set-bitmap" register */
|
||
|
val &= mask_group(cs, attrs);
|
||
|
*reg |= val;
|
||
|
gicv3_redist_update(cs);
|
||
|
}
|
||
|
|
||
|
static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
|
||
|
uint32_t *reg, uint32_t val)
|
||
|
{
|
||
|
/* Helper routine to implement writing to a "clear-bitmap" register */
|
||
|
val &= mask_group(cs, attrs);
|
||
|
*reg &= ~val;
|
||
|
gicv3_redist_update(cs);
|
||
|
}
|
||
|
|
||
|
static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
|
||
|
uint32_t reg)
|
||
|
{
|
||
|
reg &= mask_group(cs, attrs);
|
||
|
return reg;
|
||
|
}
|
||
|
|
||
|
static bool vcpu_resident(GICv3CPUState *cs, uint64_t vptaddr)
|
||
|
{
|
||
|
/*
|
||
|
* Return true if a vCPU is resident, which is defined by
|
||
|
* whether the GICR_VPENDBASER register is marked VALID and
|
||
|
* has the right virtual pending table address.
|
||
|
*/
|
||
|
if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
|
||
|
return false;
|
||
|
}
|
||
|
return vptaddr == (cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* update_for_one_lpi: Update pending information if this LPI is better
|
||
|
*
|
||
|
* @cs: GICv3CPUState
|
||
|
* @irq: interrupt to look up in the LPI Configuration table
|
||
|
* @ctbase: physical address of the LPI Configuration table to use
|
||
|
* @ds: true if priority value should not be shifted
|
||
|
* @hpp: points to pending information to update
|
||
|
*
|
||
|
* Look up @irq in the Configuration table specified by @ctbase
|
||
|
* to see if it is enabled and what its priority is. If it is an
|
||
|
* enabled interrupt with a higher priority than that currently
|
||
|
* recorded in @hpp, update @hpp.
|
||
|
*/
|
||
|
static void update_for_one_lpi(GICv3CPUState *cs, int irq,
|
||
|
uint64_t ctbase, bool ds, PendingIrq *hpp)
|
||
|
{
|
||
|
uint8_t lpite;
|
||
|
uint8_t prio;
|
||
|
|
||
|
address_space_read(&cs->gic->dma_as,
|
||
|
ctbase + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)),
|
||
|
MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite));
|
||
|
|
||
|
if (!(lpite & LPI_CTE_ENABLED)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (ds) {
|
||
|
prio = lpite & LPI_PRIORITY_MASK;
|
||
|
} else {
|
||
|
prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
|
||
|
}
|
||
|
|
||
|
if ((prio < hpp->prio) ||
|
||
|
((prio == hpp->prio) && (irq <= hpp->irq))) {
|
||
|
hpp->irq = irq;
|
||
|
hpp->prio = prio;
|
||
|
/* LPIs and vLPIs are always non-secure Grp1 interrupts */
|
||
|
hpp->grp = GICV3_G1NS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* update_for_all_lpis: Fully scan LPI tables and find best pending LPI
|
||
|
*
|
||
|
* @cs: GICv3CPUState
|
||
|
* @ptbase: physical address of LPI Pending table
|
||
|
* @ctbase: physical address of LPI Configuration table
|
||
|
* @ptsizebits: size of tables, specified as number of interrupt ID bits minus 1
|
||
|
* @ds: true if priority value should not be shifted
|
||
|
* @hpp: points to pending information to set
|
||
|
*
|
||
|
* Recalculate the highest priority pending enabled LPI from scratch,
|
||
|
* and set @hpp accordingly.
|
||
|
*
|
||
|
* We scan the LPI pending table @ptbase; for each pending LPI, we read the
|
||
|
* corresponding entry in the LPI configuration table @ctbase to extract
|
||
|
* the priority and enabled information.
|
||
|
*
|
||
|
* We take @ptsizebits in the form idbits-1 because this is the way that
|
||
|
* LPI table sizes are architecturally specified in GICR_PROPBASER.IDBits
|
||
|
* and in the VMAPP command's VPT_size field.
|
||
|
*/
|
||
|
static void update_for_all_lpis(GICv3CPUState *cs, uint64_t ptbase,
|
||
|
uint64_t ctbase, unsigned ptsizebits,
|
||
|
bool ds, PendingIrq *hpp)
|
||
|
{
|
||
|
AddressSpace *as = &cs->gic->dma_as;
|
||
|
uint8_t pend;
|
||
|
uint32_t pendt_size = (1ULL << (ptsizebits + 1));
|
||
|
int i, bit;
|
||
|
|
||
|
hpp->prio = 0xff;
|
||
|
|
||
|
for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
|
||
|
address_space_read(as, ptbase + i, MEMTXATTRS_UNSPECIFIED, &pend, 1);
|
||
|
while (pend) {
|
||
|
bit = ctz32(pend);
|
||
|
update_for_one_lpi(cs, i * 8 + bit, ctbase, ds, hpp);
|
||
|
pend &= ~(1 << bit);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* set_lpi_pending_bit: Set or clear pending bit for an LPI
|
||
|
*
|
||
|
* @cs: GICv3CPUState
|
||
|
* @ptbase: physical address of LPI Pending table
|
||
|
* @irq: LPI to change pending state for
|
||
|
* @level: false to clear pending state, true to set
|
||
|
*
|
||
|
* Returns true if we needed to do something, false if the pending bit
|
||
|
* was already at @level.
|
||
|
*/
|
||
|
static bool set_pending_table_bit(GICv3CPUState *cs, uint64_t ptbase,
|
||
|
int irq, bool level)
|
||
|
{
|
||
|
AddressSpace *as = &cs->gic->dma_as;
|
||
|
uint64_t addr = ptbase + irq / 8;
|
||
|
uint8_t pend;
|
||
|
|
||
|
address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
|
||
|
if (extract32(pend, irq % 8, 1) == level) {
|
||
|
/* Bit already at requested state, no action required */
|
||
|
return false;
|
||
|
}
|
||
|
pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
|
||
|
address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
|
||
|
int irq)
|
||
|
{
|
||
|
/* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
|
||
|
* honouring security state (these are RAZ/WI for Group 0 or Secure
|
||
|
* Group 1 interrupts).
|
||
|
*/
|
||
|
uint32_t prio;
|
||
|
|
||
|
prio = cs->gicr_ipriorityr[irq];
|
||
|
|
||
|
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
|
||
|
if (!(cs->gicr_igroupr0 & (1U << irq))) {
|
||
|
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
|
||
|
return 0;
|
||
|
}
|
||
|
/* NS view of the interrupt priority */
|
||
|
prio = (prio << 1) & 0xff;
|
||
|
}
|
||
|
return prio;
|
||
|
}
|
||
|
|
||
|
static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
|
||
|
uint8_t value)
|
||
|
{
|
||
|
/* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
|
||
|
* honouring security state (these are RAZ/WI for Group 0 or Secure
|
||
|
* Group 1 interrupts).
|
||
|
*/
|
||
|
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
|
||
|
if (!(cs->gicr_igroupr0 & (1U << irq))) {
|
||
|
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
|
||
|
return;
|
||
|
}
|
||
|
/* NS view of the interrupt priority */
|
||
|
value = 0x80 | (value >> 1);
|
||
|
}
|
||
|
cs->gicr_ipriorityr[irq] = value;
|
||
|
}
|
||
|
|
||
|
static void gicv3_redist_update_vlpi_only(GICv3CPUState *cs)
|
||
|
{
|
||
|
uint64_t ptbase, ctbase, idbits;
|
||
|
|
||
|
if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
|
||
|
cs->hppvlpi.prio = 0xff;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ptbase = cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK;
|
||
|
ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
|
||
|
idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
|
||
|
|
||
|
update_for_all_lpis(cs, ptbase, ctbase, idbits, true, &cs->hppvlpi);
|
||
|
}
|
||
|
|
||
|
static void gicv3_redist_update_vlpi(GICv3CPUState *cs)
|
||
|
{
|
||
|
gicv3_redist_update_vlpi_only(cs);
|
||
|
gicv3_cpuif_virt_irq_fiq_update(cs);
|
||
|
}
|
||
|
|
||
|
static void gicr_write_vpendbaser(GICv3CPUState *cs, uint64_t newval)
|
||
|
{
|
||
|
/* Write @newval to GICR_VPENDBASER, handling its effects */
|
||
|
bool oldvalid = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID);
|
||
|
bool newvalid = FIELD_EX64(newval, GICR_VPENDBASER, VALID);
|
||
|
bool pendinglast;
|
||
|
|
||
|
/*
|
||
|
* The DIRTY bit is read-only and for us is always zero;
|
||
|
* other fields are writable.
|
||
|
*/
|
||
|
newval &= R_GICR_VPENDBASER_INNERCACHE_MASK |
|
||
|
R_GICR_VPENDBASER_SHAREABILITY_MASK |
|
||
|
R_GICR_VPENDBASER_PHYADDR_MASK |
|
||
|
R_GICR_VPENDBASER_OUTERCACHE_MASK |
|
||
|
R_GICR_VPENDBASER_PENDINGLAST_MASK |
|
||
|
R_GICR_VPENDBASER_IDAI_MASK |
|
||
|
R_GICR_VPENDBASER_VALID_MASK;
|
||
|
|
||
|
if (oldvalid && newvalid) {
|
||
|
/*
|
||
|
* Changing other fields while VALID is 1 is UNPREDICTABLE;
|
||
|
* we choose to log and ignore the write.
|
||
|
*/
|
||
|
if (cs->gicr_vpendbaser ^ newval) {
|
||
|
qemu_log_mask(LOG_GUEST_ERROR,
|
||
|
"%s: Changing GICR_VPENDBASER when VALID=1 "
|
||
|
"is UNPREDICTABLE\n", __func__);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
if (!oldvalid && !newvalid) {
|
||
|
cs->gicr_vpendbaser = newval;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (newvalid) {
|
||
|
/*
|
||
|
* Valid going from 0 to 1: update hppvlpi from tables.
|
||
|
* If IDAI is 0 we are allowed to use the info we cached in
|
||
|
* the IMPDEF area of the table.
|
||
|
* PendingLast is RES1 when we make this transition.
|
||
|
*/
|
||
|
pendinglast = true;
|
||
|
} else {
|
||
|
/*
|
||
|
* Valid going from 1 to 0:
|
||
|
* Set PendingLast if there was a pending enabled interrupt
|
||
|
* for the vPE that was just descheduled.
|
||
|
* If we cache info in the IMPDEF area, write it out here.
|
||
|
*/
|
||
|
pendinglast = cs->hppvlpi.prio != 0xff;
|
||
|
}
|
||
|
|
||
|
newval = FIELD_DP64(newval, GICR_VPENDBASER, PENDINGLAST, pendinglast);
|
||
|
cs->gicr_vpendbaser = newval;
|
||
|
gicv3_redist_update_vlpi(cs);
|
||
|
}
|
||
|
|
||
|
static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
|
||
|
uint64_t *data, MemTxAttrs attrs)
|
||
|
{
|
||
|
switch (offset) {
|
||
|
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
|
||
|
*data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
|
||
|
return MEMTX_OK;
|
||
|
default:
|
||
|
return MEMTX_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
|
||
|
uint64_t value, MemTxAttrs attrs)
|
||
|
{
|
||
|
switch (offset) {
|
||
|
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
|
||
|
gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
|
||
|
gicv3_redist_update(cs);
|
||
|
return MEMTX_OK;
|
||
|
default:
|
||
|
return MEMTX_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
|
||
|
uint64_t *data, MemTxAttrs attrs)
|
||
|
{
|
||
|
switch (offset) {
|
||
|
case GICR_CTLR:
|
||
|
*data = cs->gicr_ctlr;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_IIDR:
|
||
|
*data = gicv3_iidr();
|
||
|
return MEMTX_OK;
|
||
|
case GICR_TYPER:
|
||
|
*data = extract64(cs->gicr_typer, 0, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_TYPER + 4:
|
||
|
*data = extract64(cs->gicr_typer, 32, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_STATUSR:
|
||
|
/* RAZ/WI for us (this is an optional register and our implementation
|
||
|
* does not track RO/WO/reserved violations to report them to the guest)
|
||
|
*/
|
||
|
*data = 0;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_WAKER:
|
||
|
*data = cs->gicr_waker;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PROPBASER:
|
||
|
*data = extract64(cs->gicr_propbaser, 0, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PROPBASER + 4:
|
||
|
*data = extract64(cs->gicr_propbaser, 32, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PENDBASER:
|
||
|
*data = extract64(cs->gicr_pendbaser, 0, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PENDBASER + 4:
|
||
|
*data = extract64(cs->gicr_pendbaser, 32, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_IGROUPR0:
|
||
|
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
|
||
|
*data = 0;
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
*data = cs->gicr_igroupr0;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ISENABLER0:
|
||
|
case GICR_ICENABLER0:
|
||
|
*data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ISPENDR0:
|
||
|
case GICR_ICPENDR0:
|
||
|
{
|
||
|
/* The pending register reads as the logical OR of the pending
|
||
|
* latch and the input line level for level-triggered interrupts.
|
||
|
*/
|
||
|
uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
|
||
|
*data = gicr_read_bitmap_reg(cs, attrs, val);
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
case GICR_ISACTIVER0:
|
||
|
case GICR_ICACTIVER0:
|
||
|
*data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
|
||
|
{
|
||
|
int i, irq = offset - GICR_IPRIORITYR;
|
||
|
uint32_t value = 0;
|
||
|
|
||
|
for (i = irq + 3; i >= irq; i--) {
|
||
|
value <<= 8;
|
||
|
value |= gicr_read_ipriorityr(cs, attrs, i);
|
||
|
}
|
||
|
*data = value;
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
case GICR_ICFGR0:
|
||
|
case GICR_ICFGR1:
|
||
|
{
|
||
|
/* Our edge_trigger bitmap is one bit per irq; take the correct
|
||
|
* half of it, and spread it out into the odd bits.
|
||
|
*/
|
||
|
uint32_t value;
|
||
|
|
||
|
value = cs->edge_trigger & mask_group(cs, attrs);
|
||
|
value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
|
||
|
value = half_shuffle32(value) << 1;
|
||
|
*data = value;
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
case GICR_IGRPMODR0:
|
||
|
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
|
||
|
/* RAZ/WI if security disabled, or if
|
||
|
* security enabled and this is an NS access
|
||
|
*/
|
||
|
*data = 0;
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
*data = cs->gicr_igrpmodr0;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_NSACR:
|
||
|
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
|
||
|
/* RAZ/WI if security disabled, or if
|
||
|
* security enabled and this is an NS access
|
||
|
*/
|
||
|
*data = 0;
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
*data = cs->gicr_nsacr;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_IDREGS ... GICR_IDREGS + 0x2f:
|
||
|
*data = gicv3_idreg(cs->gic, offset - GICR_IDREGS, GICV3_PIDR0_REDIST);
|
||
|
return MEMTX_OK;
|
||
|
/*
|
||
|
* VLPI frame registers. We don't need a version check for
|
||
|
* VPROPBASER and VPENDBASER because gicv3_redist_size() will
|
||
|
* prevent pre-v4 GIC from passing us offsets this high.
|
||
|
*/
|
||
|
case GICR_VPROPBASER:
|
||
|
*data = extract64(cs->gicr_vpropbaser, 0, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPROPBASER + 4:
|
||
|
*data = extract64(cs->gicr_vpropbaser, 32, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPENDBASER:
|
||
|
*data = extract64(cs->gicr_vpendbaser, 0, 32);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPENDBASER + 4:
|
||
|
*data = extract64(cs->gicr_vpendbaser, 32, 32);
|
||
|
return MEMTX_OK;
|
||
|
default:
|
||
|
return MEMTX_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
|
||
|
uint64_t value, MemTxAttrs attrs)
|
||
|
{
|
||
|
switch (offset) {
|
||
|
case GICR_CTLR:
|
||
|
/* For our implementation, GICR_TYPER.DPGS is 0 and so all
|
||
|
* the DPG bits are RAZ/WI. We don't do anything asynchronously,
|
||
|
* so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
|
||
|
* implement LPIs) so Enable_LPIs is programmable.
|
||
|
*/
|
||
|
if (cs->gicr_typer & GICR_TYPER_PLPIS) {
|
||
|
if (value & GICR_CTLR_ENABLE_LPIS) {
|
||
|
cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
|
||
|
/* Check for any pending interr in pending table */
|
||
|
gicv3_redist_update_lpi(cs);
|
||
|
} else {
|
||
|
cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
|
||
|
/* cs->hppi might have been an LPI; recalculate */
|
||
|
gicv3_redist_update(cs);
|
||
|
}
|
||
|
}
|
||
|
return MEMTX_OK;
|
||
|
case GICR_STATUSR:
|
||
|
/* RAZ/WI for our implementation */
|
||
|
return MEMTX_OK;
|
||
|
case GICR_WAKER:
|
||
|
/* Only the ProcessorSleep bit is writable. When the guest sets
|
||
|
* it, it requests that we transition the channel between the
|
||
|
* redistributor and the cpu interface to quiescent, and that
|
||
|
* we set the ChildrenAsleep bit once the inteface has reached the
|
||
|
* quiescent state.
|
||
|
* Setting the ProcessorSleep to 0 reverses the quiescing, and
|
||
|
* ChildrenAsleep is cleared once the transition is complete.
|
||
|
* Since our interface is not asynchronous, we complete these
|
||
|
* transitions instantaneously, so we set ChildrenAsleep to the
|
||
|
* same value as ProcessorSleep here.
|
||
|
*/
|
||
|
value &= GICR_WAKER_ProcessorSleep;
|
||
|
if (value & GICR_WAKER_ProcessorSleep) {
|
||
|
value |= GICR_WAKER_ChildrenAsleep;
|
||
|
}
|
||
|
cs->gicr_waker = value;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PROPBASER:
|
||
|
cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PROPBASER + 4:
|
||
|
cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PENDBASER:
|
||
|
cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PENDBASER + 4:
|
||
|
cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_IGROUPR0:
|
||
|
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
cs->gicr_igroupr0 = value;
|
||
|
gicv3_redist_update(cs);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ISENABLER0:
|
||
|
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ICENABLER0:
|
||
|
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ISPENDR0:
|
||
|
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ICPENDR0:
|
||
|
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ISACTIVER0:
|
||
|
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ICACTIVER0:
|
||
|
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
|
||
|
{
|
||
|
int i, irq = offset - GICR_IPRIORITYR;
|
||
|
|
||
|
for (i = irq; i < irq + 4; i++, value >>= 8) {
|
||
|
gicr_write_ipriorityr(cs, attrs, i, value);
|
||
|
}
|
||
|
gicv3_redist_update(cs);
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
case GICR_ICFGR0:
|
||
|
/* Register is all RAZ/WI or RAO/WI bits */
|
||
|
return MEMTX_OK;
|
||
|
case GICR_ICFGR1:
|
||
|
{
|
||
|
uint32_t mask;
|
||
|
|
||
|
/* Since our edge_trigger bitmap is one bit per irq, our input
|
||
|
* 32-bits will compress down into 16 bits which we need
|
||
|
* to write into the bitmap.
|
||
|
*/
|
||
|
value = half_unshuffle32(value >> 1) << 16;
|
||
|
mask = mask_group(cs, attrs) & 0xffff0000U;
|
||
|
|
||
|
cs->edge_trigger &= ~mask;
|
||
|
cs->edge_trigger |= (value & mask);
|
||
|
|
||
|
gicv3_redist_update(cs);
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
case GICR_IGRPMODR0:
|
||
|
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
|
||
|
/* RAZ/WI if security disabled, or if
|
||
|
* security enabled and this is an NS access
|
||
|
*/
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
cs->gicr_igrpmodr0 = value;
|
||
|
gicv3_redist_update(cs);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_NSACR:
|
||
|
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
|
||
|
/* RAZ/WI if security disabled, or if
|
||
|
* security enabled and this is an NS access
|
||
|
*/
|
||
|
return MEMTX_OK;
|
||
|
}
|
||
|
cs->gicr_nsacr = value;
|
||
|
/* no update required as this only affects access permission checks */
|
||
|
return MEMTX_OK;
|
||
|
case GICR_IIDR:
|
||
|
case GICR_TYPER:
|
||
|
case GICR_IDREGS ... GICR_IDREGS + 0x2f:
|
||
|
/* RO registers, ignore the write */
|
||
|
qemu_log_mask(LOG_GUEST_ERROR,
|
||
|
"%s: invalid guest write to RO register at offset "
|
||
|
TARGET_FMT_plx "\n", __func__, offset);
|
||
|
return MEMTX_OK;
|
||
|
/*
|
||
|
* VLPI frame registers. We don't need a version check for
|
||
|
* VPROPBASER and VPENDBASER because gicv3_redist_size() will
|
||
|
* prevent pre-v4 GIC from passing us offsets this high.
|
||
|
*/
|
||
|
case GICR_VPROPBASER:
|
||
|
cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 0, 32, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPROPBASER + 4:
|
||
|
cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 32, 32, value);
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPENDBASER:
|
||
|
gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 0, 32, value));
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPENDBASER + 4:
|
||
|
gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 32, 32, value));
|
||
|
return MEMTX_OK;
|
||
|
default:
|
||
|
return MEMTX_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
|
||
|
uint64_t *data, MemTxAttrs attrs)
|
||
|
{
|
||
|
switch (offset) {
|
||
|
case GICR_TYPER:
|
||
|
*data = cs->gicr_typer;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PROPBASER:
|
||
|
*data = cs->gicr_propbaser;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PENDBASER:
|
||
|
*data = cs->gicr_pendbaser;
|
||
|
return MEMTX_OK;
|
||
|
/*
|
||
|
* VLPI frame registers. We don't need a version check for
|
||
|
* VPROPBASER and VPENDBASER because gicv3_redist_size() will
|
||
|
* prevent pre-v4 GIC from passing us offsets this high.
|
||
|
*/
|
||
|
case GICR_VPROPBASER:
|
||
|
*data = cs->gicr_vpropbaser;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPENDBASER:
|
||
|
*data = cs->gicr_vpendbaser;
|
||
|
return MEMTX_OK;
|
||
|
default:
|
||
|
return MEMTX_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
|
||
|
uint64_t value, MemTxAttrs attrs)
|
||
|
{
|
||
|
switch (offset) {
|
||
|
case GICR_PROPBASER:
|
||
|
cs->gicr_propbaser = value;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_PENDBASER:
|
||
|
cs->gicr_pendbaser = value;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_TYPER:
|
||
|
/* RO register, ignore the write */
|
||
|
qemu_log_mask(LOG_GUEST_ERROR,
|
||
|
"%s: invalid guest write to RO register at offset "
|
||
|
TARGET_FMT_plx "\n", __func__, offset);
|
||
|
return MEMTX_OK;
|
||
|
/*
|
||
|
* VLPI frame registers. We don't need a version check for
|
||
|
* VPROPBASER and VPENDBASER because gicv3_redist_size() will
|
||
|
* prevent pre-v4 GIC from passing us offsets this high.
|
||
|
*/
|
||
|
case GICR_VPROPBASER:
|
||
|
cs->gicr_vpropbaser = value;
|
||
|
return MEMTX_OK;
|
||
|
case GICR_VPENDBASER:
|
||
|
gicr_write_vpendbaser(cs, value);
|
||
|
return MEMTX_OK;
|
||
|
default:
|
||
|
return MEMTX_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
|
||
|
unsigned size, MemTxAttrs attrs)
|
||
|
{
|
||
|
GICv3RedistRegion *region = opaque;
|
||
|
GICv3State *s = region->gic;
|
||
|
GICv3CPUState *cs;
|
||
|
MemTxResult r;
|
||
|
int cpuidx;
|
||
|
|
||
|
assert((offset & (size - 1)) == 0);
|
||
|
|
||
|
/*
|
||
|
* There are (for GICv3) two 64K redistributor pages per CPU.
|
||
|
* In some cases the redistributor pages for all CPUs are not
|
||
|
* contiguous (eg on the virt board they are split into two
|
||
|
* parts if there are too many CPUs to all fit in the same place
|
||
|
* in the memory map); if so then the GIC has multiple MemoryRegions
|
||
|
* for the redistributors.
|
||
|
*/
|
||
|
cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
|
||
|
offset %= gicv3_redist_size(s);
|
||
|
|
||
|
cs = &s->cpu[cpuidx];
|
||
|
|
||
|
switch (size) {
|
||
|
case 1:
|
||
|
r = gicr_readb(cs, offset, data, attrs);
|
||
|
break;
|
||
|
case 4:
|
||
|
r = gicr_readl(cs, offset, data, attrs);
|
||
|
break;
|
||
|
case 8:
|
||
|
r = gicr_readll(cs, offset, data, attrs);
|
||
|
break;
|
||
|
default:
|
||
|
r = MEMTX_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (r != MEMTX_OK) {
|
||
|
qemu_log_mask(LOG_GUEST_ERROR,
|
||
|
"%s: invalid guest read at offset " TARGET_FMT_plx
|
||
|
" size %u\n", __func__, offset, size);
|
||
|
trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
|
||
|
size, attrs.secure);
|
||
|
/* The spec requires that reserved registers are RAZ/WI;
|
||
|
* so use MEMTX_ERROR returns from leaf functions as a way to
|
||
|
* trigger the guest-error logging but don't return it to
|
||
|
* the caller, or we'll cause a spurious guest data abort.
|
||
|
*/
|
||
|
r = MEMTX_OK;
|
||
|
*data = 0;
|
||
|
} else {
|
||
|
trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
|
||
|
size, attrs.secure);
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
|
||
|
unsigned size, MemTxAttrs attrs)
|
||
|
{
|
||
|
GICv3RedistRegion *region = opaque;
|
||
|
GICv3State *s = region->gic;
|
||
|
GICv3CPUState *cs;
|
||
|
MemTxResult r;
|
||
|
int cpuidx;
|
||
|
|
||
|
assert((offset & (size - 1)) == 0);
|
||
|
|
||
|
/*
|
||
|
* There are (for GICv3) two 64K redistributor pages per CPU.
|
||
|
* In some cases the redistributor pages for all CPUs are not
|
||
|
* contiguous (eg on the virt board they are split into two
|
||
|
* parts if there are too many CPUs to all fit in the same place
|
||
|
* in the memory map); if so then the GIC has multiple MemoryRegions
|
||
|
* for the redistributors.
|
||
|
*/
|
||
|
cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
|
||
|
offset %= gicv3_redist_size(s);
|
||
|
|
||
|
cs = &s->cpu[cpuidx];
|
||
|
|
||
|
switch (size) {
|
||
|
case 1:
|
||
|
r = gicr_writeb(cs, offset, data, attrs);
|
||
|
break;
|
||
|
case 4:
|
||
|
r = gicr_writel(cs, offset, data, attrs);
|
||
|
break;
|
||
|
case 8:
|
||
|
r = gicr_writell(cs, offset, data, attrs);
|
||
|
break;
|
||
|
default:
|
||
|
r = MEMTX_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (r != MEMTX_OK) {
|
||
|
qemu_log_mask(LOG_GUEST_ERROR,
|
||
|
"%s: invalid guest write at offset " TARGET_FMT_plx
|
||
|
" size %u\n", __func__, offset, size);
|
||
|
trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
|
||
|
size, attrs.secure);
|
||
|
/* The spec requires that reserved registers are RAZ/WI;
|
||
|
* so use MEMTX_ERROR returns from leaf functions as a way to
|
||
|
* trigger the guest-error logging but don't return it to
|
||
|
* the caller, or we'll cause a spurious guest data abort.
|
||
|
*/
|
||
|
r = MEMTX_OK;
|
||
|
} else {
|
||
|
trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
|
||
|
size, attrs.secure);
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
|
||
|
{
|
||
|
uint64_t lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
|
||
|
|
||
|
update_for_one_lpi(cs, irq, lpict_baddr,
|
||
|
cs->gic->gicd_ctlr & GICD_CTLR_DS,
|
||
|
&cs->hpplpi);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
|
||
|
{
|
||
|
/*
|
||
|
* This function scans the LPI pending table and for each pending
|
||
|
* LPI, reads the corresponding entry from LPI configuration table
|
||
|
* to extract the priority info and determine if the current LPI
|
||
|
* priority is lower than the last computed high priority lpi interrupt.
|
||
|
* If yes, replace current LPI as the new high priority lpi interrupt.
|
||
|
*/
|
||
|
uint64_t lpipt_baddr, lpict_baddr;
|
||
|
uint64_t idbits;
|
||
|
|
||
|
idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
|
||
|
GICD_TYPER_IDBITS);
|
||
|
|
||
|
if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
|
||
|
lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
|
||
|
|
||
|
update_for_all_lpis(cs, lpipt_baddr, lpict_baddr, idbits,
|
||
|
cs->gic->gicd_ctlr & GICD_CTLR_DS, &cs->hpplpi);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_update_lpi(GICv3CPUState *cs)
|
||
|
{
|
||
|
gicv3_redist_update_lpi_only(cs);
|
||
|
gicv3_redist_update(cs);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
|
||
|
{
|
||
|
/*
|
||
|
* This function updates the pending bit in lpi pending table for
|
||
|
* the irq being activated or deactivated.
|
||
|
*/
|
||
|
uint64_t lpipt_baddr;
|
||
|
|
||
|
lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
|
||
|
if (!set_pending_table_bit(cs, lpipt_baddr, irq, level)) {
|
||
|
/* no change in the value of pending bit, return */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* check if this LPI is better than the current hpplpi, if yes
|
||
|
* just set hpplpi.prio and .irq without doing a full rescan
|
||
|
*/
|
||
|
if (level) {
|
||
|
gicv3_redist_check_lpi_priority(cs, irq);
|
||
|
gicv3_redist_update(cs);
|
||
|
} else {
|
||
|
if (irq == cs->hpplpi.irq) {
|
||
|
gicv3_redist_update_lpi(cs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
|
||
|
{
|
||
|
uint64_t idbits;
|
||
|
|
||
|
idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
|
||
|
GICD_TYPER_IDBITS);
|
||
|
|
||
|
if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
|
||
|
(irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* set/clear the pending bit for this irq */
|
||
|
gicv3_redist_lpi_pending(cs, irq, level);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_inv_lpi(GICv3CPUState *cs, int irq)
|
||
|
{
|
||
|
/*
|
||
|
* The only cached information for LPIs we have is the HPPLPI.
|
||
|
* We could be cleverer about identifying when we don't need
|
||
|
* to do a full rescan of the pending table, but until we find
|
||
|
* this is a performance issue, just always recalculate.
|
||
|
*/
|
||
|
gicv3_redist_update_lpi(cs);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq)
|
||
|
{
|
||
|
/*
|
||
|
* Move the specified LPI's pending state from the source redistributor
|
||
|
* to the destination.
|
||
|
*
|
||
|
* If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
|
||
|
* we choose to NOP. If LPIs are disabled on source there's nothing
|
||
|
* to be transferred anyway.
|
||
|
*/
|
||
|
uint64_t idbits;
|
||
|
uint32_t pendt_size;
|
||
|
uint64_t src_baddr;
|
||
|
|
||
|
if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
|
||
|
!(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
|
||
|
GICD_TYPER_IDBITS);
|
||
|
idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
|
||
|
idbits);
|
||
|
|
||
|
pendt_size = 1ULL << (idbits + 1);
|
||
|
if ((irq / 8) >= pendt_size) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
|
||
|
|
||
|
if (!set_pending_table_bit(src, src_baddr, irq, 0)) {
|
||
|
/* Not pending on source, nothing to do */
|
||
|
return;
|
||
|
}
|
||
|
if (irq == src->hpplpi.irq) {
|
||
|
/*
|
||
|
* We just made this LPI not-pending so only need to update
|
||
|
* if it was previously the highest priority pending LPI
|
||
|
*/
|
||
|
gicv3_redist_update_lpi(src);
|
||
|
}
|
||
|
/* Mark it pending on the destination */
|
||
|
gicv3_redist_lpi_pending(dest, irq, 1);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest)
|
||
|
{
|
||
|
/*
|
||
|
* We must move all pending LPIs from the source redistributor
|
||
|
* to the destination. That is, for every pending LPI X on
|
||
|
* src, we must set it not-pending on src and pending on dest.
|
||
|
* LPIs that are already pending on dest are not cleared.
|
||
|
*
|
||
|
* If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
|
||
|
* we choose to NOP. If LPIs are disabled on source there's nothing
|
||
|
* to be transferred anyway.
|
||
|
*/
|
||
|
AddressSpace *as = &src->gic->dma_as;
|
||
|
uint64_t idbits;
|
||
|
uint32_t pendt_size;
|
||
|
uint64_t src_baddr, dest_baddr;
|
||
|
int i;
|
||
|
|
||
|
if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
|
||
|
!(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
|
||
|
GICD_TYPER_IDBITS);
|
||
|
idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
|
||
|
idbits);
|
||
|
|
||
|
pendt_size = 1ULL << (idbits + 1);
|
||
|
src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
|
||
|
dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
|
||
|
|
||
|
for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
|
||
|
uint8_t src_pend, dest_pend;
|
||
|
|
||
|
address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
|
||
|
&src_pend, sizeof(src_pend));
|
||
|
if (!src_pend) {
|
||
|
continue;
|
||
|
}
|
||
|
address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
|
||
|
&dest_pend, sizeof(dest_pend));
|
||
|
dest_pend |= src_pend;
|
||
|
src_pend = 0;
|
||
|
address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
|
||
|
&src_pend, sizeof(src_pend));
|
||
|
address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
|
||
|
&dest_pend, sizeof(dest_pend));
|
||
|
}
|
||
|
|
||
|
gicv3_redist_update_lpi(src);
|
||
|
gicv3_redist_update_lpi(dest);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_vlpi_pending(GICv3CPUState *cs, int irq, int level)
|
||
|
{
|
||
|
/*
|
||
|
* Change the pending state of the specified vLPI.
|
||
|
* Unlike gicv3_redist_process_vlpi(), we know here that the
|
||
|
* vCPU is definitely resident on this redistributor, and that
|
||
|
* the irq is in range.
|
||
|
*/
|
||
|
uint64_t vptbase, ctbase;
|
||
|
|
||
|
vptbase = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, PHYADDR) << 16;
|
||
|
|
||
|
if (set_pending_table_bit(cs, vptbase, irq, level)) {
|
||
|
if (level) {
|
||
|
/* Check whether this vLPI is now the best */
|
||
|
ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
|
||
|
update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
|
||
|
gicv3_cpuif_virt_irq_fiq_update(cs);
|
||
|
} else {
|
||
|
/* Only need to recalculate if this was previously the best vLPI */
|
||
|
if (irq == cs->hppvlpi.irq) {
|
||
|
gicv3_redist_update_vlpi(cs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_process_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr,
|
||
|
int doorbell, int level)
|
||
|
{
|
||
|
bool bit_changed;
|
||
|
bool resident = vcpu_resident(cs, vptaddr);
|
||
|
uint64_t ctbase;
|
||
|
|
||
|
if (resident) {
|
||
|
uint32_t idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
|
||
|
if (irq >= (1ULL << (idbits + 1))) {
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bit_changed = set_pending_table_bit(cs, vptaddr, irq, level);
|
||
|
if (resident && bit_changed) {
|
||
|
if (level) {
|
||
|
/* Check whether this vLPI is now the best */
|
||
|
ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
|
||
|
update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
|
||
|
gicv3_cpuif_virt_irq_fiq_update(cs);
|
||
|
} else {
|
||
|
/* Only need to recalculate if this was previously the best vLPI */
|
||
|
if (irq == cs->hppvlpi.irq) {
|
||
|
gicv3_redist_update_vlpi(cs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!resident && level && doorbell != INTID_SPURIOUS &&
|
||
|
(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
|
||
|
/* vCPU is not currently resident: ring the doorbell */
|
||
|
gicv3_redist_process_lpi(cs, doorbell, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_mov_vlpi(GICv3CPUState *src, uint64_t src_vptaddr,
|
||
|
GICv3CPUState *dest, uint64_t dest_vptaddr,
|
||
|
int irq, int doorbell)
|
||
|
{
|
||
|
/*
|
||
|
* Move the specified vLPI's pending state from the source redistributor
|
||
|
* to the destination.
|
||
|
*/
|
||
|
if (!set_pending_table_bit(src, src_vptaddr, irq, 0)) {
|
||
|
/* Not pending on source, nothing to do */
|
||
|
return;
|
||
|
}
|
||
|
if (vcpu_resident(src, src_vptaddr) && irq == src->hppvlpi.irq) {
|
||
|
/*
|
||
|
* Update src's cached highest-priority pending vLPI if we just made
|
||
|
* it not-pending
|
||
|
*/
|
||
|
gicv3_redist_update_vlpi(src);
|
||
|
}
|
||
|
/*
|
||
|
* Mark the vLPI pending on the destination (ringing the doorbell
|
||
|
* if the vCPU isn't resident)
|
||
|
*/
|
||
|
gicv3_redist_process_vlpi(dest, irq, dest_vptaddr, doorbell, irq);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr)
|
||
|
{
|
||
|
if (!vcpu_resident(cs, vptaddr)) {
|
||
|
/* We don't have anything cached if the vCPU isn't resident */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Otherwise, our only cached information is the HPPVLPI info */
|
||
|
gicv3_redist_update_vlpi(cs);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_inv_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr)
|
||
|
{
|
||
|
/*
|
||
|
* The only cached information for LPIs we have is the HPPLPI.
|
||
|
* We could be cleverer about identifying when we don't need
|
||
|
* to do a full rescan of the pending table, but until we find
|
||
|
* this is a performance issue, just always recalculate.
|
||
|
*/
|
||
|
gicv3_redist_vinvall(cs, vptaddr);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
|
||
|
{
|
||
|
/* Update redistributor state for a change in an external PPI input line */
|
||
|
if (level == extract32(cs->level, irq, 1)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
|
||
|
|
||
|
cs->level = deposit32(cs->level, irq, 1, level);
|
||
|
|
||
|
if (level) {
|
||
|
/* 0->1 edges latch the pending bit for edge-triggered interrupts */
|
||
|
if (extract32(cs->edge_trigger, irq, 1)) {
|
||
|
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
gicv3_redist_update(cs);
|
||
|
}
|
||
|
|
||
|
void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
|
||
|
{
|
||
|
/* Update redistributor state for a generated SGI */
|
||
|
int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
|
||
|
|
||
|
/* If we are asked for a Secure Group 1 SGI and it's actually
|
||
|
* configured as Secure Group 0 this is OK (subject to the usual
|
||
|
* NSACR checks).
|
||
|
*/
|
||
|
if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
|
||
|
grp = GICV3_G0;
|
||
|
}
|
||
|
|
||
|
if (grp != irqgrp) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
|
||
|
/* If security is enabled we must test the NSACR bits */
|
||
|
int nsaccess = gicr_ns_access(cs, irq);
|
||
|
|
||
|
if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
|
||
|
(irqgrp == GICV3_G1 && nsaccess < 2)) {
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* OK, we can accept the SGI */
|
||
|
trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
|
||
|
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
|
||
|
gicv3_redist_update(cs);
|
||
|
}
|