qemu/hw/mcf5206.c

814 lines
20 KiB
C
Raw Normal View History

/*
* Motorola ColdFire MCF5206 SoC embedded peripheral emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licenced under the GPL
*/
#include "vl.h"
/* General purpose timer module. */
typedef struct {
uint16_t tmr;
uint16_t trr;
uint16_t tcr;
uint16_t ter;
ptimer_state *timer;
qemu_irq irq;
int irq_state;
} m5206_timer_state;
#define TMR_RST 0x01
#define TMR_CLK 0x06
#define TMR_FRR 0x08
#define TMR_ORI 0x10
#define TMR_OM 0x20
#define TMR_CE 0xc0
#define TER_CAP 0x01
#define TER_REF 0x02
static void m5206_timer_update(m5206_timer_state *s)
{
if ((s->tmr & TMR_ORI) != 0 && (s->ter & TER_REF))
qemu_irq_raise(s->irq);
else
qemu_irq_lower(s->irq);
}
static void m5206_timer_reset(m5206_timer_state *s)
{
s->tmr = 0;
s->trr = 0;
}
static void m5206_timer_recalibrate(m5206_timer_state *s)
{
int prescale;
int mode;
ptimer_stop(s->timer);
if ((s->tmr & TMR_RST) == 0)
return;
prescale = (s->tmr >> 8) + 1;
mode = (s->tmr >> 1) & 3;
if (mode == 2)
prescale *= 16;
if (mode == 3 || mode == 0)
cpu_abort(cpu_single_env,
"m5206_timer: mode %d not implemented\n", mode);
if ((s->tmr & TMR_FRR) == 0)
cpu_abort(cpu_single_env,
"m5206_timer: free running mode not implemented\n");
/* Assume 66MHz system clock. */
ptimer_set_freq(s->timer, 66000000 / prescale);
ptimer_set_limit(s->timer, s->trr, 0);
ptimer_run(s->timer, 0);
}
static void m5206_timer_trigger(void *opaque)
{
m5206_timer_state *s = (m5206_timer_state *)opaque;
s->ter |= TER_REF;
m5206_timer_update(s);
}
static uint32_t m5206_timer_read(m5206_timer_state *s, uint32_t addr)
{
switch (addr) {
case 0:
return s->tmr;
case 4:
return s->trr;
case 8:
return s->tcr;
case 0xc:
return s->trr - ptimer_get_count(s->timer);
case 0x11:
return s->ter;
default:
return 0;
}
}
static void m5206_timer_write(m5206_timer_state *s, uint32_t addr, uint32_t val)
{
switch (addr) {
case 0:
if ((s->tmr & TMR_RST) != 0 && (val & TMR_RST) == 0) {
m5206_timer_reset(s);
}
s->tmr = val;
m5206_timer_recalibrate(s);
break;
case 4:
s->trr = val;
m5206_timer_recalibrate(s);
break;
case 8:
s->tcr = val;
break;
case 0xc:
ptimer_set_count(s->timer, val);
break;
case 0x11:
s->ter &= ~val;
break;
default:
break;
}
m5206_timer_update(s);
}
static m5206_timer_state *m5206_timer_init(qemu_irq irq)
{
m5206_timer_state *s;
QEMUBH *bh;
s = (m5206_timer_state *)qemu_mallocz(sizeof(m5206_timer_state));
bh = qemu_bh_new(m5206_timer_trigger, s);
s->timer = ptimer_init(bh);
s->irq = irq;
m5206_timer_reset(s);
return s;
}
/* UART */
typedef struct {
uint8_t mr[2];
uint8_t sr;
uint8_t isr;
uint8_t imr;
uint8_t bg1;
uint8_t bg2;
uint8_t fifo[4];
uint8_t tb;
int current_mr;
int fifo_len;
int tx_enabled;
int rx_enabled;
qemu_irq irq;
CharDriverState *chr;
} m5206_uart_state;
/* UART Status Register bits. */
#define M5206_UART_RxRDY 0x01
#define M5206_UART_FFULL 0x02
#define M5206_UART_TxRDY 0x04
#define M5206_UART_TxEMP 0x08
#define M5206_UART_OE 0x10
#define M5206_UART_PE 0x20
#define M5206_UART_FE 0x40
#define M5206_UART_RB 0x80
/* Interrupt flags. */
#define M5206_UART_TxINT 0x01
#define M5206_UART_RxINT 0x02
#define M5206_UART_DBINT 0x04
#define M5206_UART_COSINT 0x80
/* UMR1 flags. */
#define M5206_UART_BC0 0x01
#define M5206_UART_BC1 0x02
#define M5206_UART_PT 0x04
#define M5206_UART_PM0 0x08
#define M5206_UART_PM1 0x10
#define M5206_UART_ERR 0x20
#define M5206_UART_RxIRQ 0x40
#define M5206_UART_RxRTS 0x80
static void m5206_uart_update(m5206_uart_state *s)
{
s->isr &= ~(M5206_UART_TxINT | M5206_UART_RxINT);
if (s->sr & M5206_UART_TxRDY)
s->isr |= M5206_UART_TxINT;
if ((s->sr & ((s->mr[0] & M5206_UART_RxIRQ)
? M5206_UART_FFULL : M5206_UART_RxRDY)) != 0)
s->isr |= M5206_UART_RxINT;
qemu_set_irq(s->irq, (s->isr & s->imr) != 0);
}
static uint32_t m5206_uart_read(m5206_uart_state *s, uint32_t addr)
{
switch (addr) {
case 0x00:
return s->mr[s->current_mr];
case 0x04:
return s->sr;
case 0x0c:
{
uint8_t val;
int i;
if (s->fifo_len == 0)
return 0;
val = s->fifo[0];
s->fifo_len--;
for (i = 0; i < s->fifo_len; i++)
s->fifo[i] = s->fifo[i + 1];
s->sr &= ~M5206_UART_FFULL;
if (s->fifo_len == 0)
s->sr &= ~M5206_UART_RxRDY;
m5206_uart_update(s);
return val;
}
case 0x10:
/* TODO: Implement IPCR. */
return 0;
case 0x14:
return s->isr;
case 0x18:
return s->bg1;
case 0x1c:
return s->bg2;
default:
return 0;
}
}
/* Update TxRDY flag and set data if present and enabled. */
static void m5206_uart_do_tx(m5206_uart_state *s)
{
if (s->tx_enabled && (s->sr & M5206_UART_TxEMP) == 0) {
if (s->chr)
qemu_chr_write(s->chr, (unsigned char *)&s->tb, 1);
s->sr |= M5206_UART_TxEMP;
}
if (s->tx_enabled) {
s->sr |= M5206_UART_TxRDY;
} else {
s->sr &= ~M5206_UART_TxRDY;
}
}
static void m5206_do_command(m5206_uart_state *s, uint8_t cmd)
{
/* Misc command. */
switch ((cmd >> 4) & 3) {
case 0: /* No-op. */
break;
case 1: /* Reset mode register pointer. */
s->current_mr = 0;
break;
case 2: /* Reset receiver. */
s->rx_enabled = 0;
s->fifo_len = 0;
s->sr &= ~(M5206_UART_RxRDY | M5206_UART_FFULL);
break;
case 3: /* Reset transmitter. */
s->tx_enabled = 0;
s->sr |= M5206_UART_TxEMP;
s->sr &= ~M5206_UART_TxRDY;
break;
case 4: /* Reset error status. */
break;
case 5: /* Reset break-change interrupt. */
s->isr &= ~M5206_UART_DBINT;
break;
case 6: /* Start break. */
case 7: /* Stop break. */
break;
}
/* Transmitter command. */
switch ((cmd >> 2) & 3) {
case 0: /* No-op. */
break;
case 1: /* Enable. */
s->tx_enabled = 1;
m5206_uart_do_tx(s);
break;
case 2: /* Disable. */
s->tx_enabled = 0;
m5206_uart_do_tx(s);
break;
case 3: /* Reserved. */
fprintf(stderr, "m5206_uart: Bad TX command\n");
break;
}
/* Receiver command. */
switch (cmd & 3) {
case 0: /* No-op. */
break;
case 1: /* Enable. */
s->rx_enabled = 1;
break;
case 2:
s->rx_enabled = 0;
break;
case 3: /* Reserved. */
fprintf(stderr, "m5206_uart: Bad RX command\n");
break;
}
}
static void m5206_uart_write(m5206_uart_state *s, uint32_t addr, uint32_t val)
{
switch (addr) {
case 0x00:
s->mr[s->current_mr] = val;
s->current_mr = 1;
break;
case 0x04:
/* CSR is ignored. */
break;
case 0x08: /* Command Register. */
m5206_do_command(s, val);
break;
case 0x0c: /* Transmit Buffer. */
s->sr &= ~M5206_UART_TxEMP;
s->tb = val;
m5206_uart_do_tx(s);
break;
case 0x10:
/* ACR is ignored. */
break;
case 0x14:
s->imr = val;
break;
default:
break;
}
m5206_uart_update(s);
}
static void m5206_uart_reset(m5206_uart_state *s)
{
s->fifo_len = 0;
s->mr[0] = 0;
s->mr[1] = 0;
s->sr = M5206_UART_TxEMP;
s->tx_enabled = 0;
s->rx_enabled = 0;
s->isr = 0;
s->imr = 0;
}
static void m5206_uart_push_byte(m5206_uart_state *s, uint8_t data)
{
/* Break events overwrite the last byte if the fifo is full. */
if (s->fifo_len == 4)
s->fifo_len--;
s->fifo[s->fifo_len] = data;
s->fifo_len++;
s->sr |= M5206_UART_RxRDY;
if (s->fifo_len == 4)
s->sr |= M5206_UART_FFULL;
m5206_uart_update(s);
}
static void m5206_uart_event(void *opaque, int event)
{
m5206_uart_state *s = (m5206_uart_state *)opaque;
switch (event) {
case CHR_EVENT_BREAK:
s->isr |= M5206_UART_DBINT;
m5206_uart_push_byte(s, 0);
break;
default:
break;
}
}
static int m5206_uart_can_receive(void *opaque)
{
m5206_uart_state *s = (m5206_uart_state *)opaque;
return s->rx_enabled && (s->sr & M5206_UART_FFULL) == 0;
}
static void m5206_uart_receive(void *opaque, const uint8_t *buf, int size)
{
m5206_uart_state *s = (m5206_uart_state *)opaque;
m5206_uart_push_byte(s, buf[0]);
}
static m5206_uart_state *m5206_uart_init(qemu_irq irq, CharDriverState *chr)
{
m5206_uart_state *s;
s = qemu_mallocz(sizeof(m5206_uart_state));
s->chr = chr;
s->irq = irq;
if (chr) {
qemu_chr_add_handlers(chr, m5206_uart_can_receive, m5206_uart_receive,
m5206_uart_event, s);
}
m5206_uart_reset(s);
return s;
}
/* System Integration Module. */
typedef struct {
CPUState *env;
m5206_timer_state *timer[2];
m5206_uart_state *uart[2];
uint8_t scr;
uint8_t icr[14];
uint16_t imr; /* 1 == interrupt is masked. */
uint16_t ipr;
uint8_t rsr;
uint8_t swivr;
uint8_t par;
/* Include the UART vector registers here. */
uint8_t uivr[2];
} m5206_mbar_state;
/* Interrupt controller. */
static int m5206_find_pending_irq(m5206_mbar_state *s)
{
int level;
int vector;
uint16_t active;
int i;
level = 0;
vector = 0;
active = s->ipr & ~s->imr;
if (!active)
return 0;
for (i = 1; i < 14; i++) {
if (active & (1 << i)) {
if ((s->icr[i] & 0x1f) > level) {
level = s->icr[i] & 0x1f;
vector = i;
}
}
}
if (level < 4)
vector = 0;
return vector;
}
static void m5206_mbar_update(m5206_mbar_state *s)
{
int irq;
int vector;
int level;
irq = m5206_find_pending_irq(s);
if (irq) {
int tmp;
tmp = s->icr[irq];
level = (tmp >> 2) & 7;
if (tmp & 0x80) {
/* Autovector. */
vector = 24 + level;
} else {
switch (irq) {
case 8: /* SWT */
vector = s->swivr;
break;
case 12: /* UART1 */
vector = s->uivr[0];
break;
case 13: /* UART2 */
vector = s->uivr[1];
break;
default:
/* Unknown vector. */
fprintf(stderr, "Unhandled vector for IRQ %d\n", irq);
vector = 0xf;
break;
}
}
} else {
level = 0;
vector = 0;
}
m68k_set_irq_level(s->env, level, vector);
}
static void m5206_mbar_set_irq(void *opaque, int irq, int level)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
if (level) {
s->ipr |= 1 << irq;
} else {
s->ipr &= ~(1 << irq);
}
m5206_mbar_update(s);
}
/* System Integration Module. */
static void m5206_mbar_reset(m5206_mbar_state *s)
{
s->scr = 0xc0;
s->icr[1] = 0x04;
s->icr[2] = 0x08;
s->icr[3] = 0x0c;
s->icr[4] = 0x10;
s->icr[5] = 0x14;
s->icr[6] = 0x18;
s->icr[7] = 0x1c;
s->icr[8] = 0x1c;
s->icr[9] = 0x80;
s->icr[10] = 0x80;
s->icr[11] = 0x80;
s->icr[12] = 0x00;
s->icr[13] = 0x00;
s->imr = 0x3ffe;
s->rsr = 0x80;
s->swivr = 0x0f;
s->par = 0;
}
static uint32_t m5206_mbar_read(m5206_mbar_state *s, uint32_t offset)
{
if (offset >= 0x100 && offset < 0x120) {
return m5206_timer_read(s->timer[0], offset - 0x100);
} else if (offset >= 0x120 && offset < 0x140) {
return m5206_timer_read(s->timer[1], offset - 0x120);
} else if (offset >= 0x140 && offset < 0x160) {
return m5206_uart_read(s->uart[0], offset - 0x140);
} else if (offset >= 0x180 && offset < 0x1a0) {
return m5206_uart_read(s->uart[1], offset - 0x180);
}
switch (offset) {
case 0x03: return s->scr;
case 0x14 ... 0x20: return s->icr[offset - 0x13];
case 0x36: return s->imr;
case 0x3a: return s->ipr;
case 0x40: return s->rsr;
case 0x41: return 0;
case 0x42: return s->swivr;
case 0x50:
/* DRAM mask register. */
/* FIXME: currently hardcoded to 128Mb. */
{
uint32_t mask = ~0;
while (mask > ram_size)
mask >>= 1;
return mask & 0x0ffe0000;
}
case 0x5c: return 1; /* DRAM bank 1 empty. */
case 0xcb: return s->par;
case 0x170: return s->uivr[0];
case 0x1b0: return s->uivr[1];
}
cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
return 0;
}
static void m5206_mbar_write(m5206_mbar_state *s, uint32_t offset,
uint32_t value)
{
if (offset >= 0x100 && offset < 0x120) {
m5206_timer_write(s->timer[0], offset - 0x100, value);
return;
} else if (offset >= 0x120 && offset < 0x140) {
m5206_timer_write(s->timer[1], offset - 0x120, value);
return;
} else if (offset >= 0x140 && offset < 0x160) {
m5206_uart_write(s->uart[0], offset - 0x140, value);
return;
} else if (offset >= 0x180 && offset < 0x1a0) {
m5206_uart_write(s->uart[1], offset - 0x180, value);
return;
}
switch (offset) {
case 0x03:
s->scr = value;
break;
case 0x14 ... 0x20:
s->icr[offset - 0x13] = value;
m5206_mbar_update(s);
break;
case 0x36:
s->imr = value;
m5206_mbar_update(s);
break;
case 0x40:
s->rsr &= ~value;
break;
case 0x41:
/* TODO: implement watchdog. */
break;
case 0x42:
s->swivr = value;
break;
case 0xcb:
s->par = value;
break;
case 0x170:
s->uivr[0] = value;
break;
case 0x178: case 0x17c: case 0x1c8: case 0x1bc:
/* Not implemented: UART Output port bits. */
break;
case 0x1b0:
s->uivr[1] = value;
break;
default:
cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
break;
}
}
/* Internal peripherals use a variety of register widths.
This lookup table allows a single routine to handle all of them. */
static const int m5206_mbar_width[] =
{
/* 000-040 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
/* 040-080 */ 1, 2, 2, 2, 4, 1, 2, 4, 1, 2, 4, 2, 2, 4, 2, 2,
/* 080-0c0 */ 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4,
/* 0c0-100 */ 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 100-140 */ 2, 2, 2, 2, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0,
/* 140-180 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* 180-1c0 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* 1c0-200 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
static uint32_t m5206_mbar_readw(void *opaque, target_phys_addr_t offset);
static uint32_t m5206_mbar_readl(void *opaque, target_phys_addr_t offset);
static uint32_t m5206_mbar_readb(void *opaque, target_phys_addr_t offset)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
offset &= 0x3ff;
if (offset > 0x200) {
cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
}
if (m5206_mbar_width[offset >> 2] > 1) {
uint16_t val;
val = m5206_mbar_readw(opaque, offset & ~1);
if ((offset & 1) == 0) {
val >>= 8;
}
return val & 0xff;
}
return m5206_mbar_read(s, offset);
}
static uint32_t m5206_mbar_readw(void *opaque, target_phys_addr_t offset)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset > 0x200) {
cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width > 2) {
uint32_t val;
val = m5206_mbar_readl(opaque, offset & ~3);
if ((offset & 3) == 0)
val >>= 16;
return val & 0xffff;
} else if (width < 2) {
uint16_t val;
val = m5206_mbar_readb(opaque, offset) << 8;
val |= m5206_mbar_readb(opaque, offset + 1);
return val;
}
return m5206_mbar_read(s, offset);
}
static uint32_t m5206_mbar_readl(void *opaque, target_phys_addr_t offset)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset > 0x200) {
cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width < 4) {
uint32_t val;
val = m5206_mbar_readw(opaque, offset) << 16;
val |= m5206_mbar_readw(opaque, offset + 2);
return val;
}
return m5206_mbar_read(s, offset);
}
static void m5206_mbar_writew(void *opaque, target_phys_addr_t offset,
uint32_t value);
static void m5206_mbar_writel(void *opaque, target_phys_addr_t offset,
uint32_t value);
static void m5206_mbar_writeb(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset > 0x200) {
cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width > 1) {
uint32_t tmp;
tmp = m5206_mbar_readw(opaque, offset & ~1);
if (offset & 1) {
tmp = (tmp & 0xff00) | value;
} else {
tmp = (tmp & 0x00ff) | (value << 8);
}
m5206_mbar_writew(opaque, offset & ~1, tmp);
return;
}
m5206_mbar_write(s, offset, value);
}
static void m5206_mbar_writew(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset > 0x200) {
cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width > 2) {
uint32_t tmp;
tmp = m5206_mbar_readl(opaque, offset & ~3);
if (offset & 3) {
tmp = (tmp & 0xffff0000) | value;
} else {
tmp = (tmp & 0x0000ffff) | (value << 16);
}
m5206_mbar_writel(opaque, offset & ~3, tmp);
return;
} else if (width < 2) {
m5206_mbar_writeb(opaque, offset, value >> 8);
m5206_mbar_writeb(opaque, offset + 1, value & 0xff);
return;
}
m5206_mbar_write(s, offset, value);
}
static void m5206_mbar_writel(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset > 0x200) {
cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width < 4) {
m5206_mbar_writew(opaque, offset, value >> 16);
m5206_mbar_writew(opaque, offset + 2, value & 0xffff);
return;
}
m5206_mbar_write(s, offset, value);
}
static CPUReadMemoryFunc *m5206_mbar_readfn[] = {
m5206_mbar_readb,
m5206_mbar_readw,
m5206_mbar_readl
};
static CPUWriteMemoryFunc *m5206_mbar_writefn[] = {
m5206_mbar_writeb,
m5206_mbar_writew,
m5206_mbar_writel
};
qemu_irq *mcf5206_init(uint32_t base, CPUState *env)
{
m5206_mbar_state *s;
qemu_irq *pic;
int iomemtype;
s = (m5206_mbar_state *)qemu_mallocz(sizeof(m5206_mbar_state));
iomemtype = cpu_register_io_memory(0, m5206_mbar_readfn,
m5206_mbar_writefn, s);
cpu_register_physical_memory(base, 0x00000fff, iomemtype);
pic = qemu_allocate_irqs(m5206_mbar_set_irq, s, 14);
s->timer[0] = m5206_timer_init(pic[9]);
s->timer[1] = m5206_timer_init(pic[10]);
s->uart[0] = m5206_uart_init(pic[12], serial_hds[0]);
s->uart[1] = m5206_uart_init(pic[13], serial_hds[1]);
s->env = env;
m5206_mbar_reset(s);
return pic;
}