qemu/hw/lsi53c895a.c

2125 lines
60 KiB
C
Raw Normal View History

/*
* QEMU LSI53C895A SCSI Host Bus Adapter emulation
*
* Copyright (c) 2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licenced under the LGPL.
*/
/* ??? Need to check if the {read,write}[wl] routines work properly on
big-endian targets. */
#include <assert.h> \
#include "hw.h"
#include "pci.h"
#include "scsi.h"
#include "block_int.h"
//#define DEBUG_LSI
//#define DEBUG_LSI_REG
#ifdef DEBUG_LSI
#define DPRINTF(fmt, ...) \
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
#endif
#define LSI_SCNTL0_TRG 0x01
#define LSI_SCNTL0_AAP 0x02
#define LSI_SCNTL0_EPC 0x08
#define LSI_SCNTL0_WATN 0x10
#define LSI_SCNTL0_START 0x20
#define LSI_SCNTL1_SST 0x01
#define LSI_SCNTL1_IARB 0x02
#define LSI_SCNTL1_AESP 0x04
#define LSI_SCNTL1_RST 0x08
#define LSI_SCNTL1_CON 0x10
#define LSI_SCNTL1_DHP 0x20
#define LSI_SCNTL1_ADB 0x40
#define LSI_SCNTL1_EXC 0x80
#define LSI_SCNTL2_WSR 0x01
#define LSI_SCNTL2_VUE0 0x02
#define LSI_SCNTL2_VUE1 0x04
#define LSI_SCNTL2_WSS 0x08
#define LSI_SCNTL2_SLPHBEN 0x10
#define LSI_SCNTL2_SLPMD 0x20
#define LSI_SCNTL2_CHM 0x40
#define LSI_SCNTL2_SDU 0x80
#define LSI_ISTAT0_DIP 0x01
#define LSI_ISTAT0_SIP 0x02
#define LSI_ISTAT0_INTF 0x04
#define LSI_ISTAT0_CON 0x08
#define LSI_ISTAT0_SEM 0x10
#define LSI_ISTAT0_SIGP 0x20
#define LSI_ISTAT0_SRST 0x40
#define LSI_ISTAT0_ABRT 0x80
#define LSI_ISTAT1_SI 0x01
#define LSI_ISTAT1_SRUN 0x02
#define LSI_ISTAT1_FLSH 0x04
#define LSI_SSTAT0_SDP0 0x01
#define LSI_SSTAT0_RST 0x02
#define LSI_SSTAT0_WOA 0x04
#define LSI_SSTAT0_LOA 0x08
#define LSI_SSTAT0_AIP 0x10
#define LSI_SSTAT0_OLF 0x20
#define LSI_SSTAT0_ORF 0x40
#define LSI_SSTAT0_ILF 0x80
#define LSI_SIST0_PAR 0x01
#define LSI_SIST0_RST 0x02
#define LSI_SIST0_UDC 0x04
#define LSI_SIST0_SGE 0x08
#define LSI_SIST0_RSL 0x10
#define LSI_SIST0_SEL 0x20
#define LSI_SIST0_CMP 0x40
#define LSI_SIST0_MA 0x80
#define LSI_SIST1_HTH 0x01
#define LSI_SIST1_GEN 0x02
#define LSI_SIST1_STO 0x04
#define LSI_SIST1_SBMC 0x10
#define LSI_SOCL_IO 0x01
#define LSI_SOCL_CD 0x02
#define LSI_SOCL_MSG 0x04
#define LSI_SOCL_ATN 0x08
#define LSI_SOCL_SEL 0x10
#define LSI_SOCL_BSY 0x20
#define LSI_SOCL_ACK 0x40
#define LSI_SOCL_REQ 0x80
#define LSI_DSTAT_IID 0x01
#define LSI_DSTAT_SIR 0x04
#define LSI_DSTAT_SSI 0x08
#define LSI_DSTAT_ABRT 0x10
#define LSI_DSTAT_BF 0x20
#define LSI_DSTAT_MDPE 0x40
#define LSI_DSTAT_DFE 0x80
#define LSI_DCNTL_COM 0x01
#define LSI_DCNTL_IRQD 0x02
#define LSI_DCNTL_STD 0x04
#define LSI_DCNTL_IRQM 0x08
#define LSI_DCNTL_SSM 0x10
#define LSI_DCNTL_PFEN 0x20
#define LSI_DCNTL_PFF 0x40
#define LSI_DCNTL_CLSE 0x80
#define LSI_DMODE_MAN 0x01
#define LSI_DMODE_BOF 0x02
#define LSI_DMODE_ERMP 0x04
#define LSI_DMODE_ERL 0x08
#define LSI_DMODE_DIOM 0x10
#define LSI_DMODE_SIOM 0x20
#define LSI_CTEST2_DACK 0x01
#define LSI_CTEST2_DREQ 0x02
#define LSI_CTEST2_TEOP 0x04
#define LSI_CTEST2_PCICIE 0x08
#define LSI_CTEST2_CM 0x10
#define LSI_CTEST2_CIO 0x20
#define LSI_CTEST2_SIGP 0x40
#define LSI_CTEST2_DDIR 0x80
#define LSI_CTEST5_BL2 0x04
#define LSI_CTEST5_DDIR 0x08
#define LSI_CTEST5_MASR 0x10
#define LSI_CTEST5_DFSN 0x20
#define LSI_CTEST5_BBCK 0x40
#define LSI_CTEST5_ADCK 0x80
#define LSI_CCNTL0_DILS 0x01
#define LSI_CCNTL0_DISFC 0x10
#define LSI_CCNTL0_ENNDJ 0x20
#define LSI_CCNTL0_PMJCTL 0x40
#define LSI_CCNTL0_ENPMJ 0x80
#define LSI_CCNTL1_EN64DBMV 0x01
#define LSI_CCNTL1_EN64TIBMV 0x02
#define LSI_CCNTL1_64TIMOD 0x04
#define LSI_CCNTL1_DDAC 0x08
#define LSI_CCNTL1_ZMOD 0x80
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
#define PHASE_DO 0
#define PHASE_DI 1
#define PHASE_CMD 2
#define PHASE_ST 3
#define PHASE_MO 6
#define PHASE_MI 7
#define PHASE_MASK 7
/* Maximum length of MSG IN data. */
#define LSI_MAX_MSGIN_LEN 8
/* Flag set if this is a tagged command. */
#define LSI_TAG_VALID (1 << 16)
typedef struct {
uint32_t tag;
uint32_t pending;
int out;
} lsi_queue;
typedef struct {
PCIDevice dev;
int mmio_io_addr;
int ram_io_addr;
uint32_t script_ram_base;
int carry; /* ??? Should this be an a visible register somewhere? */
int sense;
/* Action to take at the end of a MSG IN phase.
0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
int msg_action;
int msg_len;
uint8_t msg[LSI_MAX_MSGIN_LEN];
/* 0 if SCRIPTS are running or stopped.
* 1 if a Wait Reselect instruction has been issued.
* 2 if processing DMA from lsi_execute_script.
* 3 if a DMA operation is in progress. */
int waiting;
SCSIBus bus;
SCSIDevice *current_dev;
int current_lun;
/* The tag is a combination of the device ID and the SCSI tag. */
uint32_t current_tag;
uint32_t current_dma_len;
int command_complete;
uint8_t *dma_buf;
lsi_queue *queue;
int queue_len;
int active_commands;
uint32_t dsa;
uint32_t temp;
uint32_t dnad;
uint32_t dbc;
uint8_t istat0;
uint8_t istat1;
uint8_t dcmd;
uint8_t dstat;
uint8_t dien;
uint8_t sist0;
uint8_t sist1;
uint8_t sien0;
uint8_t sien1;
uint8_t mbox0;
uint8_t mbox1;
uint8_t dfifo;
uint8_t ctest2;
uint8_t ctest3;
uint8_t ctest4;
uint8_t ctest5;
uint8_t ccntl0;
uint8_t ccntl1;
uint32_t dsp;
uint32_t dsps;
uint8_t dmode;
uint8_t dcntl;
uint8_t scntl0;
uint8_t scntl1;
uint8_t scntl2;
uint8_t scntl3;
uint8_t sstat0;
uint8_t sstat1;
uint8_t scid;
uint8_t sxfer;
uint8_t socl;
uint8_t sdid;
uint8_t ssid;
uint8_t sfbr;
uint8_t stest1;
uint8_t stest2;
uint8_t stest3;
uint8_t sidl;
uint8_t stime0;
uint8_t respid0;
uint8_t respid1;
uint32_t mmrs;
uint32_t mmws;
uint32_t sfs;
uint32_t drs;
uint32_t sbms;
uint32_t dbms;
uint32_t dnad64;
uint32_t pmjad1;
uint32_t pmjad2;
uint32_t rbc;
uint32_t ua;
uint32_t ia;
uint32_t sbc;
uint32_t csbc;
uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
uint8_t sbr;
/* Script ram is stored as 32-bit words in host byteorder. */
uint32_t script_ram[2048];
} LSIState;
static void lsi_soft_reset(LSIState *s)
{
DPRINTF("Reset\n");
s->carry = 0;
s->waiting = 0;
s->dsa = 0;
s->dnad = 0;
s->dbc = 0;
s->temp = 0;
memset(s->scratch, 0, sizeof(s->scratch));
s->istat0 = 0;
s->istat1 = 0;
s->dcmd = 0;
s->dstat = 0;
s->dien = 0;
s->sist0 = 0;
s->sist1 = 0;
s->sien0 = 0;
s->sien1 = 0;
s->mbox0 = 0;
s->mbox1 = 0;
s->dfifo = 0;
s->ctest2 = 0;
s->ctest3 = 0;
s->ctest4 = 0;
s->ctest5 = 0;
s->ccntl0 = 0;
s->ccntl1 = 0;
s->dsp = 0;
s->dsps = 0;
s->dmode = 0;
s->dcntl = 0;
s->scntl0 = 0xc0;
s->scntl1 = 0;
s->scntl2 = 0;
s->scntl3 = 0;
s->sstat0 = 0;
s->sstat1 = 0;
s->scid = 7;
s->sxfer = 0;
s->socl = 0;
s->stest1 = 0;
s->stest2 = 0;
s->stest3 = 0;
s->sidl = 0;
s->stime0 = 0;
s->respid0 = 0x80;
s->respid1 = 0;
s->mmrs = 0;
s->mmws = 0;
s->sfs = 0;
s->drs = 0;
s->sbms = 0;
s->dbms = 0;
s->dnad64 = 0;
s->pmjad1 = 0;
s->pmjad2 = 0;
s->rbc = 0;
s->ua = 0;
s->ia = 0;
s->sbc = 0;
s->csbc = 0;
s->sbr = 0;
}
static int lsi_dma_40bit(LSIState *s)
{
if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
return 1;
return 0;
}
static int lsi_dma_ti64bit(LSIState *s)
{
if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
return 1;
return 0;
}
static int lsi_dma_64bit(LSIState *s)
{
if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
return 1;
return 0;
}
static uint8_t lsi_reg_readb(LSIState *s, int offset);
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
static void lsi_execute_script(LSIState *s);
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
{
uint32_t buf;
/* Optimize reading from SCRIPTS RAM. */
if ((addr & 0xffffe000) == s->script_ram_base) {
return s->script_ram[(addr & 0x1fff) >> 2];
}
cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
return cpu_to_le32(buf);
}
static void lsi_stop_script(LSIState *s)
{
s->istat1 &= ~LSI_ISTAT1_SRUN;
}
static void lsi_update_irq(LSIState *s)
{
int level;
static int last_level;
/* It's unclear whether the DIP/SIP bits should be cleared when the
Interrupt Status Registers are cleared or when istat0 is read.
We currently do the formwer, which seems to work. */
level = 0;
if (s->dstat) {
if (s->dstat & s->dien)
level = 1;
s->istat0 |= LSI_ISTAT0_DIP;
} else {
s->istat0 &= ~LSI_ISTAT0_DIP;
}
if (s->sist0 || s->sist1) {
if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
level = 1;
s->istat0 |= LSI_ISTAT0_SIP;
} else {
s->istat0 &= ~LSI_ISTAT0_SIP;
}
if (s->istat0 & LSI_ISTAT0_INTF)
level = 1;
if (level != last_level) {
DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
level, s->dstat, s->sist1, s->sist0);
last_level = level;
}
qemu_set_irq(s->dev.irq[0], level);
}
/* Stop SCRIPTS execution and raise a SCSI interrupt. */
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
{
uint32_t mask0;
uint32_t mask1;
DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
stat1, stat0, s->sist1, s->sist0);
s->sist0 |= stat0;
s->sist1 |= stat1;
/* Stop processor on fatal or unmasked interrupt. As a special hack
we don't stop processing when raising STO. Instead continue
execution and stop at the next insn that accesses the SCSI bus. */
mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
mask1 &= ~LSI_SIST1_STO;
if (s->sist0 & mask0 || s->sist1 & mask1) {
lsi_stop_script(s);
}
lsi_update_irq(s);
}
/* Stop SCRIPTS execution and raise a DMA interrupt. */
static void lsi_script_dma_interrupt(LSIState *s, int stat)
{
DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
s->dstat |= stat;
lsi_update_irq(s);
lsi_stop_script(s);
}
static inline void lsi_set_phase(LSIState *s, int phase)
{
s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
}
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
{
/* Trigger a phase mismatch. */
if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
s->dsp = s->pmjad1;
} else {
s->dsp = s->pmjad2;
}
DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
} else {
DPRINTF("Phase mismatch interrupt\n");
lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
lsi_stop_script(s);
}
lsi_set_phase(s, new_phase);
}
/* Resume SCRIPTS execution after a DMA operation. */
static void lsi_resume_script(LSIState *s)
{
if (s->waiting != 2) {
s->waiting = 0;
lsi_execute_script(s);
} else {
s->waiting = 0;
}
}
/* Initiate a SCSI layer data transfer. */
static void lsi_do_dma(LSIState *s, int out)
{
uint32_t count;
target_phys_addr_t addr;
if (!s->current_dma_len) {
/* Wait until data is available. */
DPRINTF("DMA no data available\n");
return;
}
count = s->dbc;
if (count > s->current_dma_len)
count = s->current_dma_len;
addr = s->dnad;
/* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
addr |= ((uint64_t)s->dnad64 << 32);
else if (s->dbms)
addr |= ((uint64_t)s->dbms << 32);
else if (s->sbms)
addr |= ((uint64_t)s->sbms << 32);
DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
s->csbc += count;
s->dnad += count;
s->dbc -= count;
if (s->dma_buf == NULL) {
s->dma_buf = s->current_dev->info->get_buf(s->current_dev,
s->current_tag);
}
/* ??? Set SFBR to first data byte. */
if (out) {
cpu_physical_memory_read(addr, s->dma_buf, count);
} else {
cpu_physical_memory_write(addr, s->dma_buf, count);
}
s->current_dma_len -= count;
if (s->current_dma_len == 0) {
s->dma_buf = NULL;
if (out) {
/* Write the data. */
s->current_dev->info->write_data(s->current_dev, s->current_tag);
} else {
/* Request any remaining data. */
s->current_dev->info->read_data(s->current_dev, s->current_tag);
}
} else {
s->dma_buf += count;
lsi_resume_script(s);
}
}
/* Add a command to the queue. */
static void lsi_queue_command(LSIState *s)
{
lsi_queue *p;
DPRINTF("Queueing tag=0x%x\n", s->current_tag);
if (s->queue_len == s->active_commands) {
s->queue_len++;
s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
}
p = &s->queue[s->active_commands++];
p->tag = s->current_tag;
p->pending = 0;
p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
}
/* Queue a byte for a MSG IN phase. */
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
{
if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
BADF("MSG IN data too long\n");
} else {
DPRINTF("MSG IN 0x%02x\n", data);
s->msg[s->msg_len++] = data;
}
}
/* Perform reselection to continue a command. */
static void lsi_reselect(LSIState *s, uint32_t tag)
{
lsi_queue *p;
int n;
int id;
p = NULL;
for (n = 0; n < s->active_commands; n++) {
p = &s->queue[n];
if (p->tag == tag)
break;
}
if (n == s->active_commands) {
BADF("Reselected non-existant command tag=0x%x\n", tag);
return;
}
id = (tag >> 8) & 0xf;
s->ssid = id | 0x80;
DPRINTF("Reselected target %d\n", id);
s->current_dev = s->bus.devs[id];
s->current_tag = tag;
s->scntl1 |= LSI_SCNTL1_CON;
lsi_set_phase(s, PHASE_MI);
s->msg_action = p->out ? 2 : 3;
s->current_dma_len = p->pending;
s->dma_buf = NULL;
lsi_add_msg_byte(s, 0x80);
if (s->current_tag & LSI_TAG_VALID) {
lsi_add_msg_byte(s, 0x20);
lsi_add_msg_byte(s, tag & 0xff);
}
s->active_commands--;
if (n != s->active_commands) {
s->queue[n] = s->queue[s->active_commands];
}
}
/* Record that data is available for a queued command. Returns zero if
the device was reselected, nonzero if the IO is deferred. */
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
{
lsi_queue *p;
int i;
for (i = 0; i < s->active_commands; i++) {
p = &s->queue[i];
if (p->tag == tag) {
if (p->pending) {
BADF("Multiple IO pending for tag %d\n", tag);
}
p->pending = arg;
if (s->waiting == 1) {
/* Reselect device. */
lsi_reselect(s, tag);
return 0;
} else {
DPRINTF("Queueing IO tag=0x%x\n", tag);
p->pending = arg;
return 1;
}
}
}
BADF("IO with unknown tag %d\n", tag);
return 1;
}
/* Callback to indicate that the SCSI layer has completed a transfer. */
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
uint32_t arg)
{
LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
int out;
out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
if (reason == SCSI_REASON_DONE) {
DPRINTF("Command complete sense=%d\n", (int)arg);
s->sense = arg;
s->command_complete = 2;
if (s->waiting && s->dbc != 0) {
/* Raise phase mismatch for short transfers. */
lsi_bad_phase(s, out, PHASE_ST);
} else {
lsi_set_phase(s, PHASE_ST);
}
lsi_resume_script(s);
return;
}
if (s->waiting == 1 || tag != s->current_tag) {
if (lsi_queue_tag(s, tag, arg))
return;
}
DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
s->current_dma_len = arg;
s->command_complete = 1;
if (!s->waiting)
return;
if (s->waiting == 1 || s->dbc == 0) {
lsi_resume_script(s);
} else {
lsi_do_dma(s, out);
}
}
static void lsi_do_command(LSIState *s)
{
uint8_t buf[16];
int n;
DPRINTF("Send command len=%d\n", s->dbc);
if (s->dbc > 16)
s->dbc = 16;
cpu_physical_memory_read(s->dnad, buf, s->dbc);
s->sfbr = buf[0];
s->command_complete = 0;
n = s->current_dev->info->send_command(s->current_dev, s->current_tag, buf,
s->current_lun);
if (n > 0) {
lsi_set_phase(s, PHASE_DI);
s->current_dev->info->read_data(s->current_dev, s->current_tag);
} else if (n < 0) {
lsi_set_phase(s, PHASE_DO);
s->current_dev->info->write_data(s->current_dev, s->current_tag);
}
if (!s->command_complete) {
if (n) {
/* Command did not complete immediately so disconnect. */
lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
lsi_add_msg_byte(s, 4); /* DISCONNECT */
/* wait data */
lsi_set_phase(s, PHASE_MI);
s->msg_action = 1;
lsi_queue_command(s);
} else {
/* wait command complete */
lsi_set_phase(s, PHASE_DI);
}
}
}
static void lsi_do_status(LSIState *s)
{
uint8_t sense;
DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
if (s->dbc != 1)
BADF("Bad Status move\n");
s->dbc = 1;
sense = s->sense;
s->sfbr = sense;
cpu_physical_memory_write(s->dnad, &sense, 1);
lsi_set_phase(s, PHASE_MI);
s->msg_action = 1;
lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
}
static void lsi_disconnect(LSIState *s)
{
s->scntl1 &= ~LSI_SCNTL1_CON;
s->sstat1 &= ~PHASE_MASK;
}
static void lsi_do_msgin(LSIState *s)
{
int len;
DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
s->sfbr = s->msg[0];
len = s->msg_len;
if (len > s->dbc)
len = s->dbc;
cpu_physical_memory_write(s->dnad, s->msg, len);
/* Linux drivers rely on the last byte being in the SIDL. */
s->sidl = s->msg[len - 1];
s->msg_len -= len;
if (s->msg_len) {
memmove(s->msg, s->msg + len, s->msg_len);
} else {
/* ??? Check if ATN (not yet implemented) is asserted and maybe
switch to PHASE_MO. */
switch (s->msg_action) {
case 0:
lsi_set_phase(s, PHASE_CMD);
break;
case 1:
lsi_disconnect(s);
break;
case 2:
lsi_set_phase(s, PHASE_DO);
break;
case 3:
lsi_set_phase(s, PHASE_DI);
break;
default:
abort();
}
}
}
/* Read the next byte during a MSGOUT phase. */
static uint8_t lsi_get_msgbyte(LSIState *s)
{
uint8_t data;
cpu_physical_memory_read(s->dnad, &data, 1);
s->dnad++;
s->dbc--;
return data;
}
static void lsi_do_msgout(LSIState *s)
{
uint8_t msg;
int len;
DPRINTF("MSG out len=%d\n", s->dbc);
while (s->dbc) {
msg = lsi_get_msgbyte(s);
s->sfbr = msg;
switch (msg) {
case 0x00:
DPRINTF("MSG: Disconnect\n");
lsi_disconnect(s);
break;
case 0x08:
DPRINTF("MSG: No Operation\n");
lsi_set_phase(s, PHASE_CMD);
break;
case 0x01:
len = lsi_get_msgbyte(s);
msg = lsi_get_msgbyte(s);
DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
switch (msg) {
case 1:
DPRINTF("SDTR (ignored)\n");
s->dbc -= 2;
break;
case 3:
DPRINTF("WDTR (ignored)\n");
s->dbc -= 1;
break;
default:
goto bad;
}
break;
case 0x20: /* SIMPLE queue */
s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
break;
case 0x21: /* HEAD of queue */
BADF("HEAD queue not implemented\n");
s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
break;
case 0x22: /* ORDERED queue */
BADF("ORDERED queue not implemented\n");
s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
break;
default:
if ((msg & 0x80) == 0) {
goto bad;
}
s->current_lun = msg & 7;
DPRINTF("Select LUN %d\n", s->current_lun);
lsi_set_phase(s, PHASE_CMD);
break;
}
}
return;
bad:
BADF("Unimplemented message 0x%02x\n", msg);
lsi_set_phase(s, PHASE_MI);
lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
s->msg_action = 0;
}
/* Sign extend a 24-bit value. */
static inline int32_t sxt24(int32_t n)
{
return (n << 8) >> 8;
}
#define LSI_BUF_SIZE 4096
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
{
int n;
uint8_t buf[LSI_BUF_SIZE];
DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
while (count) {
n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
cpu_physical_memory_read(src, buf, n);
cpu_physical_memory_write(dest, buf, n);
src += n;
dest += n;
count -= n;
}
}
static void lsi_wait_reselect(LSIState *s)
{
int i;
DPRINTF("Wait Reselect\n");
if (s->current_dma_len)
BADF("Reselect with pending DMA\n");
for (i = 0; i < s->active_commands; i++) {
if (s->queue[i].pending) {
lsi_reselect(s, s->queue[i].tag);
break;
}
}
if (s->current_dma_len == 0) {
s->waiting = 1;
}
}
static void lsi_execute_script(LSIState *s)
{
uint32_t insn;
uint32_t addr, addr_high;
int opcode;
int insn_processed = 0;
s->istat1 |= LSI_ISTAT1_SRUN;
again:
insn_processed++;
insn = read_dword(s, s->dsp);
if (!insn) {
/* If we receive an empty opcode increment the DSP by 4 bytes
instead of 8 and execute the next opcode at that location */
s->dsp += 4;
goto again;
}
addr = read_dword(s, s->dsp + 4);
addr_high = 0;
DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
s->dsps = addr;
s->dcmd = insn >> 24;
s->dsp += 8;
switch (insn >> 30) {
case 0: /* Block move. */
if (s->sist1 & LSI_SIST1_STO) {
DPRINTF("Delayed select timeout\n");
lsi_stop_script(s);
break;
}
s->dbc = insn & 0xffffff;
s->rbc = s->dbc;
/* ??? Set ESA. */
s->ia = s->dsp - 8;
if (insn & (1 << 29)) {
/* Indirect addressing. */
addr = read_dword(s, addr);
} else if (insn & (1 << 28)) {
uint32_t buf[2];
int32_t offset;
/* Table indirect addressing. */
/* 32-bit Table indirect */
offset = sxt24(addr);
cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
/* byte count is stored in bits 0:23 only */
s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
s->rbc = s->dbc;
addr = cpu_to_le32(buf[1]);
/* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
* table, bits [31:24] */
if (lsi_dma_40bit(s))
addr_high = cpu_to_le32(buf[0]) >> 24;
else if (lsi_dma_ti64bit(s)) {
int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
switch (selector) {
case 0 ... 0x0f:
/* offset index into scratch registers since
* TI64 mode can use registers C to R */
addr_high = s->scratch[2 + selector];
break;
case 0x10:
addr_high = s->mmrs;
break;
case 0x11:
addr_high = s->mmws;
break;
case 0x12:
addr_high = s->sfs;
break;
case 0x13:
addr_high = s->drs;
break;
case 0x14:
addr_high = s->sbms;
break;
case 0x15:
addr_high = s->dbms;
break;
default:
BADF("Illegal selector specified (0x%x > 0x15)"
" for 64-bit DMA block move", selector);
break;
}
}
} else if (lsi_dma_64bit(s)) {
/* fetch a 3rd dword if 64-bit direct move is enabled and
only if we're not doing table indirect or indirect addressing */
s->dbms = read_dword(s, s->dsp);
s->dsp += 4;
s->ia = s->dsp - 12;
}
if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
DPRINTF("Wrong phase got %d expected %d\n",
s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
break;
}
s->dnad = addr;
s->dnad64 = addr_high;
switch (s->sstat1 & 0x7) {
case PHASE_DO:
s->waiting = 2;
lsi_do_dma(s, 1);
if (s->waiting)
s->waiting = 3;
break;
case PHASE_DI:
s->waiting = 2;
lsi_do_dma(s, 0);
if (s->waiting)
s->waiting = 3;
break;
case PHASE_CMD:
lsi_do_command(s);
break;
case PHASE_ST:
lsi_do_status(s);
break;
case PHASE_MO:
lsi_do_msgout(s);
break;
case PHASE_MI:
lsi_do_msgin(s);
break;
default:
BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
exit(1);
}
s->dfifo = s->dbc & 0xff;
s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
s->sbc = s->dbc;
s->rbc -= s->dbc;
s->ua = addr + s->dbc;
break;
case 1: /* IO or Read/Write instruction. */
opcode = (insn >> 27) & 7;
if (opcode < 5) {
uint32_t id;
if (insn & (1 << 25)) {
id = read_dword(s, s->dsa + sxt24(insn));
} else {
id = addr;
}
id = (id >> 16) & 0xf;
if (insn & (1 << 26)) {
addr = s->dsp + sxt24(addr);
}
s->dnad = addr;
switch (opcode) {
case 0: /* Select */
s->sdid = id;
if (s->current_dma_len && (s->ssid & 0xf) == id) {
DPRINTF("Already reselected by target %d\n", id);
break;
}
s->sstat0 |= LSI_SSTAT0_WOA;
s->scntl1 &= ~LSI_SCNTL1_IARB;
if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
DPRINTF("Selected absent target %d\n", id);
lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
lsi_disconnect(s);
break;
}
DPRINTF("Selected target %d%s\n",
id, insn & (1 << 3) ? " ATN" : "");
/* ??? Linux drivers compain when this is set. Maybe
it only applies in low-level mode (unimplemented).
lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
s->current_dev = s->bus.devs[id];
s->current_tag = id << 8;
s->scntl1 |= LSI_SCNTL1_CON;
if (insn & (1 << 3)) {
s->socl |= LSI_SOCL_ATN;
}
lsi_set_phase(s, PHASE_MO);
break;
case 1: /* Disconnect */
DPRINTF("Wait Disconect\n");
s->scntl1 &= ~LSI_SCNTL1_CON;
break;
case 2: /* Wait Reselect */
lsi_wait_reselect(s);
break;
case 3: /* Set */
DPRINTF("Set%s%s%s%s\n",
insn & (1 << 3) ? " ATN" : "",
insn & (1 << 6) ? " ACK" : "",
insn & (1 << 9) ? " TM" : "",
insn & (1 << 10) ? " CC" : "");
if (insn & (1 << 3)) {
s->socl |= LSI_SOCL_ATN;
lsi_set_phase(s, PHASE_MO);
}
if (insn & (1 << 9)) {
BADF("Target mode not implemented\n");
exit(1);
}
if (insn & (1 << 10))
s->carry = 1;
break;
case 4: /* Clear */
DPRINTF("Clear%s%s%s%s\n",
insn & (1 << 3) ? " ATN" : "",
insn & (1 << 6) ? " ACK" : "",
insn & (1 << 9) ? " TM" : "",
insn & (1 << 10) ? " CC" : "");
if (insn & (1 << 3)) {
s->socl &= ~LSI_SOCL_ATN;
}
if (insn & (1 << 10))
s->carry = 0;
break;
}
} else {
uint8_t op0;
uint8_t op1;
uint8_t data8;
int reg;
int operator;
#ifdef DEBUG_LSI
static const char *opcode_names[3] =
{"Write", "Read", "Read-Modify-Write"};
static const char *operator_names[8] =
{"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
#endif
reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
data8 = (insn >> 8) & 0xff;
opcode = (insn >> 27) & 7;
operator = (insn >> 24) & 7;
DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
opcode_names[opcode - 5], reg,
operator_names[operator], data8, s->sfbr,
(insn & (1 << 23)) ? " SFBR" : "");
op0 = op1 = 0;
switch (opcode) {
case 5: /* From SFBR */
op0 = s->sfbr;
op1 = data8;
break;
case 6: /* To SFBR */
if (operator)
op0 = lsi_reg_readb(s, reg);
op1 = data8;
break;
case 7: /* Read-modify-write */
if (operator)
op0 = lsi_reg_readb(s, reg);
if (insn & (1 << 23)) {
op1 = s->sfbr;
} else {
op1 = data8;
}
break;
}
switch (operator) {
case 0: /* move */
op0 = op1;
break;
case 1: /* Shift left */
op1 = op0 >> 7;
op0 = (op0 << 1) | s->carry;
s->carry = op1;
break;
case 2: /* OR */
op0 |= op1;
break;
case 3: /* XOR */
op0 ^= op1;
break;
case 4: /* AND */
op0 &= op1;
break;
case 5: /* SHR */
op1 = op0 & 1;
op0 = (op0 >> 1) | (s->carry << 7);
s->carry = op1;
break;
case 6: /* ADD */
op0 += op1;
s->carry = op0 < op1;
break;
case 7: /* ADC */
op0 += op1 + s->carry;
if (s->carry)
s->carry = op0 <= op1;
else
s->carry = op0 < op1;
break;
}
switch (opcode) {
case 5: /* From SFBR */
case 7: /* Read-modify-write */
lsi_reg_writeb(s, reg, op0);
break;
case 6: /* To SFBR */
s->sfbr = op0;
break;
}
}
break;
case 2: /* Transfer Control. */
{
int cond;
int jmp;
if ((insn & 0x002e0000) == 0) {
DPRINTF("NOP\n");
break;
}
if (s->sist1 & LSI_SIST1_STO) {
DPRINTF("Delayed select timeout\n");
lsi_stop_script(s);
break;
}
cond = jmp = (insn & (1 << 19)) != 0;
if (cond == jmp && (insn & (1 << 21))) {
DPRINTF("Compare carry %d\n", s->carry == jmp);
cond = s->carry != 0;
}
if (cond == jmp && (insn & (1 << 17))) {
DPRINTF("Compare phase %d %c= %d\n",
(s->sstat1 & PHASE_MASK),
jmp ? '=' : '!',
((insn >> 24) & 7));
cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
}
if (cond == jmp && (insn & (1 << 18))) {
uint8_t mask;
mask = (~insn >> 8) & 0xff;
DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
s->sfbr, mask, jmp ? '=' : '!', insn & mask);
cond = (s->sfbr & mask) == (insn & mask);
}
if (cond == jmp) {
if (insn & (1 << 23)) {
/* Relative address. */
addr = s->dsp + sxt24(addr);
}
switch ((insn >> 27) & 7) {
case 0: /* Jump */
DPRINTF("Jump to 0x%08x\n", addr);
s->dsp = addr;
break;
case 1: /* Call */
DPRINTF("Call 0x%08x\n", addr);
s->temp = s->dsp;
s->dsp = addr;
break;
case 2: /* Return */
DPRINTF("Return to 0x%08x\n", s->temp);
s->dsp = s->temp;
break;
case 3: /* Interrupt */
DPRINTF("Interrupt 0x%08x\n", s->dsps);
if ((insn & (1 << 20)) != 0) {
s->istat0 |= LSI_ISTAT0_INTF;
lsi_update_irq(s);
} else {
lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
}
break;
default:
DPRINTF("Illegal transfer control\n");
lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
break;
}
} else {
DPRINTF("Control condition failed\n");
}
}
break;
case 3:
if ((insn & (1 << 29)) == 0) {
/* Memory move. */
uint32_t dest;
/* ??? The docs imply the destination address is loaded into
the TEMP register. However the Linux drivers rely on
the value being presrved. */
dest = read_dword(s, s->dsp);
s->dsp += 4;
lsi_memcpy(s, dest, addr, insn & 0xffffff);
} else {
uint8_t data[7];
int reg;
int n;
int i;
if (insn & (1 << 28)) {
addr = s->dsa + sxt24(addr);
}
n = (insn & 7);
reg = (insn >> 16) & 0xff;
if (insn & (1 << 24)) {
cpu_physical_memory_read(addr, data, n);
DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
addr, *(int *)data);
for (i = 0; i < n; i++) {
lsi_reg_writeb(s, reg + i, data[i]);
}
} else {
DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
for (i = 0; i < n; i++) {
data[i] = lsi_reg_readb(s, reg + i);
}
cpu_physical_memory_write(addr, data, n);
}
}
}
if (insn_processed > 10000 && !s->waiting) {
/* Some windows drivers make the device spin waiting for a memory
location to change. If we have been executed a lot of code then
assume this is the case and force an unexpected device disconnect.
This is apparently sufficient to beat the drivers into submission.
*/
if (!(s->sien0 & LSI_SIST0_UDC))
fprintf(stderr, "inf. loop with UDC masked\n");
lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
lsi_disconnect(s);
} else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
if (s->dcntl & LSI_DCNTL_SSM) {
lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
} else {
goto again;
}
}
DPRINTF("SCRIPTS execution stopped\n");
}
static uint8_t lsi_reg_readb(LSIState *s, int offset)
{
uint8_t tmp;
#define CASE_GET_REG24(name, addr) \
case addr: return s->name & 0xff; \
case addr + 1: return (s->name >> 8) & 0xff; \
case addr + 2: return (s->name >> 16) & 0xff;
#define CASE_GET_REG32(name, addr) \
case addr: return s->name & 0xff; \
case addr + 1: return (s->name >> 8) & 0xff; \
case addr + 2: return (s->name >> 16) & 0xff; \
case addr + 3: return (s->name >> 24) & 0xff;
#ifdef DEBUG_LSI_REG
DPRINTF("Read reg %x\n", offset);
#endif
switch (offset) {
case 0x00: /* SCNTL0 */
return s->scntl0;
case 0x01: /* SCNTL1 */
return s->scntl1;
case 0x02: /* SCNTL2 */
return s->scntl2;
case 0x03: /* SCNTL3 */
return s->scntl3;
case 0x04: /* SCID */
return s->scid;
case 0x05: /* SXFER */
return s->sxfer;
case 0x06: /* SDID */
return s->sdid;
case 0x07: /* GPREG0 */
return 0x7f;
case 0x08: /* Revision ID */
return 0x00;
case 0xa: /* SSID */
return s->ssid;
case 0xb: /* SBCL */
/* ??? This is not correct. However it's (hopefully) only
used for diagnostics, so should be ok. */
return 0;
case 0xc: /* DSTAT */
tmp = s->dstat | 0x80;
if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
s->dstat = 0;
lsi_update_irq(s);
return tmp;
case 0x0d: /* SSTAT0 */
return s->sstat0;
case 0x0e: /* SSTAT1 */
return s->sstat1;
case 0x0f: /* SSTAT2 */
return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
CASE_GET_REG32(dsa, 0x10)
case 0x14: /* ISTAT0 */
return s->istat0;
case 0x15: /* ISTAT1 */
return s->istat1;
case 0x16: /* MBOX0 */
return s->mbox0;
case 0x17: /* MBOX1 */
return s->mbox1;
case 0x18: /* CTEST0 */
return 0xff;
case 0x19: /* CTEST1 */
return 0;
case 0x1a: /* CTEST2 */
tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
if (s->istat0 & LSI_ISTAT0_SIGP) {
s->istat0 &= ~LSI_ISTAT0_SIGP;
tmp |= LSI_CTEST2_SIGP;
}
return tmp;
case 0x1b: /* CTEST3 */
return s->ctest3;
CASE_GET_REG32(temp, 0x1c)
case 0x20: /* DFIFO */
return 0;
case 0x21: /* CTEST4 */
return s->ctest4;
case 0x22: /* CTEST5 */
return s->ctest5;
case 0x23: /* CTEST6 */
return 0;
CASE_GET_REG24(dbc, 0x24)
case 0x27: /* DCMD */
return s->dcmd;
CASE_GET_REG32(dnad, 0x28)
CASE_GET_REG32(dsp, 0x2c)
CASE_GET_REG32(dsps, 0x30)
CASE_GET_REG32(scratch[0], 0x34)
case 0x38: /* DMODE */
return s->dmode;
case 0x39: /* DIEN */
return s->dien;
case 0x3a: /* SBR */
return s->sbr;
case 0x3b: /* DCNTL */
return s->dcntl;
case 0x40: /* SIEN0 */
return s->sien0;
case 0x41: /* SIEN1 */
return s->sien1;
case 0x42: /* SIST0 */
tmp = s->sist0;
s->sist0 = 0;
lsi_update_irq(s);
return tmp;
case 0x43: /* SIST1 */
tmp = s->sist1;
s->sist1 = 0;
lsi_update_irq(s);
return tmp;
case 0x46: /* MACNTL */
return 0x0f;
case 0x47: /* GPCNTL0 */
return 0x0f;
case 0x48: /* STIME0 */
return s->stime0;
case 0x4a: /* RESPID0 */
return s->respid0;
case 0x4b: /* RESPID1 */
return s->respid1;
case 0x4d: /* STEST1 */
return s->stest1;
case 0x4e: /* STEST2 */
return s->stest2;
case 0x4f: /* STEST3 */
return s->stest3;
case 0x50: /* SIDL */
/* This is needed by the linux drivers. We currently only update it
during the MSG IN phase. */
return s->sidl;
case 0x52: /* STEST4 */
return 0xe0;
case 0x56: /* CCNTL0 */
return s->ccntl0;
case 0x57: /* CCNTL1 */
return s->ccntl1;
case 0x58: /* SBDL */
/* Some drivers peek at the data bus during the MSG IN phase. */
if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
return s->msg[0];
return 0;
case 0x59: /* SBDL high */
return 0;
CASE_GET_REG32(mmrs, 0xa0)
CASE_GET_REG32(mmws, 0xa4)
CASE_GET_REG32(sfs, 0xa8)
CASE_GET_REG32(drs, 0xac)
CASE_GET_REG32(sbms, 0xb0)
CASE_GET_REG32(dbms, 0xb4)
CASE_GET_REG32(dnad64, 0xb8)
CASE_GET_REG32(pmjad1, 0xc0)
CASE_GET_REG32(pmjad2, 0xc4)
CASE_GET_REG32(rbc, 0xc8)
CASE_GET_REG32(ua, 0xcc)
CASE_GET_REG32(ia, 0xd4)
CASE_GET_REG32(sbc, 0xd8)
CASE_GET_REG32(csbc, 0xdc)
}
if (offset >= 0x5c && offset < 0xa0) {
int n;
int shift;
n = (offset - 0x58) >> 2;
shift = (offset & 3) * 8;
return (s->scratch[n] >> shift) & 0xff;
}
BADF("readb 0x%x\n", offset);
exit(1);
#undef CASE_GET_REG24
#undef CASE_GET_REG32
}
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
{
#define CASE_SET_REG24(name, addr) \
case addr : s->name &= 0xffffff00; s->name |= val; break; \
case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
#define CASE_SET_REG32(name, addr) \
case addr : s->name &= 0xffffff00; s->name |= val; break; \
case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
#ifdef DEBUG_LSI_REG
DPRINTF("Write reg %x = %02x\n", offset, val);
#endif
switch (offset) {
case 0x00: /* SCNTL0 */
s->scntl0 = val;
if (val & LSI_SCNTL0_START) {
BADF("Start sequence not implemented\n");
}
break;
case 0x01: /* SCNTL1 */
s->scntl1 = val & ~LSI_SCNTL1_SST;
if (val & LSI_SCNTL1_IARB) {
BADF("Immediate Arbritration not implemented\n");
}
if (val & LSI_SCNTL1_RST) {
s->sstat0 |= LSI_SSTAT0_RST;
lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
} else {
s->sstat0 &= ~LSI_SSTAT0_RST;
}
break;
case 0x02: /* SCNTL2 */
val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
s->scntl2 = val;
break;
case 0x03: /* SCNTL3 */
s->scntl3 = val;
break;
case 0x04: /* SCID */
s->scid = val;
break;
case 0x05: /* SXFER */
s->sxfer = val;
break;
case 0x06: /* SDID */
if ((val & 0xf) != (s->ssid & 0xf))
BADF("Destination ID does not match SSID\n");
s->sdid = val & 0xf;
break;
case 0x07: /* GPREG0 */
break;
case 0x08: /* SFBR */
/* The CPU is not allowed to write to this register. However the
SCRIPTS register move instructions are. */
s->sfbr = val;
break;
case 0x0a: case 0x0b:
/* Openserver writes to these readonly registers on startup */
return;
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
/* Linux writes to these readonly registers on startup. */
return;
CASE_SET_REG32(dsa, 0x10)
case 0x14: /* ISTAT0 */
s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
if (val & LSI_ISTAT0_ABRT) {
lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
}
if (val & LSI_ISTAT0_INTF) {
s->istat0 &= ~LSI_ISTAT0_INTF;
lsi_update_irq(s);
}
if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
DPRINTF("Woken by SIGP\n");
s->waiting = 0;
s->dsp = s->dnad;
lsi_execute_script(s);
}
if (val & LSI_ISTAT0_SRST) {
lsi_soft_reset(s);
}
break;
case 0x16: /* MBOX0 */
s->mbox0 = val;
break;
case 0x17: /* MBOX1 */
s->mbox1 = val;
break;
case 0x1a: /* CTEST2 */
s->ctest2 = val & LSI_CTEST2_PCICIE;
break;
case 0x1b: /* CTEST3 */
s->ctest3 = val & 0x0f;
break;
CASE_SET_REG32(temp, 0x1c)
case 0x21: /* CTEST4 */
if (val & 7) {
BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
}
s->ctest4 = val;
break;
case 0x22: /* CTEST5 */
if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
BADF("CTEST5 DMA increment not implemented\n");
}
s->ctest5 = val;
break;
CASE_SET_REG24(dbc, 0x24)
CASE_SET_REG32(dnad, 0x28)
case 0x2c: /* DSP[0:7] */
s->dsp &= 0xffffff00;
s->dsp |= val;
break;
case 0x2d: /* DSP[8:15] */
s->dsp &= 0xffff00ff;
s->dsp |= val << 8;
break;
case 0x2e: /* DSP[16:23] */
s->dsp &= 0xff00ffff;
s->dsp |= val << 16;
break;
case 0x2f: /* DSP[24:31] */
s->dsp &= 0x00ffffff;
s->dsp |= val << 24;
if ((s->dmode & LSI_DMODE_MAN) == 0
&& (s->istat1 & LSI_ISTAT1_SRUN) == 0)
lsi_execute_script(s);
break;
CASE_SET_REG32(dsps, 0x30)
CASE_SET_REG32(scratch[0], 0x34)
case 0x38: /* DMODE */
if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
BADF("IO mappings not implemented\n");
}
s->dmode = val;
break;
case 0x39: /* DIEN */
s->dien = val;
lsi_update_irq(s);
break;
case 0x3a: /* SBR */
s->sbr = val;
break;
case 0x3b: /* DCNTL */
s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
lsi_execute_script(s);
break;
case 0x40: /* SIEN0 */
s->sien0 = val;
lsi_update_irq(s);
break;
case 0x41: /* SIEN1 */
s->sien1 = val;
lsi_update_irq(s);
break;
case 0x47: /* GPCNTL0 */
break;
case 0x48: /* STIME0 */
s->stime0 = val;
break;
case 0x49: /* STIME1 */
if (val & 0xf) {
DPRINTF("General purpose timer not implemented\n");
/* ??? Raising the interrupt immediately seems to be sufficient
to keep the FreeBSD driver happy. */
lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
}
break;
case 0x4a: /* RESPID0 */
s->respid0 = val;
break;
case 0x4b: /* RESPID1 */
s->respid1 = val;
break;
case 0x4d: /* STEST1 */
s->stest1 = val;
break;
case 0x4e: /* STEST2 */
if (val & 1) {
BADF("Low level mode not implemented\n");
}
s->stest2 = val;
break;
case 0x4f: /* STEST3 */
if (val & 0x41) {
BADF("SCSI FIFO test mode not implemented\n");
}
s->stest3 = val;
break;
case 0x56: /* CCNTL0 */
s->ccntl0 = val;
break;
case 0x57: /* CCNTL1 */
s->ccntl1 = val;
break;
CASE_SET_REG32(mmrs, 0xa0)
CASE_SET_REG32(mmws, 0xa4)
CASE_SET_REG32(sfs, 0xa8)
CASE_SET_REG32(drs, 0xac)
CASE_SET_REG32(sbms, 0xb0)
CASE_SET_REG32(dbms, 0xb4)
CASE_SET_REG32(dnad64, 0xb8)
CASE_SET_REG32(pmjad1, 0xc0)
CASE_SET_REG32(pmjad2, 0xc4)
CASE_SET_REG32(rbc, 0xc8)
CASE_SET_REG32(ua, 0xcc)
CASE_SET_REG32(ia, 0xd4)
CASE_SET_REG32(sbc, 0xd8)
CASE_SET_REG32(csbc, 0xdc)
default:
if (offset >= 0x5c && offset < 0xa0) {
int n;
int shift;
n = (offset - 0x58) >> 2;
shift = (offset & 3) * 8;
s->scratch[n] &= ~(0xff << shift);
s->scratch[n] |= (val & 0xff) << shift;
} else {
BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
}
}
#undef CASE_SET_REG24
#undef CASE_SET_REG32
}
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LSIState *s = opaque;
lsi_reg_writeb(s, addr & 0xff, val);
}
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LSIState *s = opaque;
addr &= 0xff;
lsi_reg_writeb(s, addr, val & 0xff);
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
}
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LSIState *s = opaque;
addr &= 0xff;
lsi_reg_writeb(s, addr, val & 0xff);
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
}
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
{
LSIState *s = opaque;
return lsi_reg_readb(s, addr & 0xff);
}
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
{
LSIState *s = opaque;
uint32_t val;
addr &= 0xff;
val = lsi_reg_readb(s, addr);
val |= lsi_reg_readb(s, addr + 1) << 8;
return val;
}
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
{
LSIState *s = opaque;
uint32_t val;
addr &= 0xff;
val = lsi_reg_readb(s, addr);
val |= lsi_reg_readb(s, addr + 1) << 8;
val |= lsi_reg_readb(s, addr + 2) << 16;
val |= lsi_reg_readb(s, addr + 3) << 24;
return val;
}
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
lsi_mmio_readb,
lsi_mmio_readw,
lsi_mmio_readl,
};
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
lsi_mmio_writeb,
lsi_mmio_writew,
lsi_mmio_writel,
};
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LSIState *s = opaque;
uint32_t newval;
int shift;
addr &= 0x1fff;
newval = s->script_ram[addr >> 2];
shift = (addr & 3) * 8;
newval &= ~(0xff << shift);
newval |= val << shift;
s->script_ram[addr >> 2] = newval;
}
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LSIState *s = opaque;
uint32_t newval;
addr &= 0x1fff;
newval = s->script_ram[addr >> 2];
if (addr & 2) {
newval = (newval & 0xffff) | (val << 16);
} else {
newval = (newval & 0xffff0000) | val;
}
s->script_ram[addr >> 2] = newval;
}
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
LSIState *s = opaque;
addr &= 0x1fff;
s->script_ram[addr >> 2] = val;
}
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
{
LSIState *s = opaque;
uint32_t val;
addr &= 0x1fff;
val = s->script_ram[addr >> 2];
val >>= (addr & 3) * 8;
return val & 0xff;
}
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
{
LSIState *s = opaque;
uint32_t val;
addr &= 0x1fff;
val = s->script_ram[addr >> 2];
if (addr & 2)
val >>= 16;
return le16_to_cpu(val);
}
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
{
LSIState *s = opaque;
addr &= 0x1fff;
return le32_to_cpu(s->script_ram[addr >> 2]);
}
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
lsi_ram_readb,
lsi_ram_readw,
lsi_ram_readl,
};
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
lsi_ram_writeb,
lsi_ram_writew,
lsi_ram_writel,
};
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
{
LSIState *s = opaque;
return lsi_reg_readb(s, addr & 0xff);
}
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
{
LSIState *s = opaque;
uint32_t val;
addr &= 0xff;
val = lsi_reg_readb(s, addr);
val |= lsi_reg_readb(s, addr + 1) << 8;
return val;
}
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
{
LSIState *s = opaque;
uint32_t val;
addr &= 0xff;
val = lsi_reg_readb(s, addr);
val |= lsi_reg_readb(s, addr + 1) << 8;
val |= lsi_reg_readb(s, addr + 2) << 16;
val |= lsi_reg_readb(s, addr + 3) << 24;
return val;
}
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
{
LSIState *s = opaque;
lsi_reg_writeb(s, addr & 0xff, val);
}
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
{
LSIState *s = opaque;
addr &= 0xff;
lsi_reg_writeb(s, addr, val & 0xff);
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
}
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
{
LSIState *s = opaque;
addr &= 0xff;
lsi_reg_writeb(s, addr, val & 0xff);
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
}
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
DPRINTF("Mapping IO at %08x\n", addr);
register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
register_ioport_read(addr, 256, 1, lsi_io_readb, s);
register_ioport_write(addr, 256, 2, lsi_io_writew, s);
register_ioport_read(addr, 256, 2, lsi_io_readw, s);
register_ioport_write(addr, 256, 4, lsi_io_writel, s);
register_ioport_read(addr, 256, 4, lsi_io_readl, s);
}
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
DPRINTF("Mapping ram at %08x\n", addr);
s->script_ram_base = addr;
cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
}
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
DPRINTF("Mapping registers at %08x\n", addr);
cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
}
static void lsi_pre_save(void *opaque)
{
LSIState *s = opaque;
assert(s->dma_buf == NULL);
assert(s->current_dma_len == 0);
assert(s->active_commands == 0);
}
static const VMStateDescription vmstate_lsi_scsi = {
.name = "lsiscsi",
.version_id = 0,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.pre_save = lsi_pre_save,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, LSIState),
VMSTATE_INT32(carry, LSIState),
VMSTATE_INT32(sense, LSIState),
VMSTATE_INT32(msg_action, LSIState),
VMSTATE_INT32(msg_len, LSIState),
VMSTATE_BUFFER(msg, LSIState),
VMSTATE_INT32(waiting, LSIState),
VMSTATE_UINT32(dsa, LSIState),
VMSTATE_UINT32(temp, LSIState),
VMSTATE_UINT32(dnad, LSIState),
VMSTATE_UINT32(dbc, LSIState),
VMSTATE_UINT8(istat0, LSIState),
VMSTATE_UINT8(istat1, LSIState),
VMSTATE_UINT8(dcmd, LSIState),
VMSTATE_UINT8(dstat, LSIState),
VMSTATE_UINT8(dien, LSIState),
VMSTATE_UINT8(sist0, LSIState),
VMSTATE_UINT8(sist1, LSIState),
VMSTATE_UINT8(sien0, LSIState),
VMSTATE_UINT8(sien1, LSIState),
VMSTATE_UINT8(mbox0, LSIState),
VMSTATE_UINT8(mbox1, LSIState),
VMSTATE_UINT8(dfifo, LSIState),
VMSTATE_UINT8(ctest2, LSIState),
VMSTATE_UINT8(ctest3, LSIState),
VMSTATE_UINT8(ctest4, LSIState),
VMSTATE_UINT8(ctest5, LSIState),
VMSTATE_UINT8(ccntl0, LSIState),
VMSTATE_UINT8(ccntl1, LSIState),
VMSTATE_UINT32(dsp, LSIState),
VMSTATE_UINT32(dsps, LSIState),
VMSTATE_UINT8(dmode, LSIState),
VMSTATE_UINT8(dcntl, LSIState),
VMSTATE_UINT8(scntl0, LSIState),
VMSTATE_UINT8(scntl1, LSIState),
VMSTATE_UINT8(scntl2, LSIState),
VMSTATE_UINT8(scntl3, LSIState),
VMSTATE_UINT8(sstat0, LSIState),
VMSTATE_UINT8(sstat1, LSIState),
VMSTATE_UINT8(scid, LSIState),
VMSTATE_UINT8(sxfer, LSIState),
VMSTATE_UINT8(socl, LSIState),
VMSTATE_UINT8(sdid, LSIState),
VMSTATE_UINT8(ssid, LSIState),
VMSTATE_UINT8(sfbr, LSIState),
VMSTATE_UINT8(stest1, LSIState),
VMSTATE_UINT8(stest2, LSIState),
VMSTATE_UINT8(stest3, LSIState),
VMSTATE_UINT8(sidl, LSIState),
VMSTATE_UINT8(stime0, LSIState),
VMSTATE_UINT8(respid0, LSIState),
VMSTATE_UINT8(respid1, LSIState),
VMSTATE_UINT32(mmrs, LSIState),
VMSTATE_UINT32(mmws, LSIState),
VMSTATE_UINT32(sfs, LSIState),
VMSTATE_UINT32(drs, LSIState),
VMSTATE_UINT32(sbms, LSIState),
VMSTATE_UINT32(dbms, LSIState),
VMSTATE_UINT32(dnad64, LSIState),
VMSTATE_UINT32(pmjad1, LSIState),
VMSTATE_UINT32(pmjad2, LSIState),
VMSTATE_UINT32(rbc, LSIState),
VMSTATE_UINT32(ua, LSIState),
VMSTATE_UINT32(ia, LSIState),
VMSTATE_UINT32(sbc, LSIState),
VMSTATE_UINT32(csbc, LSIState),
VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
VMSTATE_UINT8(sbr, LSIState),
VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
VMSTATE_END_OF_LIST()
}
};
static int lsi_scsi_uninit(PCIDevice *d)
{
LSIState *s = DO_UPCAST(LSIState, dev, d);
cpu_unregister_io_memory(s->mmio_io_addr);
cpu_unregister_io_memory(s->ram_io_addr);
qemu_free(s->queue);
return 0;
}
static int lsi_scsi_init(PCIDevice *dev)
{
LSIState *s = DO_UPCAST(LSIState, dev, dev);
uint8_t *pci_conf;
pci_conf = s->dev.config;
/* PCI Vendor ID (word) */
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
/* PCI device ID (word) */
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
/* PCI base class code */
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
/* PCI subsystem ID */
pci_conf[0x2e] = 0x00;
pci_conf[0x2f] = 0x10;
/* PCI latency timer = 255 */
pci_conf[0x0d] = 0xff;
/* Interrupt pin 1 */
pci_conf[0x3d] = 0x01;
s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
lsi_mmio_writefn, s);
s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
lsi_ram_writefn, s);
pci_register_bar((struct PCIDevice *)s, 0, 256,
PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
pci_register_bar((struct PCIDevice *)s, 1, 0x400,
PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
s->queue = qemu_malloc(sizeof(lsi_queue));
s->queue_len = 1;
s->active_commands = 0;
lsi_soft_reset(s);
scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
if (!dev->qdev.hotplugged) {
scsi_bus_legacy_handle_cmdline(&s->bus);
}
vmstate_register(-1, &vmstate_lsi_scsi, s);
return 0;
}
static PCIDeviceInfo lsi_info = {
.qdev.name = "lsi53c895a",
.qdev.alias = "lsi",
.qdev.size = sizeof(LSIState),
.init = lsi_scsi_init,
.exit = lsi_scsi_uninit,
};
static void lsi53c895a_register_devices(void)
{
pci_qdev_register(&lsi_info);
}
device_init(lsi53c895a_register_devices);