qemu/tests/test-keyval.c

688 lines
23 KiB
C
Raw Normal View History

keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/*
* Unit tests for parsing of KEY=VALUE,... strings
*
* Copyright (C) 2017 Red Hat Inc.
*
* Authors:
* Markus Armbruster <armbru@redhat.com>,
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qlist.h"
#include "qapi/qmp/qstring.h"
#include "qapi/qobject-input-visitor.h"
#include "test-qapi-visit.h"
#include "qemu/cutils.h"
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
#include "qemu/option.h"
static void test_keyval_parse(void)
{
Error *err = NULL;
QDict *qdict, *sub_qdict;
char long_key[129];
char *params;
/* Nothing */
qdict = keyval_parse("", NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 0);
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Empty key (qemu_opts_parse() accepts this) */
qdict = keyval_parse("=val", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Empty key fragment */
qdict = keyval_parse(".", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
qdict = keyval_parse("key.", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Invalid non-empty key (qemu_opts_parse() doesn't care) */
qdict = keyval_parse("7up=val", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Overlong key */
memset(long_key, 'a', 127);
long_key[127] = 'z';
long_key[128] = 0;
params = g_strdup_printf("k.%s=v", long_key);
qdict = keyval_parse(params + 2, NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Overlong key fragment */
qdict = keyval_parse(params, NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
g_free(params);
/* Long key (qemu_opts_parse() accepts and truncates silently) */
params = g_strdup_printf("k.%s=v", long_key + 1);
qdict = keyval_parse(params + 2, NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(qdict, long_key + 1), ==, "v");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Long key fragment */
qdict = keyval_parse(params, NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 1);
sub_qdict = qdict_get_qdict(qdict, "k");
g_assert(sub_qdict);
g_assert_cmpuint(qdict_size(sub_qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(sub_qdict, long_key + 1), ==, "v");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
g_free(params);
/* Crap after valid key */
qdict = keyval_parse("key[0]=val", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Multiple keys, last one wins */
qdict = keyval_parse("a=1,b=2,,x,a=3", NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 2);
g_assert_cmpstr(qdict_get_try_str(qdict, "a"), ==, "3");
g_assert_cmpstr(qdict_get_try_str(qdict, "b"), ==, "2,x");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Even when it doesn't in qemu_opts_parse() */
qdict = keyval_parse("id=foo,id=bar", NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(qdict, "id"), ==, "bar");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Dotted keys */
qdict = keyval_parse("a.b.c=1,a.b.c=2,d=3", NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 2);
sub_qdict = qdict_get_qdict(qdict, "a");
g_assert(sub_qdict);
g_assert_cmpuint(qdict_size(sub_qdict), ==, 1);
sub_qdict = qdict_get_qdict(sub_qdict, "b");
g_assert(sub_qdict);
g_assert_cmpuint(qdict_size(sub_qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(sub_qdict, "c"), ==, "2");
g_assert_cmpstr(qdict_get_try_str(qdict, "d"), ==, "3");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Inconsistent dotted keys */
qdict = keyval_parse("a.b=1,a=2", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
qdict = keyval_parse("a.b=1,a.b.c=2", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Trailing comma is ignored */
qdict = keyval_parse("x=y,", NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(qdict, "x"), ==, "y");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Except when it isn't */
qdict = keyval_parse(",", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Value containing ,id= not misinterpreted as qemu_opts_parse() does */
qdict = keyval_parse("x=,,id=bar", NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(qdict, "x"), ==, ",id=bar");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Anti-social ID is left to caller (qemu_opts_parse() rejects it) */
qdict = keyval_parse("id=666", NULL, &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(qdict, "id"), ==, "666");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Implied value not supported (unlike qemu_opts_parse()) */
qdict = keyval_parse("an,noaus,noaus=", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Implied value, key "no" (qemu_opts_parse(): negated empty key) */
qdict = keyval_parse("no", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Implied key */
qdict = keyval_parse("an,aus=off,noaus=", "implied", &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 3);
g_assert_cmpstr(qdict_get_try_str(qdict, "implied"), ==, "an");
g_assert_cmpstr(qdict_get_try_str(qdict, "aus"), ==, "off");
g_assert_cmpstr(qdict_get_try_str(qdict, "noaus"), ==, "");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Implied dotted key */
qdict = keyval_parse("val", "eins.zwei", &error_abort);
g_assert_cmpuint(qdict_size(qdict), ==, 1);
sub_qdict = qdict_get_qdict(qdict, "eins");
g_assert(sub_qdict);
g_assert_cmpuint(qdict_size(sub_qdict), ==, 1);
g_assert_cmpstr(qdict_get_try_str(sub_qdict, "zwei"), ==, "val");
qobject_unref(qdict);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
/* Implied key with empty value (qemu_opts_parse() accepts this) */
qdict = keyval_parse(",", "implied", &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Likewise (qemu_opts_parse(): implied key with comma value) */
qdict = keyval_parse(",,,a=1", "implied", &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Empty key is not an implied key */
qdict = keyval_parse("=val", "implied", &err);
error_free_or_abort(&err);
g_assert(!qdict);
}
static void check_list012(QList *qlist)
{
static const char *expected[] = { "null", "eins", "zwei" };
int i;
QString *qstr;
g_assert(qlist);
for (i = 0; i < ARRAY_SIZE(expected); i++) {
qstr = qobject_to(QString, qlist_pop(qlist));
g_assert(qstr);
g_assert_cmpstr(qstring_get_str(qstr), ==, expected[i]);
qobject_unref(qstr);
}
g_assert(qlist_empty(qlist));
}
static void test_keyval_parse_list(void)
{
Error *err = NULL;
QDict *qdict, *sub_qdict;
/* Root can't be a list */
qdict = keyval_parse("0=1", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* List elements need not be in order */
qdict = keyval_parse("list.0=null,list.2=zwei,list.1=eins",
NULL, &error_abort);
g_assert_cmpint(qdict_size(qdict), ==, 1);
check_list012(qdict_get_qlist(qdict, "list"));
qobject_unref(qdict);
/* Multiple indexes, last one wins */
qdict = keyval_parse("list.1=goner,list.0=null,list.01=eins,list.2=zwei",
NULL, &error_abort);
g_assert_cmpint(qdict_size(qdict), ==, 1);
check_list012(qdict_get_qlist(qdict, "list"));
qobject_unref(qdict);
/* List at deeper nesting */
qdict = keyval_parse("a.list.1=eins,a.list.00=null,a.list.2=zwei",
NULL, &error_abort);
g_assert_cmpint(qdict_size(qdict), ==, 1);
sub_qdict = qdict_get_qdict(qdict, "a");
g_assert_cmpint(qdict_size(sub_qdict), ==, 1);
check_list012(qdict_get_qlist(sub_qdict, "list"));
qobject_unref(qdict);
/* Inconsistent dotted keys: both list and dictionary */
qdict = keyval_parse("a.b.c=1,a.b.0=2", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
qdict = keyval_parse("a.0.c=1,a.b.c=2", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
/* Missing list indexes */
qdict = keyval_parse("list.1=lonely", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
qdict = keyval_parse("list.0=null,list.2=eins,list.02=zwei", NULL, &err);
error_free_or_abort(&err);
g_assert(!qdict);
}
static void test_keyval_visit_bool(void)
{
Error *err = NULL;
Visitor *v;
QDict *qdict;
bool b;
qdict = keyval_parse("bool1=on,bool2=off", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_bool(v, "bool1", &b, &error_abort);
g_assert(b);
visit_type_bool(v, "bool2", &b, &error_abort);
g_assert(!b);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
qdict = keyval_parse("bool1=offer", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_bool(v, "bool1", &b, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
}
static void test_keyval_visit_number(void)
{
Error *err = NULL;
Visitor *v;
QDict *qdict;
uint64_t u;
/* Lower limit zero */
qdict = keyval_parse("number1=0", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_uint64(v, "number1", &u, &error_abort);
g_assert_cmpuint(u, ==, 0);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Upper limit 2^64-1 */
qdict = keyval_parse("number1=18446744073709551615,number2=-1",
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_uint64(v, "number1", &u, &error_abort);
g_assert_cmphex(u, ==, UINT64_MAX);
visit_type_uint64(v, "number2", &u, &error_abort);
g_assert_cmphex(u, ==, UINT64_MAX);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Above upper limit */
qdict = keyval_parse("number1=18446744073709551616",
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_uint64(v, "number1", &u, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
/* Below lower limit */
qdict = keyval_parse("number1=-18446744073709551616",
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_uint64(v, "number1", &u, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
/* Hex and octal */
qdict = keyval_parse("number1=0x2a,number2=052",
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_uint64(v, "number1", &u, &error_abort);
g_assert_cmpuint(u, ==, 42);
visit_type_uint64(v, "number2", &u, &error_abort);
g_assert_cmpuint(u, ==, 42);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Trailing crap */
qdict = keyval_parse("number1=3.14,number2=08",
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_uint64(v, "number1", &u, &err);
error_free_or_abort(&err);
visit_type_uint64(v, "number2", &u, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
}
static void test_keyval_visit_size(void)
{
Error *err = NULL;
Visitor *v;
QDict *qdict;
uint64_t sz;
/* Lower limit zero */
qdict = keyval_parse("sz1=0", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &error_abort);
g_assert_cmpuint(sz, ==, 0);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Note: precision is 53 bits since we're parsing with strtod() */
/* Around limit of precision: 2^53-1, 2^53, 2^53+1 */
qdict = keyval_parse("sz1=9007199254740991,"
"sz2=9007199254740992,"
"sz3=9007199254740993",
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &error_abort);
g_assert_cmphex(sz, ==, 0x1fffffffffffff);
visit_type_size(v, "sz2", &sz, &error_abort);
g_assert_cmphex(sz, ==, 0x20000000000000);
visit_type_size(v, "sz3", &sz, &error_abort);
g_assert_cmphex(sz, ==, 0x20000000000000);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Close to signed upper limit 0x7ffffffffffffc00 (53 msbs set) */
qdict = keyval_parse("sz1=9223372036854774784," /* 7ffffffffffffc00 */
"sz2=9223372036854775295", /* 7ffffffffffffdff */
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &error_abort);
g_assert_cmphex(sz, ==, 0x7ffffffffffffc00);
visit_type_size(v, "sz2", &sz, &error_abort);
g_assert_cmphex(sz, ==, 0x7ffffffffffffc00);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Close to actual upper limit 0xfffffffffffff800 (53 msbs set) */
qdict = keyval_parse("sz1=18446744073709549568," /* fffffffffffff800 */
"sz2=18446744073709550591", /* fffffffffffffbff */
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &error_abort);
g_assert_cmphex(sz, ==, 0xfffffffffffff800);
visit_type_size(v, "sz2", &sz, &error_abort);
g_assert_cmphex(sz, ==, 0xfffffffffffff800);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Beyond limits */
qdict = keyval_parse("sz1=-1,"
"sz2=18446744073709550592", /* fffffffffffffc00 */
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &err);
error_free_or_abort(&err);
visit_type_size(v, "sz2", &sz, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
/* Suffixes */
qdict = keyval_parse("sz1=8b,sz2=1.5k,sz3=2M,sz4=0.1G,sz5=16777215T",
NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &error_abort);
g_assert_cmpuint(sz, ==, 8);
visit_type_size(v, "sz2", &sz, &error_abort);
g_assert_cmpuint(sz, ==, 1536);
visit_type_size(v, "sz3", &sz, &error_abort);
g_assert_cmphex(sz, ==, 2 * M_BYTE);
visit_type_size(v, "sz4", &sz, &error_abort);
g_assert_cmphex(sz, ==, G_BYTE / 10);
visit_type_size(v, "sz5", &sz, &error_abort);
g_assert_cmphex(sz, ==, 16777215 * T_BYTE);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
/* Beyond limit with suffix */
qdict = keyval_parse("sz1=16777216T", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
/* Trailing crap */
qdict = keyval_parse("sz1=16E,sz2=16Gi", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_size(v, "sz1", &sz, &err);
error_free_or_abort(&err);
visit_type_size(v, "sz2", &sz, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
}
static void test_keyval_visit_dict(void)
{
Error *err = NULL;
Visitor *v;
QDict *qdict;
int64_t i;
qdict = keyval_parse("a.b.c=1,a.b.c=2,d=3", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_start_struct(v, "a", NULL, 0, &error_abort);
visit_start_struct(v, "b", NULL, 0, &error_abort);
visit_type_int(v, "c", &i, &error_abort);
g_assert_cmpint(i, ==, 2);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_type_int(v, "d", &i, &error_abort);
g_assert_cmpint(i, ==, 3);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
qdict = keyval_parse("a.b=", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_start_struct(v, "a", NULL, 0, &error_abort);
visit_type_int(v, "c", &i, &err); /* a.c missing */
error_free_or_abort(&err);
visit_check_struct(v, &err);
error_free_or_abort(&err); /* a.b unexpected */
visit_end_struct(v, NULL);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
}
static void test_keyval_visit_list(void)
{
Error *err = NULL;
Visitor *v;
QDict *qdict;
char *s;
qdict = keyval_parse("a.0=,a.1=I,a.2.0=II", NULL, &error_abort);
/* TODO empty list */
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_start_list(v, "a", NULL, 0, &error_abort);
visit_type_str(v, NULL, &s, &error_abort);
g_assert_cmpstr(s, ==, "");
g_free(s);
visit_type_str(v, NULL, &s, &error_abort);
g_assert_cmpstr(s, ==, "I");
g_free(s);
visit_start_list(v, NULL, NULL, 0, &error_abort);
visit_type_str(v, NULL, &s, &error_abort);
g_assert_cmpstr(s, ==, "II");
g_free(s);
visit_check_list(v, &error_abort);
visit_end_list(v, NULL);
visit_check_list(v, &error_abort);
visit_end_list(v, NULL);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
qdict = keyval_parse("a.0=,b.0.0=head", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_start_list(v, "a", NULL, 0, &error_abort);
visit_check_list(v, &err); /* a[0] unexpected */
error_free_or_abort(&err);
visit_end_list(v, NULL);
visit_start_list(v, "b", NULL, 0, &error_abort);
visit_start_list(v, NULL, NULL, 0, &error_abort);
visit_type_str(v, NULL, &s, &error_abort);
g_assert_cmpstr(s, ==, "head");
g_free(s);
visit_type_str(v, NULL, &s, &err); /* b[0][1] missing */
error_free_or_abort(&err);
visit_end_list(v, NULL);
visit_end_list(v, NULL);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
}
static void test_keyval_visit_optional(void)
{
Visitor *v;
QDict *qdict;
bool present;
int64_t i;
qdict = keyval_parse("a.b=1", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_optional(v, "b", &present);
g_assert(!present); /* b missing */
visit_optional(v, "a", &present);
g_assert(present); /* a present */
visit_start_struct(v, "a", NULL, 0, &error_abort);
visit_optional(v, "b", &present);
g_assert(present); /* a.b present */
visit_type_int(v, "b", &i, &error_abort);
g_assert_cmpint(i, ==, 1);
visit_optional(v, "a", &present);
g_assert(!present); /* a.a missing */
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
}
static void test_keyval_visit_alternate(void)
{
Error *err = NULL;
Visitor *v;
QDict *qdict;
qapi: Reject alternates that can't work with keyval_parse() Alternates are sum types like unions, but use the JSON type on the wire / QType in QObject instead of an explicit tag. That's why we require alternate members to have distinct QTypes. The recently introduced keyval_parse() (commit d454dbe) can only produce string scalars. The qobject_input_visitor_new_keyval() input visitor mostly hides the difference, so code using a QObject input visitor doesn't have to care whether its input was parsed from JSON or KEY=VALUE,... The difference leaks for alternates, as noted in commit 0ee9ae7: a non-string, non-enum scalar alternate value can't currently be expressed. In part, this is just our insufficiently sophisticated implementation. Consider alternate type 'GuestFileWhence'. It has an integer member and a 'QGASeek' member. The latter is an enumeration with values 'set', 'cur', 'end'. The meaning of b=set, b=cur, b=end, b=0, b=1 and so forth is perfectly obvious. However, our current implementation falls apart at run time for b=0, b=1, and so forth. Fixable, but not today; add a test case and a TODO comment. Now consider an alternate type with a string and an integer member. What's the meaning of a=42? Is it the string "42" or the integer 42? Whichever meaning you pick makes the other inexpressible. This isn't just an implementation problem, it's fundamental. Our current implementation will pick string. So far, we haven't needed such alternates. To make sure we stop and think before we add one that cannot sanely work with keyval_parse(), let's require alternate members to have sufficiently distinct representation in KEY=VALUE,... syntax: * A string member clashes with any other scalar member * An enumeration member clashes with bool members when it has value 'on' or 'off'. * An enumeration member clashes with numeric members when it has a value that starts with '-', '+', or a decimal digit. This is a rather lazy approximation of the actual number syntax accepted by the visitor. Note that enumeration values starting with '-' and '+' are rejected elsewhere already, but better safe than sorry. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1495471335-23707-5-git-send-email-armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
2017-05-23 00:42:15 +08:00
AltStrObj *aso;
AltNumEnum *ane;
qapi: Reject alternates that can't work with keyval_parse() Alternates are sum types like unions, but use the JSON type on the wire / QType in QObject instead of an explicit tag. That's why we require alternate members to have distinct QTypes. The recently introduced keyval_parse() (commit d454dbe) can only produce string scalars. The qobject_input_visitor_new_keyval() input visitor mostly hides the difference, so code using a QObject input visitor doesn't have to care whether its input was parsed from JSON or KEY=VALUE,... The difference leaks for alternates, as noted in commit 0ee9ae7: a non-string, non-enum scalar alternate value can't currently be expressed. In part, this is just our insufficiently sophisticated implementation. Consider alternate type 'GuestFileWhence'. It has an integer member and a 'QGASeek' member. The latter is an enumeration with values 'set', 'cur', 'end'. The meaning of b=set, b=cur, b=end, b=0, b=1 and so forth is perfectly obvious. However, our current implementation falls apart at run time for b=0, b=1, and so forth. Fixable, but not today; add a test case and a TODO comment. Now consider an alternate type with a string and an integer member. What's the meaning of a=42? Is it the string "42" or the integer 42? Whichever meaning you pick makes the other inexpressible. This isn't just an implementation problem, it's fundamental. Our current implementation will pick string. So far, we haven't needed such alternates. To make sure we stop and think before we add one that cannot sanely work with keyval_parse(), let's require alternate members to have sufficiently distinct representation in KEY=VALUE,... syntax: * A string member clashes with any other scalar member * An enumeration member clashes with bool members when it has value 'on' or 'off'. * An enumeration member clashes with numeric members when it has a value that starts with '-', '+', or a decimal digit. This is a rather lazy approximation of the actual number syntax accepted by the visitor. Note that enumeration values starting with '-' and '+' are rejected elsewhere already, but better safe than sorry. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1495471335-23707-5-git-send-email-armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
2017-05-23 00:42:15 +08:00
AltEnumBool *aeb;
/*
* Can't do scalar alternate variants other than string. You get
* the string variant if there is one, else an error.
qapi: Reject alternates that can't work with keyval_parse() Alternates are sum types like unions, but use the JSON type on the wire / QType in QObject instead of an explicit tag. That's why we require alternate members to have distinct QTypes. The recently introduced keyval_parse() (commit d454dbe) can only produce string scalars. The qobject_input_visitor_new_keyval() input visitor mostly hides the difference, so code using a QObject input visitor doesn't have to care whether its input was parsed from JSON or KEY=VALUE,... The difference leaks for alternates, as noted in commit 0ee9ae7: a non-string, non-enum scalar alternate value can't currently be expressed. In part, this is just our insufficiently sophisticated implementation. Consider alternate type 'GuestFileWhence'. It has an integer member and a 'QGASeek' member. The latter is an enumeration with values 'set', 'cur', 'end'. The meaning of b=set, b=cur, b=end, b=0, b=1 and so forth is perfectly obvious. However, our current implementation falls apart at run time for b=0, b=1, and so forth. Fixable, but not today; add a test case and a TODO comment. Now consider an alternate type with a string and an integer member. What's the meaning of a=42? Is it the string "42" or the integer 42? Whichever meaning you pick makes the other inexpressible. This isn't just an implementation problem, it's fundamental. Our current implementation will pick string. So far, we haven't needed such alternates. To make sure we stop and think before we add one that cannot sanely work with keyval_parse(), let's require alternate members to have sufficiently distinct representation in KEY=VALUE,... syntax: * A string member clashes with any other scalar member * An enumeration member clashes with bool members when it has value 'on' or 'off'. * An enumeration member clashes with numeric members when it has a value that starts with '-', '+', or a decimal digit. This is a rather lazy approximation of the actual number syntax accepted by the visitor. Note that enumeration values starting with '-' and '+' are rejected elsewhere already, but better safe than sorry. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1495471335-23707-5-git-send-email-armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
2017-05-23 00:42:15 +08:00
* TODO make it work for unambiguous cases like AltEnumBool below
*/
qapi: Reject alternates that can't work with keyval_parse() Alternates are sum types like unions, but use the JSON type on the wire / QType in QObject instead of an explicit tag. That's why we require alternate members to have distinct QTypes. The recently introduced keyval_parse() (commit d454dbe) can only produce string scalars. The qobject_input_visitor_new_keyval() input visitor mostly hides the difference, so code using a QObject input visitor doesn't have to care whether its input was parsed from JSON or KEY=VALUE,... The difference leaks for alternates, as noted in commit 0ee9ae7: a non-string, non-enum scalar alternate value can't currently be expressed. In part, this is just our insufficiently sophisticated implementation. Consider alternate type 'GuestFileWhence'. It has an integer member and a 'QGASeek' member. The latter is an enumeration with values 'set', 'cur', 'end'. The meaning of b=set, b=cur, b=end, b=0, b=1 and so forth is perfectly obvious. However, our current implementation falls apart at run time for b=0, b=1, and so forth. Fixable, but not today; add a test case and a TODO comment. Now consider an alternate type with a string and an integer member. What's the meaning of a=42? Is it the string "42" or the integer 42? Whichever meaning you pick makes the other inexpressible. This isn't just an implementation problem, it's fundamental. Our current implementation will pick string. So far, we haven't needed such alternates. To make sure we stop and think before we add one that cannot sanely work with keyval_parse(), let's require alternate members to have sufficiently distinct representation in KEY=VALUE,... syntax: * A string member clashes with any other scalar member * An enumeration member clashes with bool members when it has value 'on' or 'off'. * An enumeration member clashes with numeric members when it has a value that starts with '-', '+', or a decimal digit. This is a rather lazy approximation of the actual number syntax accepted by the visitor. Note that enumeration values starting with '-' and '+' are rejected elsewhere already, but better safe than sorry. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1495471335-23707-5-git-send-email-armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
2017-05-23 00:42:15 +08:00
qdict = keyval_parse("a=1,b=2,c=on", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
qapi: Reject alternates that can't work with keyval_parse() Alternates are sum types like unions, but use the JSON type on the wire / QType in QObject instead of an explicit tag. That's why we require alternate members to have distinct QTypes. The recently introduced keyval_parse() (commit d454dbe) can only produce string scalars. The qobject_input_visitor_new_keyval() input visitor mostly hides the difference, so code using a QObject input visitor doesn't have to care whether its input was parsed from JSON or KEY=VALUE,... The difference leaks for alternates, as noted in commit 0ee9ae7: a non-string, non-enum scalar alternate value can't currently be expressed. In part, this is just our insufficiently sophisticated implementation. Consider alternate type 'GuestFileWhence'. It has an integer member and a 'QGASeek' member. The latter is an enumeration with values 'set', 'cur', 'end'. The meaning of b=set, b=cur, b=end, b=0, b=1 and so forth is perfectly obvious. However, our current implementation falls apart at run time for b=0, b=1, and so forth. Fixable, but not today; add a test case and a TODO comment. Now consider an alternate type with a string and an integer member. What's the meaning of a=42? Is it the string "42" or the integer 42? Whichever meaning you pick makes the other inexpressible. This isn't just an implementation problem, it's fundamental. Our current implementation will pick string. So far, we haven't needed such alternates. To make sure we stop and think before we add one that cannot sanely work with keyval_parse(), let's require alternate members to have sufficiently distinct representation in KEY=VALUE,... syntax: * A string member clashes with any other scalar member * An enumeration member clashes with bool members when it has value 'on' or 'off'. * An enumeration member clashes with numeric members when it has a value that starts with '-', '+', or a decimal digit. This is a rather lazy approximation of the actual number syntax accepted by the visitor. Note that enumeration values starting with '-' and '+' are rejected elsewhere already, but better safe than sorry. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1495471335-23707-5-git-send-email-armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
2017-05-23 00:42:15 +08:00
visit_type_AltStrObj(v, "a", &aso, &error_abort);
g_assert_cmpint(aso->type, ==, QTYPE_QSTRING);
g_assert_cmpstr(aso->u.s, ==, "1");
qapi_free_AltStrObj(aso);
visit_type_AltNumEnum(v, "b", &ane, &err);
qapi: Reject alternates that can't work with keyval_parse() Alternates are sum types like unions, but use the JSON type on the wire / QType in QObject instead of an explicit tag. That's why we require alternate members to have distinct QTypes. The recently introduced keyval_parse() (commit d454dbe) can only produce string scalars. The qobject_input_visitor_new_keyval() input visitor mostly hides the difference, so code using a QObject input visitor doesn't have to care whether its input was parsed from JSON or KEY=VALUE,... The difference leaks for alternates, as noted in commit 0ee9ae7: a non-string, non-enum scalar alternate value can't currently be expressed. In part, this is just our insufficiently sophisticated implementation. Consider alternate type 'GuestFileWhence'. It has an integer member and a 'QGASeek' member. The latter is an enumeration with values 'set', 'cur', 'end'. The meaning of b=set, b=cur, b=end, b=0, b=1 and so forth is perfectly obvious. However, our current implementation falls apart at run time for b=0, b=1, and so forth. Fixable, but not today; add a test case and a TODO comment. Now consider an alternate type with a string and an integer member. What's the meaning of a=42? Is it the string "42" or the integer 42? Whichever meaning you pick makes the other inexpressible. This isn't just an implementation problem, it's fundamental. Our current implementation will pick string. So far, we haven't needed such alternates. To make sure we stop and think before we add one that cannot sanely work with keyval_parse(), let's require alternate members to have sufficiently distinct representation in KEY=VALUE,... syntax: * A string member clashes with any other scalar member * An enumeration member clashes with bool members when it has value 'on' or 'off'. * An enumeration member clashes with numeric members when it has a value that starts with '-', '+', or a decimal digit. This is a rather lazy approximation of the actual number syntax accepted by the visitor. Note that enumeration values starting with '-' and '+' are rejected elsewhere already, but better safe than sorry. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1495471335-23707-5-git-send-email-armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
2017-05-23 00:42:15 +08:00
error_free_or_abort(&err);
visit_type_AltEnumBool(v, "c", &aeb, &err);
error_free_or_abort(&err);
visit_end_struct(v, NULL);
visit_free(v);
}
static void test_keyval_visit_any(void)
{
Visitor *v;
QDict *qdict;
QObject *any;
QList *qlist;
QString *qstr;
qdict = keyval_parse("a.0=null,a.1=1", NULL, &error_abort);
v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
qobject_unref(qdict);
visit_start_struct(v, NULL, NULL, 0, &error_abort);
visit_type_any(v, "a", &any, &error_abort);
qlist = qobject_to(QList, any);
g_assert(qlist);
qstr = qobject_to(QString, qlist_pop(qlist));
g_assert_cmpstr(qstring_get_str(qstr), ==, "null");
qobject_unref(qstr);
qstr = qobject_to(QString, qlist_pop(qlist));
g_assert_cmpstr(qstring_get_str(qstr), ==, "1");
g_assert(qlist_empty(qlist));
qobject_unref(qstr);
qobject_unref(any);
visit_check_struct(v, &error_abort);
visit_end_struct(v, NULL);
visit_free(v);
}
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
int main(int argc, char *argv[])
{
g_test_init(&argc, &argv, NULL);
g_test_add_func("/keyval/keyval_parse", test_keyval_parse);
g_test_add_func("/keyval/keyval_parse/list", test_keyval_parse_list);
g_test_add_func("/keyval/visit/bool", test_keyval_visit_bool);
g_test_add_func("/keyval/visit/number", test_keyval_visit_number);
g_test_add_func("/keyval/visit/size", test_keyval_visit_size);
g_test_add_func("/keyval/visit/dict", test_keyval_visit_dict);
g_test_add_func("/keyval/visit/list", test_keyval_visit_list);
g_test_add_func("/keyval/visit/optional", test_keyval_visit_optional);
g_test_add_func("/keyval/visit/alternate", test_keyval_visit_alternate);
g_test_add_func("/keyval/visit/any", test_keyval_visit_any);
keyval: New keyval_parse() keyval_parse() parses KEY=VALUE,... into a QDict. Works like qemu_opts_parse(), except: * Returns a QDict instead of a QemuOpts (d'oh). * Supports nesting, unlike QemuOpts: a KEY is split into key fragments at '.' (dotted key convention; the block layer does something similar on top of QemuOpts). The key fragments are QDict keys, and the last one's value is updated to VALUE. * Each key fragment may be up to 127 bytes long. qemu_opts_parse() limits the entire key to 127 bytes. * Overlong key fragments are rejected. qemu_opts_parse() silently truncates them. * Empty key fragments are rejected. qemu_opts_parse() happily accepts empty keys. * It does not store the returned value. qemu_opts_parse() stores it in the QemuOptsList. * It does not treat parameter "id" specially. qemu_opts_parse() ignores all but the first "id", and fails when its value isn't id_wellformed(), or duplicate (a QemuOpts with the same ID is already stored). It also screws up when a value contains ",id=". * Implied value is not supported. qemu_opts_parse() desugars "foo" to "foo=on", and "nofoo" to "foo=off". * An implied key's value can't be empty, and can't contain ','. I intend to grow this into a saner replacement for QemuOpts. It'll take time, though. Note: keyval_parse() provides no way to do lists, and its key syntax is incompatible with the __RFQDN_ prefix convention for downstream extensions, because it blindly splits at '.', even in __RFQDN_. Both issues will be addressed later in the series. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1488317230-26248-4-git-send-email-armbru@redhat.com>
2017-03-01 05:26:49 +08:00
g_test_run();
return 0;
}