qemu/hw/esp.c

707 lines
18 KiB
C
Raw Normal View History

/*
* QEMU ESP emulation
*
* Copyright (c) 2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug ESP card */
//#define DEBUG_ESP
#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#define pic_set_irq(irq, level) \
do { printf("ESP: set_irq(%d): %d\n", (irq), (level)); pic_set_irq((irq),(level));} while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define ESPDMA_REGS 4
#define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1)
#define ESP_MAXREG 0x3f
#define TI_BUFSZ 65536
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_LOADED 0x04000000
typedef struct ESPState {
BlockDriverState **bd;
uint8_t rregs[ESP_MAXREG];
uint8_t wregs[ESP_MAXREG];
int irq;
uint32_t espdmaregs[ESPDMA_REGS];
uint32_t ti_size;
uint32_t ti_rptr, ti_wptr;
int ti_dir;
uint8_t ti_buf[TI_BUFSZ];
int dma;
} ESPState;
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07
#define STAT_TC 0x10
#define STAT_IN 0x80
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define INTR_RST 0x80
#define SEQ_0 0x0
#define SEQ_CD 0x4
/* XXX: stolen from ide.c, move to common ATAPI/SCSI library */
static void lba_to_msf(uint8_t *buf, int lba)
{
lba += 150;
buf[0] = (lba / 75) / 60;
buf[1] = (lba / 75) % 60;
buf[2] = lba % 75;
}
static inline void cpu_to_ube16(uint8_t *buf, int val)
{
buf[0] = val >> 8;
buf[1] = val;
}
static inline void cpu_to_ube32(uint8_t *buf, unsigned int val)
{
buf[0] = val >> 24;
buf[1] = val >> 16;
buf[2] = val >> 8;
buf[3] = val;
}
/* same toc as bochs. Return -1 if error or the toc length */
/* XXX: check this */
static int cdrom_read_toc(int nb_sectors, uint8_t *buf, int msf, int start_track)
{
uint8_t *q;
int len;
if (start_track > 1 && start_track != 0xaa)
return -1;
q = buf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
if (start_track <= 1) {
*q++ = 0; /* reserved */
*q++ = 0x14; /* ADR, control */
*q++ = 1; /* track number */
*q++ = 0; /* reserved */
if (msf) {
*q++ = 0; /* reserved */
lba_to_msf(q, 0);
q += 3;
} else {
/* sector 0 */
cpu_to_ube32(q, 0);
q += 4;
}
}
/* lead out track */
*q++ = 0; /* reserved */
*q++ = 0x16; /* ADR, control */
*q++ = 0xaa; /* track number */
*q++ = 0; /* reserved */
if (msf) {
*q++ = 0; /* reserved */
lba_to_msf(q, nb_sectors);
q += 3;
} else {
cpu_to_ube32(q, nb_sectors);
q += 4;
}
len = q - buf;
cpu_to_ube16(buf, len - 2);
return len;
}
/* mostly same info as PearPc */
static int cdrom_read_toc_raw(int nb_sectors, uint8_t *buf, int msf,
int session_num)
{
uint8_t *q;
int len;
q = buf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa0; /* lead-in */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* first track */
*q++ = 0x00; /* disk type */
*q++ = 0x00;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa1;
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* last track */
*q++ = 0x00;
*q++ = 0x00;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa2; /* lead-out */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
if (msf) {
*q++ = 0; /* reserved */
lba_to_msf(q, nb_sectors);
q += 3;
} else {
cpu_to_ube32(q, nb_sectors);
q += 4;
}
*q++ = 1; /* session number */
*q++ = 0x14; /* ADR, control */
*q++ = 0; /* track number */
*q++ = 1; /* point */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
if (msf) {
*q++ = 0;
lba_to_msf(q, 0);
q += 3;
} else {
*q++ = 0;
*q++ = 0;
*q++ = 0;
*q++ = 0;
}
len = q - buf;
cpu_to_ube16(buf, len - 2);
return len;
}
static void handle_satn(ESPState *s)
{
uint8_t buf[32];
uint32_t dmaptr, dmalen;
unsigned int i;
int64_t nb_sectors;
int target;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
target = s->wregs[4] & 7;
DPRINTF("Select with ATN len %d target %d\n", dmalen, target);
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr);
cpu_physical_memory_read(dmaptr, buf, dmalen);
} else {
buf[0] = 0;
memcpy(&buf[1], s->ti_buf, dmalen);
dmalen++;
}
for (i = 0; i < dmalen; i++) {
DPRINTF("Command %2.2x\n", buf[i]);
}
s->ti_dir = 0;
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
if (target >= 4 || !s->bd[target]) { // No such drive
s->rregs[4] = STAT_IN;
s->rregs[5] = INTR_DC;
s->rregs[6] = SEQ_0;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
return;
}
switch (buf[1]) {
case 0x0:
DPRINTF("Test Unit Ready (len %d)\n", buf[5]);
break;
case 0x12:
DPRINTF("Inquiry (len %d)\n", buf[5]);
memset(s->ti_buf, 0, 36);
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
s->ti_buf[0] = 5;
memcpy(&s->ti_buf[16], "QEMU CDROM ", 16);
} else {
s->ti_buf[0] = 0;
memcpy(&s->ti_buf[16], "QEMU HARDDISK ", 16);
}
memcpy(&s->ti_buf[8], "QEMU ", 8);
s->ti_buf[2] = 1;
s->ti_buf[3] = 2;
s->ti_buf[4] = 32;
s->ti_dir = 1;
s->ti_size = 36;
break;
case 0x1a:
DPRINTF("Mode Sense(6) (page %d, len %d)\n", buf[3], buf[5]);
break;
case 0x25:
DPRINTF("Read Capacity (len %d)\n", buf[5]);
memset(s->ti_buf, 0, 8);
bdrv_get_geometry(s->bd[target], &nb_sectors);
s->ti_buf[0] = (nb_sectors >> 24) & 0xff;
s->ti_buf[1] = (nb_sectors >> 16) & 0xff;
s->ti_buf[2] = (nb_sectors >> 8) & 0xff;
s->ti_buf[3] = nb_sectors & 0xff;
s->ti_buf[4] = 0;
s->ti_buf[5] = 0;
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM)
s->ti_buf[6] = 8; // sector size 2048
else
s->ti_buf[6] = 2; // sector size 512
s->ti_buf[7] = 0;
s->ti_dir = 1;
s->ti_size = 8;
break;
case 0x28:
{
int64_t offset, len;
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4;
len = ((buf[8] << 8) | buf[9]) * 4;
s->ti_size = len * 2048;
} else {
offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
len = (buf[8] << 8) | buf[9];
s->ti_size = len * 512;
}
DPRINTF("Read (10) (offset %lld len %lld)\n", offset, len);
bdrv_read(s->bd[target], offset, s->ti_buf, len);
// XXX error handling
s->ti_dir = 1;
break;
}
case 0x2a:
{
int64_t offset, len;
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4;
len = ((buf[8] << 8) | buf[9]) * 4;
s->ti_size = len * 2048;
} else {
offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
len = (buf[8] << 8) | buf[9];
s->ti_size = len * 512;
}
DPRINTF("Write (10) (offset %lld len %lld)\n", offset, len);
bdrv_write(s->bd[target], offset, s->ti_buf, len);
// XXX error handling
s->ti_dir = 0;
break;
}
case 0x43:
{
int start_track, format, msf, len;
msf = buf[2] & 2;
format = buf[3] & 0xf;
start_track = buf[7];
bdrv_get_geometry(s->bd[target], &nb_sectors);
DPRINTF("Read TOC (track %d format %d msf %d)\n", start_track, format, msf >> 1);
switch(format) {
case 0:
len = cdrom_read_toc(nb_sectors, buf, msf, start_track);
if (len < 0)
goto error_cmd;
s->ti_size = len;
break;
case 1:
/* multi session : only a single session defined */
memset(buf, 0, 12);
buf[1] = 0x0a;
buf[2] = 0x01;
buf[3] = 0x01;
s->ti_size = 12;
break;
case 2:
len = cdrom_read_toc_raw(nb_sectors, buf, msf, start_track);
if (len < 0)
goto error_cmd;
s->ti_size = len;
break;
default:
error_cmd:
DPRINTF("Read TOC error\n");
// XXX error handling
break;
}
s->ti_dir = 1;
break;
}
default:
DPRINTF("Unknown SCSI command (%2.2x)\n", buf[1]);
break;
}
s->rregs[4] = STAT_IN | STAT_TC | STAT_DI;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
static void dma_write(ESPState *s, const uint8_t *buf, uint32_t len)
{
uint32_t dmaptr, dmalen;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
DPRINTF("Transfer status len %d\n", dmalen);
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
cpu_physical_memory_write(dmaptr, buf, len);
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
} else {
memcpy(s->ti_buf, buf, len);
s->ti_size = dmalen;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[7] = dmalen;
}
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
static const uint8_t okbuf[] = {0, 0};
static void handle_ti(ESPState *s)
{
uint32_t dmaptr, dmalen;
unsigned int i;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
DPRINTF("Transfer Information len %d\n", dmalen);
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr);
for (i = 0; i < s->ti_size; i++) {
dmaptr = iommu_translate(s->espdmaregs[1] + i);
if (s->ti_dir)
cpu_physical_memory_write(dmaptr, &s->ti_buf[i], 1);
else
cpu_physical_memory_read(dmaptr, &s->ti_buf[i], 1);
}
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS;
s->rregs[6] = 0;
s->espdmaregs[0] |= DMA_INTR;
} else {
s->ti_size = dmalen;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[7] = dmalen;
}
pic_set_irq(s->irq, 1);
}
static void esp_reset(void *opaque)
{
ESPState *s = opaque;
memset(s->rregs, 0, ESP_MAXREG);
s->rregs[0x0e] = 0x4; // Indicate fas100a
memset(s->espdmaregs, 0, ESPDMA_REGS * 4);
}
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESP_MAXREG) >> 2;
DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
switch (saddr) {
case 2:
// FIFO
if (s->ti_size > 0) {
s->ti_size--;
s->rregs[saddr] = s->ti_buf[s->ti_rptr++];
pic_set_irq(s->irq, 1);
}
if (s->ti_size == 0) {
s->ti_rptr = 0;
s->ti_wptr = 0;
}
break;
case 5:
// interrupt
// Clear status bits except TC
s->rregs[4] &= STAT_TC;
pic_set_irq(s->irq, 0);
s->espdmaregs[0] &= ~DMA_INTR;
break;
default:
break;
}
return s->rregs[saddr];
}
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESP_MAXREG) >> 2;
DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
switch (saddr) {
case 0:
case 1:
s->rregs[saddr] = val;
break;
case 2:
// FIFO
s->ti_size++;
s->ti_buf[s->ti_wptr++] = val & 0xff;
break;
case 3:
s->rregs[saddr] = val;
// Command
if (val & 0x80) {
s->dma = 1;
} else {
s->dma = 0;
}
switch(val & 0x7f) {
case 0:
DPRINTF("NOP (%2.2x)\n", val);
break;
case 1:
DPRINTF("Flush FIFO (%2.2x)\n", val);
//s->ti_size = 0;
s->rregs[5] = INTR_FC;
s->rregs[6] = 0;
break;
case 2:
DPRINTF("Chip reset (%2.2x)\n", val);
esp_reset(s);
break;
case 3:
DPRINTF("Bus reset (%2.2x)\n", val);
s->rregs[5] = INTR_RST;
if (!(s->wregs[8] & 0x40)) {
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
break;
case 0x10:
handle_ti(s);
break;
case 0x11:
DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
dma_write(s, okbuf, 2);
break;
case 0x12:
DPRINTF("Message Accepted (%2.2x)\n", val);
dma_write(s, okbuf, 2);
s->rregs[5] = INTR_DC;
s->rregs[6] = 0;
break;
case 0x1a:
DPRINTF("Set ATN (%2.2x)\n", val);
break;
case 0x42:
handle_satn(s);
break;
case 0x43:
DPRINTF("Set ATN & stop (%2.2x)\n", val);
handle_satn(s);
break;
default:
DPRINTF("Unhandled ESP command (%2.2x)\n", val);
break;
}
break;
case 4 ... 7:
break;
case 8:
s->rregs[saddr] = val;
break;
case 9 ... 10:
break;
case 11:
s->rregs[saddr] = val & 0x15;
break;
case 12 ... 15:
s->rregs[saddr] = val;
break;
default:
break;
}
s->wregs[saddr] = val;
}
static CPUReadMemoryFunc *esp_mem_read[3] = {
esp_mem_readb,
esp_mem_readb,
esp_mem_readb,
};
static CPUWriteMemoryFunc *esp_mem_write[3] = {
esp_mem_writeb,
esp_mem_writeb,
esp_mem_writeb,
};
static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->espdmaregs[saddr]);
return s->espdmaregs[saddr];
}
static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->espdmaregs[saddr], val);
switch (saddr) {
case 0:
if (!(val & DMA_INTREN))
pic_set_irq(s->irq, 0);
if (val & 0x80) {
esp_reset(s);
} else if (val & 0x40) {
val &= ~0x40;
} else if (val == 0)
val = 0x40;
val &= 0x0fffffff;
val |= DMA_VER;
break;
case 1:
s->espdmaregs[0] = DMA_LOADED;
break;
default:
break;
}
s->espdmaregs[saddr] = val;
}
static CPUReadMemoryFunc *espdma_mem_read[3] = {
espdma_mem_readl,
espdma_mem_readl,
espdma_mem_readl,
};
static CPUWriteMemoryFunc *espdma_mem_write[3] = {
espdma_mem_writel,
espdma_mem_writel,
espdma_mem_writel,
};
static void esp_save(QEMUFile *f, void *opaque)
{
ESPState *s = opaque;
unsigned int i;
qemu_put_buffer(f, s->rregs, ESP_MAXREG);
qemu_put_buffer(f, s->wregs, ESP_MAXREG);
qemu_put_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_put_be32s(f, &s->espdmaregs[i]);
qemu_put_be32s(f, &s->ti_size);
qemu_put_be32s(f, &s->ti_rptr);
qemu_put_be32s(f, &s->ti_wptr);
qemu_put_be32s(f, &s->ti_dir);
qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_put_be32s(f, &s->dma);
}
static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
ESPState *s = opaque;
unsigned int i;
if (version_id != 1)
return -EINVAL;
qemu_get_buffer(f, s->rregs, ESP_MAXREG);
qemu_get_buffer(f, s->wregs, ESP_MAXREG);
qemu_get_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_get_be32s(f, &s->espdmaregs[i]);
qemu_get_be32s(f, &s->ti_size);
qemu_get_be32s(f, &s->ti_rptr);
qemu_get_be32s(f, &s->ti_wptr);
qemu_get_be32s(f, &s->ti_dir);
qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_get_be32s(f, &s->dma);
return 0;
}
void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr)
{
ESPState *s;
int esp_io_memory, espdma_io_memory;
s = qemu_mallocz(sizeof(ESPState));
if (!s)
return;
s->bd = bd;
s->irq = irq;
esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory);
espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s);
cpu_register_physical_memory(espdaddr, 16, espdma_io_memory);
esp_reset(s);
register_savevm("esp", espaddr, 1, esp_save, esp_load, s);
qemu_register_reset(esp_reset, s);
}