qemu/migration/postcopy-ram.c

1440 lines
45 KiB
C
Raw Normal View History

/*
* Postcopy migration for RAM
*
* Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Dave Gilbert <dgilbert@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
/*
* Postcopy is a migration technique where the execution flips from the
* source to the destination before all the data has been copied.
*/
#include "qemu/osdep.h"
#include "exec/target_page.h"
#include "migration.h"
#include "qemu-file.h"
#include "savevm.h"
#include "postcopy-ram.h"
#include "ram.h"
#include "qapi/error.h"
#include "qemu/notify.h"
#include "qemu/rcu.h"
#include "sysemu/sysemu.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "hw/boards.h"
/* Arbitrary limit on size of each discard command,
* keeps them around ~200 bytes
*/
#define MAX_DISCARDS_PER_COMMAND 12
struct PostcopyDiscardState {
const char *ramblock_name;
uint16_t cur_entry;
/*
* Start and length of a discard range (bytes)
*/
uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
unsigned int nsentwords;
unsigned int nsentcmds;
};
static NotifierWithReturnList postcopy_notifier_list;
void postcopy_infrastructure_init(void)
{
notifier_with_return_list_init(&postcopy_notifier_list);
}
void postcopy_add_notifier(NotifierWithReturn *nn)
{
notifier_with_return_list_add(&postcopy_notifier_list, nn);
}
void postcopy_remove_notifier(NotifierWithReturn *n)
{
notifier_with_return_remove(n);
}
int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
{
struct PostcopyNotifyData pnd;
pnd.reason = reason;
pnd.errp = errp;
return notifier_with_return_list_notify(&postcopy_notifier_list,
&pnd);
}
/* Postcopy needs to detect accesses to pages that haven't yet been copied
* across, and efficiently map new pages in, the techniques for doing this
* are target OS specific.
*/
#if defined(__linux__)
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <asm/types.h> /* for __u64 */
#endif
#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
#include <sys/eventfd.h>
#include <linux/userfaultfd.h>
migration: add postcopy blocktime ctx into MigrationIncomingState This patch adds request to kernel space for UFFD_FEATURE_THREAD_ID, in case this feature is provided by kernel. PostcopyBlocktimeContext is encapsulated inside postcopy-ram.c, due to it being a postcopy-only feature. Also it defines PostcopyBlocktimeContext's instance live time. Information from PostcopyBlocktimeContext instance will be provided much after postcopy migration end, instance of PostcopyBlocktimeContext will live till QEMU exit, but part of it (vcpu_addr, page_fault_vcpu_time) used only during calculation, will be released when postcopy ended or failed. To enable postcopy blocktime calculation on destination, need to request proper compatibility (Patch for documentation will be at the tail of the patch set). As an example following command enable that capability, assume QEMU was started with -chardev socket,id=charmonitor,path=/var/lib/migrate-vm-monitor.sock option to control it [root@host]#printf "{\"execute\" : \"qmp_capabilities\"}\r\n \ {\"execute\": \"migrate-set-capabilities\" , \"arguments\": { \"capabilities\": [ { \"capability\": \"postcopy-blocktime\", \"state\": true } ] } }" | nc -U /var/lib/migrate-vm-monitor.sock Or just with HMP (qemu) migrate_set_capability postcopy-blocktime on Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Alexey Perevalov <a.perevalov@samsung.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com> Message-Id: <1521742647-25550-3-git-send-email-a.perevalov@samsung.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2018-03-23 02:17:23 +08:00
typedef struct PostcopyBlocktimeContext {
/* time when page fault initiated per vCPU */
uint32_t *page_fault_vcpu_time;
/* page address per vCPU */
uintptr_t *vcpu_addr;
uint32_t total_blocktime;
/* blocktime per vCPU */
uint32_t *vcpu_blocktime;
/* point in time when last page fault was initiated */
uint32_t last_begin;
/* number of vCPU are suspended */
int smp_cpus_down;
uint64_t start_time;
/*
* Handler for exit event, necessary for
* releasing whole blocktime_ctx
*/
Notifier exit_notifier;
} PostcopyBlocktimeContext;
static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
{
g_free(ctx->page_fault_vcpu_time);
g_free(ctx->vcpu_addr);
g_free(ctx->vcpu_blocktime);
g_free(ctx);
}
static void migration_exit_cb(Notifier *n, void *data)
{
PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
exit_notifier);
destroy_blocktime_context(ctx);
}
static struct PostcopyBlocktimeContext *blocktime_context_new(void)
{
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
migration: add postcopy blocktime ctx into MigrationIncomingState This patch adds request to kernel space for UFFD_FEATURE_THREAD_ID, in case this feature is provided by kernel. PostcopyBlocktimeContext is encapsulated inside postcopy-ram.c, due to it being a postcopy-only feature. Also it defines PostcopyBlocktimeContext's instance live time. Information from PostcopyBlocktimeContext instance will be provided much after postcopy migration end, instance of PostcopyBlocktimeContext will live till QEMU exit, but part of it (vcpu_addr, page_fault_vcpu_time) used only during calculation, will be released when postcopy ended or failed. To enable postcopy blocktime calculation on destination, need to request proper compatibility (Patch for documentation will be at the tail of the patch set). As an example following command enable that capability, assume QEMU was started with -chardev socket,id=charmonitor,path=/var/lib/migrate-vm-monitor.sock option to control it [root@host]#printf "{\"execute\" : \"qmp_capabilities\"}\r\n \ {\"execute\": \"migrate-set-capabilities\" , \"arguments\": { \"capabilities\": [ { \"capability\": \"postcopy-blocktime\", \"state\": true } ] } }" | nc -U /var/lib/migrate-vm-monitor.sock Or just with HMP (qemu) migrate_set_capability postcopy-blocktime on Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Alexey Perevalov <a.perevalov@samsung.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com> Message-Id: <1521742647-25550-3-git-send-email-a.perevalov@samsung.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2018-03-23 02:17:23 +08:00
PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
ctx->exit_notifier.notify = migration_exit_cb;
ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
qemu_add_exit_notifier(&ctx->exit_notifier);
return ctx;
}
static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
{
MachineState *ms = MACHINE(qdev_get_machine());
uint32List *list = NULL, *entry = NULL;
int i;
for (i = ms->smp.cpus - 1; i >= 0; i--) {
entry = g_new0(uint32List, 1);
entry->value = ctx->vcpu_blocktime[i];
entry->next = list;
list = entry;
}
return list;
}
/*
* This function just populates MigrationInfo from postcopy's
* blocktime context. It will not populate MigrationInfo,
* unless postcopy-blocktime capability was set.
*
* @info: pointer to MigrationInfo to populate
*/
void fill_destination_postcopy_migration_info(MigrationInfo *info)
{
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
if (!bc) {
return;
}
info->has_postcopy_blocktime = true;
info->postcopy_blocktime = bc->total_blocktime;
info->has_postcopy_vcpu_blocktime = true;
info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
}
static uint32_t get_postcopy_total_blocktime(void)
{
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
if (!bc) {
return 0;
}
return bc->total_blocktime;
}
/**
* receive_ufd_features: check userfault fd features, to request only supported
* features in the future.
*
* Returns: true on success
*
* __NR_userfaultfd - should be checked before
* @features: out parameter will contain uffdio_api.features provided by kernel
* in case of success
*/
static bool receive_ufd_features(uint64_t *features)
{
struct uffdio_api api_struct = {0};
int ufd;
bool ret = true;
/* if we are here __NR_userfaultfd should exists */
ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
if (ufd == -1) {
error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
strerror(errno));
return false;
}
/* ask features */
api_struct.api = UFFD_API;
api_struct.features = 0;
if (ioctl(ufd, UFFDIO_API, &api_struct)) {
error_report("%s: UFFDIO_API failed: %s", __func__,
strerror(errno));
ret = false;
goto release_ufd;
}
*features = api_struct.features;
release_ufd:
close(ufd);
return ret;
}
/**
* request_ufd_features: this function should be called only once on a newly
* opened ufd, subsequent calls will lead to error.
*
* Returns: true on success
*
* @ufd: fd obtained from userfaultfd syscall
* @features: bit mask see UFFD_API_FEATURES
*/
static bool request_ufd_features(int ufd, uint64_t features)
{
struct uffdio_api api_struct = {0};
uint64_t ioctl_mask;
api_struct.api = UFFD_API;
api_struct.features = features;
if (ioctl(ufd, UFFDIO_API, &api_struct)) {
error_report("%s failed: UFFDIO_API failed: %s", __func__,
strerror(errno));
return false;
}
ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
(__u64)1 << _UFFDIO_UNREGISTER;
if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
error_report("Missing userfault features: %" PRIx64,
(uint64_t)(~api_struct.ioctls & ioctl_mask));
return false;
}
return true;
}
static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
{
uint64_t asked_features = 0;
static uint64_t supported_features;
/*
* it's not possible to
* request UFFD_API twice per one fd
* userfault fd features is persistent
*/
if (!supported_features) {
if (!receive_ufd_features(&supported_features)) {
error_report("%s failed", __func__);
return false;
}
}
migration: add postcopy blocktime ctx into MigrationIncomingState This patch adds request to kernel space for UFFD_FEATURE_THREAD_ID, in case this feature is provided by kernel. PostcopyBlocktimeContext is encapsulated inside postcopy-ram.c, due to it being a postcopy-only feature. Also it defines PostcopyBlocktimeContext's instance live time. Information from PostcopyBlocktimeContext instance will be provided much after postcopy migration end, instance of PostcopyBlocktimeContext will live till QEMU exit, but part of it (vcpu_addr, page_fault_vcpu_time) used only during calculation, will be released when postcopy ended or failed. To enable postcopy blocktime calculation on destination, need to request proper compatibility (Patch for documentation will be at the tail of the patch set). As an example following command enable that capability, assume QEMU was started with -chardev socket,id=charmonitor,path=/var/lib/migrate-vm-monitor.sock option to control it [root@host]#printf "{\"execute\" : \"qmp_capabilities\"}\r\n \ {\"execute\": \"migrate-set-capabilities\" , \"arguments\": { \"capabilities\": [ { \"capability\": \"postcopy-blocktime\", \"state\": true } ] } }" | nc -U /var/lib/migrate-vm-monitor.sock Or just with HMP (qemu) migrate_set_capability postcopy-blocktime on Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Alexey Perevalov <a.perevalov@samsung.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com> Message-Id: <1521742647-25550-3-git-send-email-a.perevalov@samsung.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2018-03-23 02:17:23 +08:00
#ifdef UFFD_FEATURE_THREAD_ID
if (migrate_postcopy_blocktime() && mis &&
UFFD_FEATURE_THREAD_ID & supported_features) {
/* kernel supports that feature */
/* don't create blocktime_context if it exists */
if (!mis->blocktime_ctx) {
mis->blocktime_ctx = blocktime_context_new();
}
asked_features |= UFFD_FEATURE_THREAD_ID;
}
#endif
/*
* request features, even if asked_features is 0, due to
* kernel expects UFFD_API before UFFDIO_REGISTER, per
* userfault file descriptor
*/
if (!request_ufd_features(ufd, asked_features)) {
error_report("%s failed: features %" PRIu64, __func__,
asked_features);
return false;
}
if (qemu_real_host_page_size != ram_pagesize_summary()) {
bool have_hp = false;
/* We've got a huge page */
#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
#endif
if (!have_hp) {
error_report("Userfault on this host does not support huge pages");
return false;
}
}
return true;
}
/* Callback from postcopy_ram_supported_by_host block iterator.
*/
static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
size_t pagesize = qemu_ram_pagesize(rb);
if (length % pagesize) {
error_report("Postcopy requires RAM blocks to be a page size multiple,"
" block %s is 0x" RAM_ADDR_FMT " bytes with a "
"page size of 0x%zx", block_name, length, pagesize);
return 1;
}
return 0;
}
/*
* Note: This has the side effect of munlock'ing all of RAM, that's
* normally fine since if the postcopy succeeds it gets turned back on at the
* end.
*/
bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
long pagesize = qemu_real_host_page_size;
int ufd = -1;
bool ret = false; /* Error unless we change it */
void *testarea = NULL;
struct uffdio_register reg_struct;
struct uffdio_range range_struct;
uint64_t feature_mask;
Error *local_err = NULL;
if (qemu_target_page_size() > pagesize) {
error_report("Target page size bigger than host page size");
goto out;
}
ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
if (ufd == -1) {
error_report("%s: userfaultfd not available: %s", __func__,
strerror(errno));
goto out;
}
/* Give devices a chance to object */
if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
error_report_err(local_err);
goto out;
}
/* Version and features check */
if (!ufd_check_and_apply(ufd, mis)) {
goto out;
}
/* We don't support postcopy with shared RAM yet */
if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
goto out;
}
/*
* userfault and mlock don't go together; we'll put it back later if
* it was enabled.
*/
if (munlockall()) {
error_report("%s: munlockall: %s", __func__, strerror(errno));
goto out;
}
/*
* We need to check that the ops we need are supported on anon memory
* To do that we need to register a chunk and see the flags that
* are returned.
*/
testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0);
if (testarea == MAP_FAILED) {
error_report("%s: Failed to map test area: %s", __func__,
strerror(errno));
goto out;
}
g_assert(((size_t)testarea & (pagesize - 1)) == 0);
reg_struct.range.start = (uintptr_t)testarea;
reg_struct.range.len = pagesize;
reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
error_report("%s userfault register: %s", __func__, strerror(errno));
goto out;
}
range_struct.start = (uintptr_t)testarea;
range_struct.len = pagesize;
if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
error_report("%s userfault unregister: %s", __func__, strerror(errno));
goto out;
}
feature_mask = (__u64)1 << _UFFDIO_WAKE |
(__u64)1 << _UFFDIO_COPY |
(__u64)1 << _UFFDIO_ZEROPAGE;
if ((reg_struct.ioctls & feature_mask) != feature_mask) {
error_report("Missing userfault map features: %" PRIx64,
(uint64_t)(~reg_struct.ioctls & feature_mask));
goto out;
}
/* Success! */
ret = true;
out:
if (testarea) {
munmap(testarea, pagesize);
}
if (ufd != -1) {
close(ufd);
}
return ret;
}
/*
* Setup an area of RAM so that it *can* be used for postcopy later; this
* must be done right at the start prior to pre-copy.
* opaque should be the MIS.
*/
static int init_range(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
void *host_addr = qemu_ram_get_host_addr(rb);
ram_addr_t offset = qemu_ram_get_offset(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
trace_postcopy_init_range(block_name, host_addr, offset, length);
/*
* We need the whole of RAM to be truly empty for postcopy, so things
* like ROMs and any data tables built during init must be zero'd
* - we're going to get the copy from the source anyway.
* (Precopy will just overwrite this data, so doesn't need the discard)
*/
if (ram_discard_range(block_name, 0, length)) {
return -1;
}
return 0;
}
/*
* At the end of migration, undo the effects of init_range
* opaque should be the MIS.
*/
static int cleanup_range(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
void *host_addr = qemu_ram_get_host_addr(rb);
ram_addr_t offset = qemu_ram_get_offset(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
MigrationIncomingState *mis = opaque;
struct uffdio_range range_struct;
trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
/*
* We turned off hugepage for the precopy stage with postcopy enabled
* we can turn it back on now.
*/
qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
/*
* We can also turn off userfault now since we should have all the
* pages. It can be useful to leave it on to debug postcopy
* if you're not sure it's always getting every page.
*/
range_struct.start = (uintptr_t)host_addr;
range_struct.len = length;
if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
error_report("%s: userfault unregister %s", __func__, strerror(errno));
return -1;
}
return 0;
}
/*
* Initialise postcopy-ram, setting the RAM to a state where we can go into
* postcopy later; must be called prior to any precopy.
* called from arch_init's similarly named ram_postcopy_incoming_init
*/
int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
if (foreach_not_ignored_block(init_range, NULL)) {
return -1;
}
return 0;
}
/*
* At the end of a migration where postcopy_ram_incoming_init was called.
*/
int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
{
trace_postcopy_ram_incoming_cleanup_entry();
if (mis->have_fault_thread) {
Error *local_err = NULL;
/* Let the fault thread quit */
qatomic_set(&mis->fault_thread_quit, 1);
postcopy_fault_thread_notify(mis);
trace_postcopy_ram_incoming_cleanup_join();
qemu_thread_join(&mis->fault_thread);
if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
error_report_err(local_err);
return -1;
}
if (foreach_not_ignored_block(cleanup_range, mis)) {
return -1;
}
trace_postcopy_ram_incoming_cleanup_closeuf();
close(mis->userfault_fd);
close(mis->userfault_event_fd);
mis->have_fault_thread = false;
}
if (enable_mlock) {
if (os_mlock() < 0) {
error_report("mlock: %s", strerror(errno));
/*
* It doesn't feel right to fail at this point, we have a valid
* VM state.
*/
}
}
if (mis->postcopy_tmp_page) {
munmap(mis->postcopy_tmp_page, mis->largest_page_size);
mis->postcopy_tmp_page = NULL;
}
if (mis->postcopy_tmp_zero_page) {
munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
mis->postcopy_tmp_zero_page = NULL;
}
trace_postcopy_ram_incoming_cleanup_blocktime(
get_postcopy_total_blocktime());
trace_postcopy_ram_incoming_cleanup_exit();
return 0;
}
/*
* Disable huge pages on an area
*/
static int nhp_range(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
void *host_addr = qemu_ram_get_host_addr(rb);
ram_addr_t offset = qemu_ram_get_offset(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
trace_postcopy_nhp_range(block_name, host_addr, offset, length);
/*
* Before we do discards we need to ensure those discards really
* do delete areas of the page, even if THP thinks a hugepage would
* be a good idea, so force hugepages off.
*/
qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
return 0;
}
/*
* Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
* however leaving it until after precopy means that most of the precopy
* data is still THPd
*/
int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
{
if (foreach_not_ignored_block(nhp_range, mis)) {
return -1;
}
postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
return 0;
}
/*
* Mark the given area of RAM as requiring notification to unwritten areas
* Used as a callback on foreach_not_ignored_block.
* host_addr: Base of area to mark
* offset: Offset in the whole ram arena
* length: Length of the section
* opaque: MigrationIncomingState pointer
* Returns 0 on success
*/
static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
{
MigrationIncomingState *mis = opaque;
struct uffdio_register reg_struct;
reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
reg_struct.range.len = qemu_ram_get_used_length(rb);
reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
/* Now tell our userfault_fd that it's responsible for this area */
if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
error_report("%s userfault register: %s", __func__, strerror(errno));
return -1;
}
if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
error_report("%s userfault: Region doesn't support COPY", __func__);
return -1;
}
if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
qemu_ram_set_uf_zeroable(rb);
}
return 0;
}
int postcopy_wake_shared(struct PostCopyFD *pcfd,
uint64_t client_addr,
RAMBlock *rb)
{
size_t pagesize = qemu_ram_pagesize(rb);
struct uffdio_range range;
int ret;
trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
range.start = client_addr & ~(pagesize - 1);
range.len = pagesize;
ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
if (ret) {
error_report("%s: Failed to wake: %zx in %s (%s)",
__func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
strerror(errno));
}
return ret;
}
/*
* Callback from shared fault handlers to ask for a page,
* the page must be specified by a RAMBlock and an offset in that rb
* Note: Only for use by shared fault handlers (in fault thread)
*/
int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
uint64_t client_addr, uint64_t rb_offset)
{
size_t pagesize = qemu_ram_pagesize(rb);
uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
MigrationIncomingState *mis = migration_incoming_get_current();
trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
rb_offset);
if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
trace_postcopy_request_shared_page_present(pcfd->idstr,
qemu_ram_get_idstr(rb), rb_offset);
return postcopy_wake_shared(pcfd, client_addr, rb);
}
migration: Maintain postcopy faulted addresses Maintain a list of faulted addresses on the destination host for which we're waiting on. This is implemented using a GTree rather than a real list to make sure even there're plenty of vCPUs/threads that are faulting, the lookup will still be fast with O(log(N)) (because we'll do that after placing each page). It should bring a slight overhead, but ideally that shouldn't be a big problem simply because in most cases the requested page list will be short. Actually we did similar things for postcopy blocktime measurements. This patch didn't use that simply because: (1) blocktime measurement is towards vcpu threads only, but here we need to record all faulted addresses, including main thread and external thread (like, DPDK via vhost-user). (2) blocktime measurement will require UFFD_FEATURE_THREAD_ID, but here we don't want to add that extra dependency on the kernel version since not necessary. E.g., we don't need to know which thread faulted on which page, we also don't care about multiple threads faulting on the same page. But we only care about what addresses are faulted so waiting for a page copying from src. (3) blocktime measurement is not enabled by default. However we need this by default especially for postcopy recover. Another thing to mention is that this patch introduced a new mutex to serialize the receivedmap and the page_requested tree, however that serialization does not cover other procedures like UFFDIO_COPY. Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201021212721.440373-4-peterx@redhat.com> Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2020-10-22 05:27:18 +08:00
migrate_send_rp_req_pages(mis, rb, aligned_rbo, client_addr);
return 0;
}
static int get_mem_fault_cpu_index(uint32_t pid)
{
CPUState *cpu_iter;
CPU_FOREACH(cpu_iter) {
if (cpu_iter->thread_id == pid) {
trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
return cpu_iter->cpu_index;
}
}
trace_get_mem_fault_cpu_index(-1, pid);
return -1;
}
static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
{
int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
dc->start_time;
return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
}
/*
* This function is being called when pagefault occurs. It
* tracks down vCPU blocking time.
*
* @addr: faulted host virtual address
* @ptid: faulted process thread id
* @rb: ramblock appropriate to addr
*/
static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
RAMBlock *rb)
{
int cpu, already_received;
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
uint32_t low_time_offset;
if (!dc || ptid == 0) {
return;
}
cpu = get_mem_fault_cpu_index(ptid);
if (cpu < 0) {
return;
}
low_time_offset = get_low_time_offset(dc);
if (dc->vcpu_addr[cpu] == 0) {
qatomic_inc(&dc->smp_cpus_down);
}
qatomic_xchg(&dc->last_begin, low_time_offset);
qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
qatomic_xchg(&dc->vcpu_addr[cpu], addr);
/*
* check it here, not at the beginning of the function,
* due to, check could occur early than bitmap_set in
* qemu_ufd_copy_ioctl
*/
already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
if (already_received) {
qatomic_xchg(&dc->vcpu_addr[cpu], 0);
qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
qatomic_dec(&dc->smp_cpus_down);
}
trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
cpu, already_received);
}
/*
* This function just provide calculated blocktime per cpu and trace it.
* Total blocktime is calculated in mark_postcopy_blocktime_end.
*
*
* Assume we have 3 CPU
*
* S1 E1 S1 E1
* -----***********------------xxx***************------------------------> CPU1
*
* S2 E2
* ------------****************xxx---------------------------------------> CPU2
*
* S3 E3
* ------------------------****xxx********-------------------------------> CPU3
*
* We have sequence S1,S2,E1,S3,S1,E2,E3,E1
* S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
* S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
* it's a part of total blocktime.
* S1 - here is last_begin
* Legend of the picture is following:
* * - means blocktime per vCPU
* x - means overlapped blocktime (total blocktime)
*
* @addr: host virtual address
*/
static void mark_postcopy_blocktime_end(uintptr_t addr)
{
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
int i, affected_cpu = 0;
bool vcpu_total_blocktime = false;
uint32_t read_vcpu_time, low_time_offset;
if (!dc) {
return;
}
low_time_offset = get_low_time_offset(dc);
/* lookup cpu, to clear it,
* that algorithm looks straightforward, but it's not
* optimal, more optimal algorithm is keeping tree or hash
* where key is address value is a list of */
for (i = 0; i < smp_cpus; i++) {
uint32_t vcpu_blocktime = 0;
read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
read_vcpu_time == 0) {
continue;
}
qatomic_xchg(&dc->vcpu_addr[i], 0);
vcpu_blocktime = low_time_offset - read_vcpu_time;
affected_cpu += 1;
/* we need to know is that mark_postcopy_end was due to
* faulted page, another possible case it's prefetched
* page and in that case we shouldn't be here */
if (!vcpu_total_blocktime &&
qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
vcpu_total_blocktime = true;
}
/* continue cycle, due to one page could affect several vCPUs */
dc->vcpu_blocktime[i] += vcpu_blocktime;
}
qatomic_sub(&dc->smp_cpus_down, affected_cpu);
if (vcpu_total_blocktime) {
dc->total_blocktime += low_time_offset - qatomic_fetch_add(
&dc->last_begin, 0);
}
trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
affected_cpu);
}
static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
{
trace_postcopy_pause_fault_thread();
qemu_sem_wait(&mis->postcopy_pause_sem_fault);
trace_postcopy_pause_fault_thread_continued();
return true;
}
/*
* Handle faults detected by the USERFAULT markings
*/
static void *postcopy_ram_fault_thread(void *opaque)
{
MigrationIncomingState *mis = opaque;
struct uffd_msg msg;
int ret;
size_t index;
RAMBlock *rb = NULL;
trace_postcopy_ram_fault_thread_entry();
rcu_register_thread();
mis->last_rb = NULL; /* last RAMBlock we sent part of */
qemu_sem_post(&mis->fault_thread_sem);
struct pollfd *pfd;
size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
pfd = g_new0(struct pollfd, pfd_len);
pfd[0].fd = mis->userfault_fd;
pfd[0].events = POLLIN;
pfd[1].fd = mis->userfault_event_fd;
pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
struct PostCopyFD, index);
pfd[2 + index].fd = pcfd->fd;
pfd[2 + index].events = POLLIN;
trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
pcfd->fd);
}
while (true) {
ram_addr_t rb_offset;
int poll_result;
/*
* We're mainly waiting for the kernel to give us a faulting HVA,
* however we can be told to quit via userfault_quit_fd which is
* an eventfd
*/
poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
if (poll_result == -1) {
error_report("%s: userfault poll: %s", __func__, strerror(errno));
break;
}
if (!mis->to_src_file) {
/*
* Possibly someone tells us that the return path is
* broken already using the event. We should hold until
* the channel is rebuilt.
*/
if (postcopy_pause_fault_thread(mis)) {
/* Continue to read the userfaultfd */
} else {
error_report("%s: paused but don't allow to continue",
__func__);
break;
}
}
if (pfd[1].revents) {
uint64_t tmp64 = 0;
/* Consume the signal */
if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
/* Nothing obviously nicer than posting this error. */
error_report("%s: read() failed", __func__);
}
if (qatomic_read(&mis->fault_thread_quit)) {
trace_postcopy_ram_fault_thread_quit();
break;
}
}
if (pfd[0].revents) {
poll_result--;
ret = read(mis->userfault_fd, &msg, sizeof(msg));
if (ret != sizeof(msg)) {
if (errno == EAGAIN) {
/*
* if a wake up happens on the other thread just after
* the poll, there is nothing to read.
*/
continue;
}
if (ret < 0) {
error_report("%s: Failed to read full userfault "
"message: %s",
__func__, strerror(errno));
break;
} else {
error_report("%s: Read %d bytes from userfaultfd "
"expected %zd",
__func__, ret, sizeof(msg));
break; /* Lost alignment, don't know what we'd read next */
}
}
if (msg.event != UFFD_EVENT_PAGEFAULT) {
error_report("%s: Read unexpected event %ud from userfaultfd",
__func__, msg.event);
continue; /* It's not a page fault, shouldn't happen */
}
rb = qemu_ram_block_from_host(
(void *)(uintptr_t)msg.arg.pagefault.address,
true, &rb_offset);
if (!rb) {
error_report("postcopy_ram_fault_thread: Fault outside guest: %"
PRIx64, (uint64_t)msg.arg.pagefault.address);
break;
}
rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
qemu_ram_get_idstr(rb),
rb_offset,
msg.arg.pagefault.feat.ptid);
mark_postcopy_blocktime_begin(
(uintptr_t)(msg.arg.pagefault.address),
msg.arg.pagefault.feat.ptid, rb);
retry:
/*
* Send the request to the source - we want to request one
* of our host page sizes (which is >= TPS)
*/
migration: Maintain postcopy faulted addresses Maintain a list of faulted addresses on the destination host for which we're waiting on. This is implemented using a GTree rather than a real list to make sure even there're plenty of vCPUs/threads that are faulting, the lookup will still be fast with O(log(N)) (because we'll do that after placing each page). It should bring a slight overhead, but ideally that shouldn't be a big problem simply because in most cases the requested page list will be short. Actually we did similar things for postcopy blocktime measurements. This patch didn't use that simply because: (1) blocktime measurement is towards vcpu threads only, but here we need to record all faulted addresses, including main thread and external thread (like, DPDK via vhost-user). (2) blocktime measurement will require UFFD_FEATURE_THREAD_ID, but here we don't want to add that extra dependency on the kernel version since not necessary. E.g., we don't need to know which thread faulted on which page, we also don't care about multiple threads faulting on the same page. But we only care about what addresses are faulted so waiting for a page copying from src. (3) blocktime measurement is not enabled by default. However we need this by default especially for postcopy recover. Another thing to mention is that this patch introduced a new mutex to serialize the receivedmap and the page_requested tree, however that serialization does not cover other procedures like UFFDIO_COPY. Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201021212721.440373-4-peterx@redhat.com> Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2020-10-22 05:27:18 +08:00
ret = migrate_send_rp_req_pages(mis, rb, rb_offset,
msg.arg.pagefault.address);
if (ret) {
/* May be network failure, try to wait for recovery */
if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
/* We got reconnected somehow, try to continue */
goto retry;
} else {
/* This is a unavoidable fault */
error_report("%s: migrate_send_rp_req_pages() get %d",
__func__, ret);
break;
}
}
}
/* Now handle any requests from external processes on shared memory */
/* TODO: May need to handle devices deregistering during postcopy */
for (index = 2; index < pfd_len && poll_result; index++) {
if (pfd[index].revents) {
struct PostCopyFD *pcfd =
&g_array_index(mis->postcopy_remote_fds,
struct PostCopyFD, index - 2);
poll_result--;
if (pfd[index].revents & POLLERR) {
error_report("%s: POLLERR on poll %zd fd=%d",
__func__, index, pcfd->fd);
pfd[index].events = 0;
continue;
}
ret = read(pcfd->fd, &msg, sizeof(msg));
if (ret != sizeof(msg)) {
if (errno == EAGAIN) {
/*
* if a wake up happens on the other thread just after
* the poll, there is nothing to read.
*/
continue;
}
if (ret < 0) {
error_report("%s: Failed to read full userfault "
"message: %s (shared) revents=%d",
__func__, strerror(errno),
pfd[index].revents);
/*TODO: Could just disable this sharer */
break;
} else {
error_report("%s: Read %d bytes from userfaultfd "
"expected %zd (shared)",
__func__, ret, sizeof(msg));
/*TODO: Could just disable this sharer */
break; /*Lost alignment,don't know what we'd read next*/
}
}
if (msg.event != UFFD_EVENT_PAGEFAULT) {
error_report("%s: Read unexpected event %ud "
"from userfaultfd (shared)",
__func__, msg.event);
continue; /* It's not a page fault, shouldn't happen */
}
/* Call the device handler registered with us */
ret = pcfd->handler(pcfd, &msg);
if (ret) {
error_report("%s: Failed to resolve shared fault on %zd/%s",
__func__, index, pcfd->idstr);
/* TODO: Fail? Disable this sharer? */
}
}
}
}
rcu_unregister_thread();
trace_postcopy_ram_fault_thread_exit();
g_free(pfd);
return NULL;
}
int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
{
/* Open the fd for the kernel to give us userfaults */
mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
if (mis->userfault_fd == -1) {
error_report("%s: Failed to open userfault fd: %s", __func__,
strerror(errno));
return -1;
}
/*
* Although the host check already tested the API, we need to
* do the check again as an ABI handshake on the new fd.
*/
if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
return -1;
}
/* Now an eventfd we use to tell the fault-thread to quit */
mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
if (mis->userfault_event_fd == -1) {
error_report("%s: Opening userfault_event_fd: %s", __func__,
strerror(errno));
close(mis->userfault_fd);
return -1;
}
qemu_sem_init(&mis->fault_thread_sem, 0);
qemu_thread_create(&mis->fault_thread, "postcopy/fault",
postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
qemu_sem_wait(&mis->fault_thread_sem);
qemu_sem_destroy(&mis->fault_thread_sem);
mis->have_fault_thread = true;
/* Mark so that we get notified of accesses to unwritten areas */
if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
error_report("ram_block_enable_notify failed");
return -1;
}
mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
PROT_READ | PROT_WRITE, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0);
if (mis->postcopy_tmp_page == MAP_FAILED) {
mis->postcopy_tmp_page = NULL;
error_report("%s: Failed to map postcopy_tmp_page %s",
__func__, strerror(errno));
return -1;
}
/*
* Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
*/
mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
int e = errno;
mis->postcopy_tmp_zero_page = NULL;
error_report("%s: Failed to map large zero page %s",
__func__, strerror(e));
return -e;
}
memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
trace_postcopy_ram_enable_notify();
return 0;
}
static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
void *from_addr, uint64_t pagesize, RAMBlock *rb)
{
int userfault_fd = mis->userfault_fd;
int ret;
if (from_addr) {
struct uffdio_copy copy_struct;
copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
copy_struct.src = (uint64_t)(uintptr_t)from_addr;
copy_struct.len = pagesize;
copy_struct.mode = 0;
ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
} else {
struct uffdio_zeropage zero_struct;
zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
zero_struct.range.len = pagesize;
zero_struct.mode = 0;
ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
}
if (!ret) {
migration: Maintain postcopy faulted addresses Maintain a list of faulted addresses on the destination host for which we're waiting on. This is implemented using a GTree rather than a real list to make sure even there're plenty of vCPUs/threads that are faulting, the lookup will still be fast with O(log(N)) (because we'll do that after placing each page). It should bring a slight overhead, but ideally that shouldn't be a big problem simply because in most cases the requested page list will be short. Actually we did similar things for postcopy blocktime measurements. This patch didn't use that simply because: (1) blocktime measurement is towards vcpu threads only, but here we need to record all faulted addresses, including main thread and external thread (like, DPDK via vhost-user). (2) blocktime measurement will require UFFD_FEATURE_THREAD_ID, but here we don't want to add that extra dependency on the kernel version since not necessary. E.g., we don't need to know which thread faulted on which page, we also don't care about multiple threads faulting on the same page. But we only care about what addresses are faulted so waiting for a page copying from src. (3) blocktime measurement is not enabled by default. However we need this by default especially for postcopy recover. Another thing to mention is that this patch introduced a new mutex to serialize the receivedmap and the page_requested tree, however that serialization does not cover other procedures like UFFDIO_COPY. Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201021212721.440373-4-peterx@redhat.com> Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2020-10-22 05:27:18 +08:00
qemu_mutex_lock(&mis->page_request_mutex);
ramblock_recv_bitmap_set_range(rb, host_addr,
pagesize / qemu_target_page_size());
migration: Maintain postcopy faulted addresses Maintain a list of faulted addresses on the destination host for which we're waiting on. This is implemented using a GTree rather than a real list to make sure even there're plenty of vCPUs/threads that are faulting, the lookup will still be fast with O(log(N)) (because we'll do that after placing each page). It should bring a slight overhead, but ideally that shouldn't be a big problem simply because in most cases the requested page list will be short. Actually we did similar things for postcopy blocktime measurements. This patch didn't use that simply because: (1) blocktime measurement is towards vcpu threads only, but here we need to record all faulted addresses, including main thread and external thread (like, DPDK via vhost-user). (2) blocktime measurement will require UFFD_FEATURE_THREAD_ID, but here we don't want to add that extra dependency on the kernel version since not necessary. E.g., we don't need to know which thread faulted on which page, we also don't care about multiple threads faulting on the same page. But we only care about what addresses are faulted so waiting for a page copying from src. (3) blocktime measurement is not enabled by default. However we need this by default especially for postcopy recover. Another thing to mention is that this patch introduced a new mutex to serialize the receivedmap and the page_requested tree, however that serialization does not cover other procedures like UFFDIO_COPY. Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201021212721.440373-4-peterx@redhat.com> Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
2020-10-22 05:27:18 +08:00
/*
* If this page resolves a page fault for a previous recorded faulted
* address, take a special note to maintain the requested page list.
*/
if (g_tree_lookup(mis->page_requested, host_addr)) {
g_tree_remove(mis->page_requested, host_addr);
mis->page_requested_count--;
trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
}
qemu_mutex_unlock(&mis->page_request_mutex);
mark_postcopy_blocktime_end((uintptr_t)host_addr);
}
return ret;
}
int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
{
int i;
MigrationIncomingState *mis = migration_incoming_get_current();
GArray *pcrfds = mis->postcopy_remote_fds;
for (i = 0; i < pcrfds->len; i++) {
struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
int ret = cur->waker(cur, rb, offset);
if (ret) {
return ret;
}
}
return 0;
}
/*
* Place a host page (from) at (host) atomically
* returns 0 on success
*/
int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
RAMBlock *rb)
{
size_t pagesize = qemu_ram_pagesize(rb);
/* copy also acks to the kernel waking the stalled thread up
* TODO: We can inhibit that ack and only do it if it was requested
* which would be slightly cheaper, but we'd have to be careful
* of the order of updating our page state.
*/
if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
int e = errno;
error_report("%s: %s copy host: %p from: %p (size: %zd)",
__func__, strerror(e), host, from, pagesize);
return -e;
}
trace_postcopy_place_page(host);
return postcopy_notify_shared_wake(rb,
qemu_ram_block_host_offset(rb, host));
}
/*
* Place a zero page at (host) atomically
* returns 0 on success
*/
int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
RAMBlock *rb)
{
size_t pagesize = qemu_ram_pagesize(rb);
trace_postcopy_place_page_zero(host);
/* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
* but it's not available for everything (e.g. hugetlbpages)
*/
if (qemu_ram_is_uf_zeroable(rb)) {
if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
int e = errno;
error_report("%s: %s zero host: %p",
__func__, strerror(e), host);
return -e;
}
return postcopy_notify_shared_wake(rb,
qemu_ram_block_host_offset(rb,
host));
} else {
return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
}
}
#else
/* No target OS support, stubs just fail */
void fill_destination_postcopy_migration_info(MigrationInfo *info)
{
}
bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
error_report("%s: No OS support", __func__);
return false;
}
int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
error_report("postcopy_ram_incoming_init: No OS support");
return -1;
}
int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
{
assert(0);
return -1;
}
int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
{
assert(0);
return -1;
}
int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
uint64_t client_addr, uint64_t rb_offset)
{
assert(0);
return -1;
}
int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
{
assert(0);
return -1;
}
int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
RAMBlock *rb)
{
assert(0);
return -1;
}
int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
RAMBlock *rb)
{
assert(0);
return -1;
}
int postcopy_wake_shared(struct PostCopyFD *pcfd,
uint64_t client_addr,
RAMBlock *rb)
{
assert(0);
return -1;
}
#endif
/* ------------------------------------------------------------------------- */
void postcopy_fault_thread_notify(MigrationIncomingState *mis)
{
uint64_t tmp64 = 1;
/*
* Wakeup the fault_thread. It's an eventfd that should currently
* be at 0, we're going to increment it to 1
*/
if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
/* Not much we can do here, but may as well report it */
error_report("%s: incrementing failed: %s", __func__,
strerror(errno));
}
}
/**
* postcopy_discard_send_init: Called at the start of each RAMBlock before
* asking to discard individual ranges.
*
* @ms: The current migration state.
* @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
* @name: RAMBlock that discards will operate on.
*/
static PostcopyDiscardState pds = {0};
void postcopy_discard_send_init(MigrationState *ms, const char *name)
{
pds.ramblock_name = name;
pds.cur_entry = 0;
pds.nsentwords = 0;
pds.nsentcmds = 0;
}
/**
* postcopy_discard_send_range: Called by the bitmap code for each chunk to
* discard. May send a discard message, may just leave it queued to
* be sent later.
*
* @ms: Current migration state.
* @start,@length: a range of pages in the migration bitmap in the
* RAM block passed to postcopy_discard_send_init() (length=1 is one page)
*/
void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
unsigned long length)
{
size_t tp_size = qemu_target_page_size();
/* Convert to byte offsets within the RAM block */
pds.start_list[pds.cur_entry] = start * tp_size;
pds.length_list[pds.cur_entry] = length * tp_size;
trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
pds.cur_entry++;
pds.nsentwords++;
if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
/* Full set, ship it! */
qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
pds.ramblock_name,
pds.cur_entry,
pds.start_list,
pds.length_list);
pds.nsentcmds++;
pds.cur_entry = 0;
}
}
/**
* postcopy_discard_send_finish: Called at the end of each RAMBlock by the
* bitmap code. Sends any outstanding discard messages, frees the PDS
*
* @ms: Current migration state.
*/
void postcopy_discard_send_finish(MigrationState *ms)
{
/* Anything unsent? */
if (pds.cur_entry) {
qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
pds.ramblock_name,
pds.cur_entry,
pds.start_list,
pds.length_list);
pds.nsentcmds++;
}
trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
pds.nsentcmds);
}
/*
* Current state of incoming postcopy; note this is not part of
* MigrationIncomingState since it's state is used during cleanup
* at the end as MIS is being freed.
*/
static PostcopyState incoming_postcopy_state;
PostcopyState postcopy_state_get(void)
{
return qatomic_mb_read(&incoming_postcopy_state);
}
/* Set the state and return the old state */
PostcopyState postcopy_state_set(PostcopyState new_state)
{
return qatomic_xchg(&incoming_postcopy_state, new_state);
}
/* Register a handler for external shared memory postcopy
* called on the destination.
*/
void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
{
MigrationIncomingState *mis = migration_incoming_get_current();
mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
*pcfd);
}
/* Unregister a handler for external shared memory postcopy
*/
void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
{
guint i;
MigrationIncomingState *mis = migration_incoming_get_current();
GArray *pcrfds = mis->postcopy_remote_fds;
for (i = 0; i < pcrfds->len; i++) {
struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
if (cur->fd == pcfd->fd) {
mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
return;
}
}
}