qemu/hw/sparc/sun4m.c

1569 lines
46 KiB
C
Raw Normal View History

/*
* QEMU Sun4m & Sun4d & Sun4c System Emulator
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "hw/sparc/sun4m.h"
#include "hw/timer/m48t59.h"
#include "hw/sparc/sparc32_dma.h"
#include "hw/block/fdc.h"
#include "sysemu/sysemu.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/nvram/openbios_firmware_abi.h"
#include "hw/scsi/esp.h"
#include "hw/i386/pc.h"
#include "hw/isa/isa.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/char/escc.h"
#include "hw/empty_slot.h"
#include "hw/loader.h"
#include "elf.h"
#include "sysemu/block-backend.h"
#include "trace.h"
/*
* Sun4m architecture was used in the following machines:
*
* SPARCserver 6xxMP/xx
* SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
* SPARCclassic X (4/10)
* SPARCstation LX/ZX (4/30)
* SPARCstation Voyager
* SPARCstation 10/xx, SPARCserver 10/xx
* SPARCstation 5, SPARCserver 5
* SPARCstation 20/xx, SPARCserver 20
* SPARCstation 4
*
* See for example: http://www.sunhelp.org/faq/sunref1.html
*/
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define PROM_SIZE_MAX (1024 * 1024)
#define PROM_VADDR 0xffd00000
#define PROM_FILENAME "openbios-sparc32"
#define CFG_ADDR 0xd00000510ULL
#define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
#define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
#define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
#define MAX_CPUS 16
#define MAX_PILS 16
#define MAX_VSIMMS 4
#define ESCC_CLOCK 4915200
struct sun4m_hwdef {
hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
hwaddr serial_base, fd_base;
hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
hwaddr bpp_base, dbri_base, sx_base;
struct {
hwaddr reg_base, vram_base;
} vsimm[MAX_VSIMMS];
hwaddr ecc_base;
uint64_t max_mem;
const char * const default_cpu_model;
uint32_t ecc_version;
uint32_t iommu_version;
uint16_t machine_id;
uint8_t nvram_machine_id;
};
void DMA_init(ISABus *bus, int high_page_enable)
{
}
static void fw_cfg_boot_set(void *opaque, const char *boot_device,
Error **errp)
{
fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
}
static void nvram_init(Nvram *nvram, uint8_t *macaddr,
const char *cmdline, const char *boot_devices,
ram_addr_t RAM_size, uint32_t kernel_size,
int width, int height, int depth,
int nvram_machine_id, const char *arch)
{
unsigned int i;
uint32_t start, end;
uint8_t image[0x1ff0];
struct OpenBIOS_nvpart_v1 *part_header;
NvramClass *k = NVRAM_GET_CLASS(nvram);
memset(image, '\0', sizeof(image));
start = 0;
// OpenBIOS nvram variables
// Variable partition
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_SYSTEM;
pstrcpy(part_header->name, sizeof(part_header->name), "system");
end = start + sizeof(struct OpenBIOS_nvpart_v1);
for (i = 0; i < nb_prom_envs; i++)
end = OpenBIOS_set_var(image, end, prom_envs[i]);
// End marker
image[end++] = '\0';
end = start + ((end - start + 15) & ~15);
OpenBIOS_finish_partition(part_header, end - start);
// free partition
start = end;
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_FREE;
pstrcpy(part_header->name, sizeof(part_header->name), "free");
end = 0x1fd0;
OpenBIOS_finish_partition(part_header, end - start);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
nvram_machine_id);
for (i = 0; i < sizeof(image); i++) {
(k->write)(nvram, i, image[i]);
}
}
static DeviceState *slavio_intctl;
void sun4m_hmp_info_pic(Monitor *mon, const QDict *qdict)
{
if (slavio_intctl)
slavio_pic_info(mon, slavio_intctl);
}
void sun4m_hmp_info_irq(Monitor *mon, const QDict *qdict)
{
if (slavio_intctl)
slavio_irq_info(mon, slavio_intctl);
}
void cpu_check_irqs(CPUSPARCState *env)
{
CPUState *cs;
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
cs = CPU(sparc_env_get_cpu(env));
trace_sun4m_cpu_interrupt(i);
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
cs = CPU(sparc_env_get_cpu(env));
trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
static void cpu_kick_irq(SPARCCPU *cpu)
{
CPUSPARCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
cs->halted = 0;
cpu_check_irqs(env);
qemu_cpu_kick(cs);
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
SPARCCPU *cpu = opaque;
CPUSPARCState *env = &cpu->env;
if (level) {
trace_sun4m_cpu_set_irq_raise(irq);
env->pil_in |= 1 << irq;
cpu_kick_irq(cpu);
} else {
trace_sun4m_cpu_set_irq_lower(irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
static void main_cpu_reset(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
cs->halted = 0;
}
static void secondary_cpu_reset(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
cs->halted = 1;
}
static void cpu_halt_signal(void *opaque, int irq, int level)
{
if (level && current_cpu) {
cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
}
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return addr - 0xf0000000ULL;
}
static unsigned long sun4m_load_kernel(const char *kernel_filename,
const char *initrd_filename,
ram_addr_t RAM_size)
{
int linux_boot;
unsigned int i;
long initrd_size, kernel_size;
uint8_t *ptr;
linux_boot = (kernel_filename != NULL);
kernel_size = 0;
if (linux_boot) {
int bswap_needed;
#ifdef BSWAP_NEEDED
bswap_needed = 1;
#else
bswap_needed = 0;
#endif
kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
TARGET_PAGE_SIZE);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
if (initrd_filename) {
initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
RAM_size - INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
if (initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
if (ldl_p(ptr) == 0x48647253) { // HdrS
stl_p(ptr + 16, INITRD_LOAD_ADDR);
stl_p(ptr + 20, initrd_size);
break;
}
}
}
}
return kernel_size;
}
static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "iommu");
qdev_prop_set_uint32(dev, "version", version);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, addr);
return s;
}
static void *sparc32_dma_init(hwaddr daddr, qemu_irq parent_irq,
void *iommu, qemu_irq *dev_irq, int is_ledma)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "sparc32_dma");
qdev_prop_set_ptr(dev, "iommu_opaque", iommu);
qdev_prop_set_uint32(dev, "is_ledma", is_ledma);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, parent_irq);
*dev_irq = qdev_get_gpio_in(dev, 0);
sysbus_mmio_map(s, 0, daddr);
return s;
}
static void lance_init(NICInfo *nd, hwaddr leaddr,
void *dma_opaque, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *s;
qemu_irq reset;
qemu_check_nic_model(&nd_table[0], "lance");
dev = qdev_create(NULL, "lance");
qdev_set_nic_properties(dev, nd);
qdev_prop_set_ptr(dev, "dma", dma_opaque);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(s, 0, leaddr);
sysbus_connect_irq(s, 0, irq);
reset = qdev_get_gpio_in(dev, 0);
qdev_connect_gpio_out(dma_opaque, 0, reset);
}
static DeviceState *slavio_intctl_init(hwaddr addr,
hwaddr addrg,
qemu_irq **parent_irq)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i, j;
dev = qdev_create(NULL, "slavio_intctl");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
for (i = 0; i < MAX_CPUS; i++) {
for (j = 0; j < MAX_PILS; j++) {
sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
}
}
sysbus_mmio_map(s, 0, addrg);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
}
return dev;
}
#define SYS_TIMER_OFFSET 0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i;
dev = qdev_create(NULL, "slavio_timer");
qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, master_irq);
sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
}
}
static qemu_irq slavio_system_powerdown;
static void slavio_powerdown_req(Notifier *n, void *opaque)
{
qemu_irq_raise(slavio_system_powerdown);
}
static Notifier slavio_system_powerdown_notifier = {
.notify = slavio_powerdown_req
};
#define MISC_LEDS 0x01600000
#define MISC_CFG 0x01800000
#define MISC_DIAG 0x01a00000
#define MISC_MDM 0x01b00000
#define MISC_SYS 0x01f00000
static void slavio_misc_init(hwaddr base,
hwaddr aux1_base,
hwaddr aux2_base, qemu_irq irq,
qemu_irq fdc_tc)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "slavio_misc");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
if (base) {
/* 8 bit registers */
/* Slavio control */
sysbus_mmio_map(s, 0, base + MISC_CFG);
/* Diagnostics */
sysbus_mmio_map(s, 1, base + MISC_DIAG);
/* Modem control */
sysbus_mmio_map(s, 2, base + MISC_MDM);
/* 16 bit registers */
/* ss600mp diag LEDs */
sysbus_mmio_map(s, 3, base + MISC_LEDS);
/* 32 bit registers */
/* System control */
sysbus_mmio_map(s, 4, base + MISC_SYS);
}
if (aux1_base) {
/* AUX 1 (Misc System Functions) */
sysbus_mmio_map(s, 5, aux1_base);
}
if (aux2_base) {
/* AUX 2 (Software Powerdown Control) */
sysbus_mmio_map(s, 6, aux2_base);
}
sysbus_connect_irq(s, 0, irq);
sysbus_connect_irq(s, 1, fdc_tc);
slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
}
static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "eccmemctl");
qdev_prop_set_uint32(dev, "version", version);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, base);
if (version == 0) { // SS-600MP only
sysbus_mmio_map(s, 1, base + 0x1000);
}
}
static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "apc");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
/* Power management (APC) XXX: not a Slavio device */
sysbus_mmio_map(s, 0, power_base);
sysbus_connect_irq(s, 0, cpu_halt);
}
static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
int height, int depth)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "SUNW,tcx");
qdev_prop_set_uint32(dev, "vram_size", vram_size);
qdev_prop_set_uint16(dev, "width", width);
qdev_prop_set_uint16(dev, "height", height);
qdev_prop_set_uint16(dev, "depth", depth);
qdev_prop_set_uint64(dev, "prom_addr", addr);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
/* 10/ROM : FCode ROM */
sysbus_mmio_map(s, 0, addr);
/* 2/STIP : Stipple */
sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
/* 3/BLIT : Blitter */
sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
/* 5/RSTIP : Raw Stipple */
sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
/* 6/RBLIT : Raw Blitter */
sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
/* 7/TEC : Transform Engine */
sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
/* 8/CMAP : DAC */
sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
/* 9/THC : */
if (depth == 8) {
sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
} else {
sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
}
/* 11/DHC : */
sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
/* 12/ALT : */
sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
/* 0/DFB8 : 8-bit plane */
sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
/* 1/DFB24 : 24bit plane */
sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
/* 4/RDFB32: Raw framebuffer. Control plane */
sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
/* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
if (depth == 8) {
sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
}
sysbus_connect_irq(s, 0, irq);
}
static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
int height, int depth)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "cgthree");
qdev_prop_set_uint32(dev, "vram-size", vram_size);
qdev_prop_set_uint16(dev, "width", width);
qdev_prop_set_uint16(dev, "height", height);
qdev_prop_set_uint16(dev, "depth", depth);
qdev_prop_set_uint64(dev, "prom-addr", addr);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
/* FCode ROM */
sysbus_mmio_map(s, 0, addr);
/* DAC */
sysbus_mmio_map(s, 1, addr + 0x400000ULL);
/* 8-bit plane */
sysbus_mmio_map(s, 2, addr + 0x800000ULL);
sysbus_connect_irq(s, 0, irq);
}
/* NCR89C100/MACIO Internal ID register */
#define TYPE_MACIO_ID_REGISTER "macio_idreg"
static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
static void idreg_init(hwaddr addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(s, 0, addr);
cpu_physical_memory_write_rom(&address_space_memory,
addr, idreg_data, sizeof(idreg_data));
}
#define MACIO_ID_REGISTER(obj) \
OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
typedef struct IDRegState {
SysBusDevice parent_obj;
MemoryRegion mem;
} IDRegState;
static int idreg_init1(SysBusDevice *dev)
{
IDRegState *s = MACIO_ID_REGISTER(dev);
memory_region_init_ram(&s->mem, OBJECT(s),
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 22:51:43 +08:00
"sun4m.idreg", sizeof(idreg_data), &error_fatal);
vmstate_register_ram_global(&s->mem);
memory_region_set_readonly(&s->mem, true);
sysbus_init_mmio(dev, &s->mem);
return 0;
}
static void idreg_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = idreg_init1;
}
static const TypeInfo idreg_info = {
.name = TYPE_MACIO_ID_REGISTER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IDRegState),
.class_init = idreg_class_init,
};
#define TYPE_TCX_AFX "tcx_afx"
#define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
typedef struct AFXState {
SysBusDevice parent_obj;
MemoryRegion mem;
} AFXState;
/* SS-5 TCX AFX register */
static void afx_init(hwaddr addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, TYPE_TCX_AFX);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(s, 0, addr);
}
static int afx_init1(SysBusDevice *dev)
{
AFXState *s = TCX_AFX(dev);
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 22:51:43 +08:00
memory_region_init_ram(&s->mem, OBJECT(s), "sun4m.afx", 4, &error_fatal);
vmstate_register_ram_global(&s->mem);
sysbus_init_mmio(dev, &s->mem);
return 0;
}
static void afx_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = afx_init1;
}
static const TypeInfo afx_info = {
.name = TYPE_TCX_AFX,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AFXState),
.class_init = afx_class_init,
};
#define TYPE_OPENPROM "openprom"
#define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
typedef struct PROMState {
SysBusDevice parent_obj;
MemoryRegion prom;
} PROMState;
/* Boot PROM (OpenBIOS) */
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
{
hwaddr *base_addr = (hwaddr *)opaque;
return addr + *base_addr - PROM_VADDR;
}
static void prom_init(hwaddr addr, const char *bios_name)
{
DeviceState *dev;
SysBusDevice *s;
char *filename;
int ret;
dev = qdev_create(NULL, TYPE_OPENPROM);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(s, 0, addr);
/* load boot prom */
if (bios_name == NULL) {
bios_name = PROM_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
ret = load_elf(filename, translate_prom_address, &addr, NULL,
NULL, NULL, 1, EM_SPARC, 0, 0);
if (ret < 0 || ret > PROM_SIZE_MAX) {
ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
}
g_free(filename);
} else {
ret = -1;
}
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
exit(1);
}
}
static int prom_init1(SysBusDevice *dev)
{
PROMState *s = OPENPROM(dev);
memory_region_init_ram(&s->prom, OBJECT(s), "sun4m.prom", PROM_SIZE_MAX,
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 22:51:43 +08:00
&error_fatal);
vmstate_register_ram_global(&s->prom);
memory_region_set_readonly(&s->prom, true);
sysbus_init_mmio(dev, &s->prom);
return 0;
}
static Property prom_properties[] = {
{/* end of property list */},
};
static void prom_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = prom_init1;
dc->props = prom_properties;
}
static const TypeInfo prom_info = {
.name = TYPE_OPENPROM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PROMState),
.class_init = prom_class_init,
};
#define TYPE_SUN4M_MEMORY "memory"
#define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
typedef struct RamDevice {
SysBusDevice parent_obj;
MemoryRegion ram;
uint64_t size;
} RamDevice;
/* System RAM */
static int ram_init1(SysBusDevice *dev)
{
RamDevice *d = SUN4M_RAM(dev);
memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
d->size);
sysbus_init_mmio(dev, &d->ram);
return 0;
}
static void ram_init(hwaddr addr, ram_addr_t RAM_size,
uint64_t max_mem)
{
DeviceState *dev;
SysBusDevice *s;
RamDevice *d;
/* allocate RAM */
if ((uint64_t)RAM_size > max_mem) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)(RAM_size / (1024 * 1024)),
(unsigned int)(max_mem / (1024 * 1024)));
exit(1);
}
dev = qdev_create(NULL, "memory");
s = SYS_BUS_DEVICE(dev);
d = SUN4M_RAM(dev);
d->size = RAM_size;
qdev_init_nofail(dev);
sysbus_mmio_map(s, 0, addr);
}
static Property ram_properties[] = {
DEFINE_PROP_UINT64("size", RamDevice, size, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void ram_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = ram_init1;
dc->props = ram_properties;
}
static const TypeInfo ram_info = {
.name = TYPE_SUN4M_MEMORY,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(RamDevice),
.class_init = ram_class_init,
};
static void cpu_devinit(const char *cpu_model, unsigned int id,
uint64_t prom_addr, qemu_irq **cpu_irqs)
{
CPUState *cs;
SPARCCPU *cpu;
CPUSPARCState *env;
cpu = cpu_sparc_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
env = &cpu->env;
cpu_sparc_set_id(env, id);
if (id == 0) {
qemu_register_reset(main_cpu_reset, cpu);
} else {
qemu_register_reset(secondary_cpu_reset, cpu);
cs = CPU(cpu);
cs->halted = 1;
}
*cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
env->prom_addr = prom_addr;
}
static void dummy_fdc_tc(void *opaque, int irq, int level)
{
}
static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
MachineState *machine)
{
const char *cpu_model = machine->cpu_model;
unsigned int i;
void *iommu, *espdma, *ledma, *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS],
espdma_irq, ledma_irq;
qemu_irq esp_reset, dma_enable;
qemu_irq fdc_tc;
unsigned long kernel_size;
DriveInfo *fd[MAX_FD];
FWCfgState *fw_cfg;
unsigned int num_vsimms;
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
for(i = 0; i < smp_cpus; i++) {
cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]);
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* set up devices */
ram_init(0, machine->ram_size, hwdef->max_mem);
/* models without ECC don't trap when missing ram is accessed */
if (!hwdef->ecc_base) {
empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
}
prom_init(hwdef->slavio_base, bios_name);
slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
hwdef->intctl_base + 0x10000ULL,
cpu_irqs);
for (i = 0; i < 32; i++) {
slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
}
for (i = 0; i < MAX_CPUS; i++) {
slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
}
if (hwdef->idreg_base) {
idreg_init(hwdef->idreg_base);
}
if (hwdef->afx_base) {
afx_init(hwdef->afx_base);
}
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[30]);
if (hwdef->iommu_pad_base) {
/* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
Software shouldn't use aliased addresses, neither should it crash
when does. Using empty_slot instead of aliasing can help with
debugging such accesses */
empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
}
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18],
iommu, &espdma_irq, 0);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
slavio_irq[16], iommu, &ledma_irq, 1);
if (graphic_depth != 8 && graphic_depth != 24) {
error_report("Unsupported depth: %d", graphic_depth);
exit (1);
}
num_vsimms = 0;
if (num_vsimms == 0) {
if (vga_interface_type == VGA_CG3) {
if (graphic_depth != 8) {
error_report("Unsupported depth: %d", graphic_depth);
exit(1);
}
if (!(graphic_width == 1024 && graphic_height == 768) &&
!(graphic_width == 1152 && graphic_height == 900)) {
error_report("Unsupported resolution: %d x %d", graphic_width,
graphic_height);
exit(1);
}
/* sbus irq 5 */
cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
graphic_width, graphic_height, graphic_depth);
} else {
/* If no display specified, default to TCX */
if (graphic_depth != 8 && graphic_depth != 24) {
error_report("Unsupported depth: %d", graphic_depth);
exit(1);
}
if (!(graphic_width == 1024 && graphic_height == 768)) {
error_report("Unsupported resolution: %d x %d",
graphic_width, graphic_height);
exit(1);
}
tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
graphic_width, graphic_height, graphic_depth);
}
}
for (i = num_vsimms; i < MAX_VSIMMS; i++) {
/* vsimm registers probed by OBP */
if (hwdef->vsimm[i].reg_base) {
empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
}
}
if (hwdef->sx_base) {
empty_slot_init(hwdef->sx_base, 0x2000);
}
lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
/* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
if (hwdef->apc_base) {
apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
}
if (hwdef->fd_base) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
fd[0] = drive_get(IF_FLOPPY, 0, 0);
sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
&fdc_tc);
} else {
fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
}
slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
slavio_irq[30], fdc_tc);
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, espdma_irq, &esp_reset, &dma_enable);
qdev_connect_gpio_out(espdma, 0, esp_reset);
qdev_connect_gpio_out(espdma, 1, dma_enable);
if (hwdef->cs_base) {
sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
slavio_irq[5]);
}
if (hwdef->dbri_base) {
/* ISDN chip with attached CS4215 audio codec */
/* prom space */
empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
/* reg space */
empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
}
if (hwdef->bpp_base) {
/* parallel port */
empty_slot_init(hwdef->bpp_base, 0x20);
}
kernel_size = sun4m_load_kernel(machine->kernel_filename,
machine->initrd_filename,
machine->ram_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
machine->boot_order, machine->ram_size, kernel_size,
graphic_width, graphic_height, graphic_depth,
hwdef->nvram_machine_id, "Sun4m");
if (hwdef->ecc_base)
ecc_init(hwdef->ecc_base, slavio_irq[28],
hwdef->ecc_version);
fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2);
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (machine->kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
machine->kernel_cmdline);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(machine->kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
enum {
ss5_id = 32,
vger_id,
lx_id,
ss4_id,
scls_id,
sbook_id,
ss10_id = 64,
ss20_id,
ss600mp_id,
};
static const struct sun4m_hwdef sun4m_hwdefs[] = {
/* SS-5 */
{
.iommu_base = 0x10000000,
.iommu_pad_base = 0x10004000,
.iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.afx_base = 0x6e000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss5_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SS-10 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x10000000, // version 0, implementation 1
.nvram_machine_id = 0x72,
.machine_id = ss10_id,
.iommu_version = 0x03000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-600MP */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.dma_base = 0xef0081000ULL,
.esp_base = 0xef0080000ULL,
.le_base = 0xef0060000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL, // XXX should not exist
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x00000000, // version 0, implementation 0
.nvram_machine_id = 0x71,
.machine_id = ss600mp_id,
.iommu_version = 0x01000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-20 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.bpp_base = 0xef4800000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.dbri_base = 0xee0000000ULL,
.sx_base = 0xf80000000ULL,
.vsimm = {
{
.reg_base = 0x9c000000ULL,
.vram_base = 0xfc000000ULL
}, {
.reg_base = 0x90000000ULL,
.vram_base = 0xf0000000ULL
}, {
.reg_base = 0x94000000ULL
}, {
.reg_base = 0x98000000ULL
}
},
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x20000000, // version 0, implementation 2
.nvram_machine_id = 0x72,
.machine_id = ss20_id,
.iommu_version = 0x13000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* Voyager */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x71300000, // pmc
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = vger_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* LX */
{
.iommu_base = 0x10000000,
.iommu_pad_base = 0x10004000,
.iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = lx_id,
.iommu_version = 0x04000000,
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SS-4 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss4_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SPARCClassic */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = scls_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SPARCbook */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000, // XXX
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = sbook_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
};
/* SPARCstation 5 hardware initialisation */
static void ss5_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[0], machine);
}
/* SPARCstation 10 hardware initialisation */
static void ss10_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[1], machine);
}
/* SPARCserver 600MP hardware initialisation */
static void ss600mp_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[2], machine);
}
/* SPARCstation 20 hardware initialisation */
static void ss20_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[3], machine);
}
/* SPARCstation Voyager hardware initialisation */
static void vger_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[4], machine);
}
/* SPARCstation LX hardware initialisation */
static void ss_lx_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[5], machine);
}
/* SPARCstation 4 hardware initialisation */
static void ss4_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[6], machine);
}
/* SPARCClassic hardware initialisation */
static void scls_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[7], machine);
}
/* SPARCbook hardware initialisation */
static void sbook_init(MachineState *machine)
{
sun4m_hw_init(&sun4m_hwdefs[8], machine);
}
static void ss5_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 5";
mc->init = ss5_init;
mc->block_default_type = IF_SCSI;
mc->is_default = 1;
mc->default_boot_order = "c";
}
static const TypeInfo ss5_type = {
.name = MACHINE_TYPE_NAME("SS-5"),
.parent = TYPE_MACHINE,
.class_init = ss5_class_init,
};
static void ss10_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 10";
mc->init = ss10_init;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 4;
mc->default_boot_order = "c";
}
static const TypeInfo ss10_type = {
.name = MACHINE_TYPE_NAME("SS-10"),
.parent = TYPE_MACHINE,
.class_init = ss10_class_init,
};
static void ss600mp_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCserver 600MP";
mc->init = ss600mp_init;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 4;
mc->default_boot_order = "c";
}
static const TypeInfo ss600mp_type = {
.name = MACHINE_TYPE_NAME("SS-600MP"),
.parent = TYPE_MACHINE,
.class_init = ss600mp_class_init,
};
static void ss20_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 20";
mc->init = ss20_init;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 4;
mc->default_boot_order = "c";
}
static const TypeInfo ss20_type = {
.name = MACHINE_TYPE_NAME("SS-20"),
.parent = TYPE_MACHINE,
.class_init = ss20_class_init,
};
static void voyager_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation Voyager";
mc->init = vger_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
}
static const TypeInfo voyager_type = {
.name = MACHINE_TYPE_NAME("Voyager"),
.parent = TYPE_MACHINE,
.class_init = voyager_class_init,
};
static void ss_lx_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation LX";
mc->init = ss_lx_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
}
static const TypeInfo ss_lx_type = {
.name = MACHINE_TYPE_NAME("LX"),
.parent = TYPE_MACHINE,
.class_init = ss_lx_class_init,
};
static void ss4_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCstation 4";
mc->init = ss4_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
}
static const TypeInfo ss4_type = {
.name = MACHINE_TYPE_NAME("SS-4"),
.parent = TYPE_MACHINE,
.class_init = ss4_class_init,
};
static void scls_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCClassic";
mc->init = scls_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
}
static const TypeInfo scls_type = {
.name = MACHINE_TYPE_NAME("SPARCClassic"),
.parent = TYPE_MACHINE,
.class_init = scls_class_init,
};
static void sbook_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Sun4m platform, SPARCbook";
mc->init = sbook_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
}
static const TypeInfo sbook_type = {
.name = MACHINE_TYPE_NAME("SPARCbook"),
.parent = TYPE_MACHINE,
.class_init = sbook_class_init,
};
static void sun4m_register_types(void)
{
type_register_static(&idreg_info);
type_register_static(&afx_info);
type_register_static(&prom_info);
type_register_static(&ram_info);
type_register_static(&ss5_type);
type_register_static(&ss10_type);
type_register_static(&ss600mp_type);
type_register_static(&ss20_type);
type_register_static(&voyager_type);
type_register_static(&ss_lx_type);
type_register_static(&ss4_type);
type_register_static(&scls_type);
type_register_static(&sbook_type);
}
type_init(sun4m_register_types)